Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in the Knowledge of Naturally-derived Bioactive Compounds as Modulating Agents of the Renin-angiotensin-aldosterone System: Therapeutic Benefits in Cardiovascular Diseases

Author(s): Priscila de Souza, Luisa M. da Silva, Sérgio F. de Andrade and Arquimedes Gasparotto Junior*

Volume 25, Issue 6, 2019

Page: [670 - 684] Pages: 15

DOI: 10.2174/1381612825666190329122443

Price: $65

Abstract

Background: One of the biggest challenges to public health worldwide is to reduce the number of events and deaths related to the cardiovascular diseases. Numerous approaches have been applied to reach this goal, and drug treatment intervention has been indispensable along with an effective strategy for reducing both cardiovascular morbidity and mortality. Renin-angiotensin-aldosterone system (RAAS) blockade is currently one of the most important targets of cardiovascular drug therapy. Many studies have proven the valuable properties of naturally-derived bioactive compounds to treat cardiovascular diseases.

Methods: The goal of this review, therefore, is to discuss the recent developments related to medicinal properties about natural compounds as modulating agents of the RAAS, which have made them an attractive alternative to be available to supplement the current therapy options.

Results: Data has shown that bioactive compounds isolated from several natural products act either by inhibiting the angiotensin-converting enzyme or directly by modulating the AT1 receptors of angiotensin II, which consequently changes the entire classical axis of this system.

Conclusion: While there are a few evidence about the positive actions of different classes of secondary metabolites for the treatment of cardiovascular and renal diseases, data is scarce about the clinical assays established to demonstrate their value in humans.

Keywords: Natural products, phenolic compounds, flavonoids, terpenoids, alkaloids, cardiovascular diseases.

[1]
Gargiulo R, Suhail F, Lerma EV. Cardiovascular disease and chronic kidney disease. Dis Mon 2015; 61(9): 403-13.
[2]
Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation 2013; 127(6): 749-56.
[3]
Leong DP, Joseph PG, McKee M, et al. Reducing the global burden of cardiovascular disease, Part 2: Prevention and treatment of cardiovascular disease. Circ Res 2017; 121(6): 695-710.
[4]
MacRae CA, Roden DM, Loscalzo J. The future of cardiovascular therapeutics. Circulation 2016; 133(25): 2610-7.
[5]
Van Camp G. Cardiovascular disease prevention. Acta Clin Belg 2014; 69(6): 407-11.
[6]
Yoshida M. Recent advances in target identification of bioactive natural products. Biosci Biotechnol Biochem 2018; 21: 1-9.
[7]
Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st Century: Innovations for novel drug discovery. Int J Mol Sci 2018; 19(6): 1578.
[8]
Makani H, Bangalore S, De Souza KA, Shah A, Messerli FH. Efficacy and safety of dual blockade of the renin-angiotensin system: meta-analysis of randomised trials. Br Med J 2013; 346: 1-15.
[9]
Li W, Li J, Hao P, et al. Imbalance between angiotensin II and angiotensin-(1-7) in human coronary atherosclerosis. J Renin Angiotensin Aldosterone Syst 2016; 17(3)
[10]
Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/ Angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circ Res 2016; 118(8): 1313-26.
[11]
Qaradakhi T, Apostolopoulos V, Zulli A. Angiotensin (1-7) and Alamandine: Similarities and differences. Pharmacol Res 2016; 111: 820-6.
[12]
Simões E, Silva AC. Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107: 154-62.
[13]
Mennuni S, Rubattu S, Pierelli G, Tocci G, Fofi C, Volpe M. Hypertension and kidneys: unraveling complex molecular mechanisms underlying hypertensive renal damage. J Hum Hypertens 2014; 28(2): 74-9.
[14]
Romero CA, Orias M, Weir MR. Novel RAAS agonists and antagonists: clinical applications and controversies. Nat Rev Endocrinol 2015; 11(4): 242-52.
[15]
Brugts JJ, van Vark L, Akkerhuis M, et al. Impact of renin-angiotensin system inhibitors on mortality and major cardiovascular endpoints in hypertension: A number-needed-to-treat analysis. Int J Cardiol 2015; 181: 425-9.
[16]
Ma TK, Kam KK, Yan BP, Lam YY. Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 2010; 160: 1273-92.
[17]
Pichler RH, deBoer IH. Dual renin-angiotensin-aldosterone system blockade for diabetic kidney disease. Curr Diab Rep 2010; 4: 297-305.
[18]
Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS modulation for the treatment of diabetic cardiovascular disease. J Diabetes Res 2016; 20168917578
[19]
De Mello WC. Local renin angiotensin aldosterone systems and cardiovascular diseases. Med Clin North Am 2017; 101(1): 117-27.
[20]
Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 2017; 125(Pt A): 57-71.
[21]
von Lueder TG, Krum H. RAAS inhibitors and cardiovascular protection in large scale trials. Cardiovasc Drugs Ther 2013; 27(2): 171-9.
[22]
Rangel-Huerta OD, Pastor-Villaescusa B, Aguilera CM, Gil A. A systematic review of the efficacy of bioactive compounds in cardiovascular disease: Phenolic Compounds. Nutrients 2015; 7(7): 5177-216.
[23]
Hügel HM, Jackson N, May B, Zhang AL, Xue CC. Polyphenol protection and treatment of hypertension. Phytomedicine 2016; 23(2): 220-31.
[24]
Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y. Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice. Biochem Pharmacol 2017; 136: 76-85.
[25]
Wang C, Luo H, Xu Y, Tao L, Chang C, Shen X. Salvianolic Acid B-Alleviated Angiotensin II Induces Cardiac Fibrosis by Suppressing NF-κB Pathway In Vitro. Med Sci Monit 2018; 24: 7654-64.
[26]
Liu M, Ye J, Gao S, et al. Salvianolic acid B protects cardiomyocytes from angiotensin II-induced hypertrophy via inhibition of PARP-1. Biochem Biophys Res Commun 2014; 444(3): 346-53.
[27]
Gao XP, Xu DY, Deng YL, Zhang Y. Screening of angiotensin converting enzyme inhibitors from Salvia miltiorrhizae. Zhongguo Zhong Yao Za Zhi 2004; 29(4): 359-62.
[28]
He H, Shi M, Yang X, Zeng X, Wu L, Li L. Comparison of cardioprotective effects using salvianolic acid B and benazepril for the treatment of chronic myocardial infarction in rats. Naunyn Schmiedebergs Arch Pharmacol 2008; 378(3): 311-22.
[29]
Bhullar KS, Lassalle-Claux G, Touaibia M, Rupasinghe HP. Antihypertensive effect of caffeic acid and its analogs through dual renin-angiotensin-aldosterone system inhibition. Eur J Pharmacol 2014; 730: 125-32.
[30]
Chiou SY, Sung JM, Huang PW, Lin SD. Antioxidant, Antidiabetic, and Antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. J Med Food 2017; 20(2): 171-9.
[31]
Agunloye OM, Oboh G, Ademiluyi AO, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother 2018; 109: 450-8.
[32]
Li QL, Li BG, Zhang Y, Gao XP, Li CQ, Zhang GL. Three angiotensin-converting enzyme inhibitors from Rabdosia coetsa. Phytomedicine 2008; 15(5): 386-8.
[33]
Karthik D, Viswanathan P, Anuradha CV. Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J Cardiovasc Pharmacol 2011; 58(5): 514-21.
[34]
Liu Q, Tian J, Xu Y, Li C, Meng X, Fu F. Protective Effect of RA on Myocardial Infarction-Induced Cardiac Fibrosis via AT1R/p38 MAPK pathway signaling and modulation of the ACE2/ACE ratio. J Agric Food Chem 2016; 64(35): 6716-22.
[35]
Burrell LM, Risvanis J, Kubota E, et al. Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005; 26: 369-75.
[36]
Koka V, Huang XR, Chung AC, Wang W, Truong LD, Lan HY. Angiotensin II up-regulates 3 angiotensin I-converting enzyme (ACE), but down-regulates ACE2 via the AT1-ERK/p38 MAP 4 kinase pathway. Am J Pathol 2008; 172: 1174-83.
[37]
Paul M, Poyan-Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol 2006; 86: 747-803.
[38]
Ferreira LG, Evora PRB, Capellini VK, et al. Effect of rosmarinic acid on the arterial blood pressure in normotensive and hypertensive rats: Role of ACE. Phytomedicine 2018; 38: 158-65.
[39]
Li F, Takahashi Y, Yamaki K. Inhibitory effect of catechin-related compounds on renin activity. Biomed Res 2013; 34(3): 167-71.
[40]
Lee JW, Baek NI, Lee DY. Inhibitory effects of seco-triterpenoids from Acanthopanax sessiliflorus fruits on HUVEC invasion and ACE activity. Nat Prod Commun 2015; 10(9): 1517-20.
[41]
Silambarasan T, Manivannan J, Raja B, Chatterjee S. Prevention of cardiac dysfunction, kidney fibrosis and lipid metabolic alterations in L-NAME hypertensive rats by sinapic acid--Role of HMG-CoA reductase. Eur J Pharmacol 2016; 777: 113-23.
[42]
Quinn L, Gray SG, Meaney S, Finn S, McLoughlin P, Hayes M. Extraction and Quantification of Sinapinic Acid from Irish Rapeseed Meal and Assessment of Angiotensin-I Converting Enzyme (ACE-I) Inhibitory Activity. J Agric Food Chem 2017; 65(32): 6886-92.
[43]
Hou YZ, Yang J, Zhao GR, Yuan YJ. Ferulic acid inhibits vascular smooth muscle cell proliferation induced by angiotensin II. Eur J Pharmacol 2004; 499(1-2): 85-90.
[44]
Ardiansyah OY, Shirakawa H, Koseki T, Komai M. Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J Agric Food Chem 2008; 56(8): 2825-30.
[45]
Hansen K, Adsersen A, Smitt UW, et al. Angiotensin converting enzyme (ACE) inhibitory flavonoids from Erythroxylum laurifolium. Phytomedicine 1996; 2(4): 313-7.
[46]
Zhang S, Li H, Li Y, Zhang F, Liu Y, Chen X. Nicousamide normalizes renovascular hypertension in two-kidney one-clip hypertensive rats. Biomed Rep 2013; 1(1): 89-92.
[47]
Zhang S, Li Y, Li H, Zheng X, Chen X. Renal-protective effect of nicousamide on hypertensive nephropathy in spontaneously hypertensive rats. Biomed Rep 2013; 1(1): 34-40.
[48]
Kadakol A, Malek V, Goru SK, Pandey A, Bagal S, Gaikwad AB. Esculetin attenuates alterations in Ang II and acetylcholine mediated vascular reactivity associated with hyperinsulinemia and hyperglycemia. Biochem Biophys Res Commun 2015; 461(2): 342-7.
[49]
Kadakol A, Goru SK, Malek V, Gaikwad AB. Esculetin ameliorates vascular perturbation by intervening in the occupancy of H2BK120Ub at At1, At2, Tgfβ1 and Mcp1 promoter gene in thoracic aorta of IR and T2D rats. Biomed Pharmacother 2017; 95: 1461-8.
[50]
Cho JY, Jeong SJ, Lee H, et al. Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities. Food Sci Biotechnol 2016; 25(6): 1701-8.
[51]
Young Park J, Wook Yun J, Whan Choi Y, et al. Antihypertensive effect of gomisin A from Schisandra chinensis on angiotensin II-induced hypertension via preservation of nitric oxide bioavailability. Hypertens Res 2012; 35(9): 928-34.
[52]
Ye BH, Lee SJ, Choi YW, Park SY, Kim CD. Preventive effect of gomisin J from Schisandra chinensis on angiotensin II-induced hypertension via an increased nitric oxide bioavailability. Hypertens Res 2015; 38(3): 169-77.
[53]
Prasad K. Secoisolariciresinol Diglucoside (SDG) isolated from flaxseed, an alternative to ACE inhibitors in the treatment of hypertension. Int J Angiol 2013; 22(4): 235-8.
[54]
Zheng SG, Ren YN, Zhao MQ, Tao SJ, Kong X, Yang JR. Effect of serum containing sesamin on angiotensin ii-induced apoptosis in rat cardiomyocytes. Zhong Yao Cai 2015; 38(5): 1013-7.
[55]
Zhao M, Zheng S, Yang J, et al. Suppression of TGF-β1/Smad signaling pathway by sesamin contributes to the attenuation of myocardial fibrosis in spontaneously hypertensive rats. PLoS One 2015; 10(3)e0121312
[56]
Kim SA, Lee KY, Kim JR, Choi HC. Estrogenic compound attenuates angiotensin II-induced vascular smooth muscle cell proliferation through interaction between LKB1 and estrogen receptor α. J Pharmacol Sci 2016; 132(1): 78-85.
[57]
Sha S, Xu D, Wang Y, Zhao W, Li X. Antihypertensive effects of fargesin in vitro and in vivo via attenuating oxidative stress and promoting nitric oxide release. Can J Physiol Pharmacol 2016; 94(8): 900-6.
[58]
Ma Y, Zeng M, Sun R, Hu M. Disposition of flavonoids impacts their efficacy and safety. Curr Drug Metab 2014; 15(9): 841-64.
[59]
de Souza P, Gasparotto A Jr, Crestani S, et al. Hypotensive mechanism of the extracts and artemetin isolated from Achillea millefolium L. (Asteraceae) in rats. Phytomedicine 2011; 18(10): 819-25.
[60]
Bahem R, Hoffmann A, Azonpi A, Caballero-George C, Vanderheyden P. Modulation of Calcium Signaling of Angiotensin AT1, Endothelin ETA, and ETB Receptors by Silibinin, Quercetin, Crocin, Diallyl Sulfides, and Ginsenoside Rb1. Planta Med 2015; 81(8): 670-8.
[61]
Muhammad SA, Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn Mag 2015; 11(Suppl. 1): S123-6.
[62]
Jones HS, Gordon A, Magwenzi SG, Naseem K, Atkin SL, Courts FL. The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Mol Nutr Food Res 2016; 60(4): 787-97.
[63]
Lu Y, Wang RH, Guo BB, Jia YP. Quercetin inhibits angiotensin II induced apoptosis via mitochondrial pathway in human umbilical vein endothelial cells. Eur Rev Med Pharmacol Sci 2016; 20(8): 1609-16.
[64]
Huang WY, Fu L, Li CY, Xu LP, Zhang LX, Zhang WM. Quercetin, Hyperin, and Chlorogenic Acid Improve Endothelial Function by Antioxidant, Antiinflammatory, and ACE Inhibitory Effects. J Food Sci 2017; 82(5): 1239-46.
[65]
Luo J, Zhang C, Liu Q, Ou S, Zhang L, Peng X. Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res Int 2017; 100(Pt 1): 579-85.
[66]
Chen K, Rekep M, Wei W, et al. Quercetin prevents in vivo and in vitro myocardial hypertrophy through the proteasome-GSK-3 Pathway. Cardiovasc Drugs Ther 2018; 32(1): 5-21.
[67]
Guo X, Chen M, Zeng H, et al. Quercetin attenuates ethanol-induced iron uptake and myocardial injury by regulating the angiotensin II-L-type calcium channel. Mol Nutr Food Res 2018; 62(5)
[68]
Adefegha SA, Oyeleye SI, Dada FA, Olasehinde TA, Oboh G. Modulatory effect of quercetin and its glycosylated form on key enzymes and antioxidant status in rats penile tissue of paroxetine-induced erectile dysfunction. Biomed Pharmacother 2018; 107: 1473-9.
[69]
Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS. Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 2018; 155: 889-904.
[70]
Oboh G, Akinyemi AJ, Osanyinlusi FR, Ademiluyi AO, Boligon AA, Athayde ML. Phenolic compounds from sandpaper (Ficus exasperata) leaf inhibits angiotensin 1 converting enzyme in high cholesterol diet fed rats. J Ethnopharmacol 2014; 157: 119-25.
[71]
Gasparotto Junior A., Gasparotto FM, Lourenço EL, et al. Antihypertensive effects of isoquercitrin and extracts from Tropaeolum majus L.: evidence for the inhibition of angiotensin converting enzyme. J Ethnopharmacol 2011; 134(2): 363-72.
[72]
Gasparotto A Jr, Boffo MA, Lourenço EL, Stefanello ME, Kassuya CA, Marques MC. Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. J Ethnopharmacol 2009; 122(3): 517-22.
[73]
Gasparotto Junior A., Prando TB, Leme Tdos S, et al. Mechanisms underlying the diuretic effects of Tropaeolum majus L. extracts and its main component isoquercitrin. J Ethnopharmacol 2012; 141(1): 501-9.
[74]
Park YH, Xu XR, Chiou GC. Structural requirements of flavonoids for increment of ocular blood flow in the rabbit and retinal function recovery in rat eyes. J Ocul Pharmacol Ther 2004; 20(3): 189-200.
[75]
Ichimura T, Yamanaka A, Ichiba T, et al. Antihypertensive effect of an extract of Passiflora edulis rind in spontaneously hypertensive rats. Biosci Biotechnol Biochem 2006; 70(3): 718-21.
[76]
Su J, Xu HT, Yu JJ, et al. Luteolin Ameliorates Hypertensive Vascular Remodeling through Inhibiting the Proliferation and Migration of Vascular Smooth Muscle Cells. Evid Based Complement Alternat Med 2015; 2015364876
[77]
Boeing T, da Silva LM, Mariott M, Andrade SF, de Souza P. Diuretic and natriuretic effect of luteolin in normotensive and hypertensive rats: Role of muscarinic acetylcholine receptors. Pharmacol Rep 2017; 69(6): 1121-4.
[78]
Wang T, Pan D, Zhang Y, et al. Luteolin antagonizes angiotensin II-dependent proliferation and collagen synthesis of cultured rat cardiac fibroblasts. Curr Pharm Biotechnol 2015; 16(5): 430-9.
[79]
Nakayama A, Morita H, Nakao T, et al. A Food-Derived Flavonoid Luteolin Protects against Angiotensin II-Induced Cardiac Remodeling. PLoS One 2015; 10(9)e0137106
[80]
Zhang T, Wu W, Li D, et al. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int Immunopharmacol 2014; 20(2): 346-51.
[81]
Xu C, Chen J, Zhang J, et al. Naringenin inhibits angiotensin II-induced vascular smooth muscle cells proliferation and migration and decreases neointimal hyperplasia in balloon injured rat carotid arteries through suppressing oxidative stress. Biol Pharm Bull 2013; 36(10): 1549-55.
[82]
Gao Y, Wang Z, Zhang Y, et al. Naringenin inhibits NG-nitro-L-arginine methyl ester-induced hypertensive left ventricular hypertrophy by decreasing angiotensin-converting enzyme 1 expression. Exp Ther Med 2018; 16(2): 867-73.
[83]
Cesarone MR, Belcaro G, Rohdewald P, et al. Comparison of Pycnogenol and Daflon in treating chronic venous insufficiency: A prospective, controlled study. Clin Appl Thromb Hemost 2006; 12(2): 205-12.
[84]
Giannini I, Amato A, Basso L, et al. Flavonoids mixture (diosmin, troxerutin, hesperidin) in the treatment of acute hemorrhoidal disease: a prospective, randomized, triple-blind, controlled trial. Tech Coloproctol 2015; 19(6): 339-45.
[85]
Wunpathe C, Potue P, Maneesai P, et al. Hesperidin Suppresses Renin-Angiotensin System Mediated NOX2 Over-Expression and Sympathoexcitation in 2K-1C Hypertensive Rats. Am J Chin Med 2018; 46(4): 751-67.
[86]
Chen G, Pan SQ, Shen C, Pan SF, Zhang XM, He QY. Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways. Acta Pharmacol Sin 2014; 35(4): 463-75.
[87]
Chen G, Pan SF, Cui XL, Liu LH. Puerarin attenuates angiotensin II-induced cardiac fibroblast proliferation via the promotion of catalase activity and the inhibition of hydrogen peroxide-dependent Rac-1 activation. Chin J Nat Med 2018; 16(1): 41-52.
[88]
Fu C, Chen B, Jin X, et al. Puerarin protects endothelial progenitor cells from damage of angiotensin II via activation of ERK1/2-Nrf2 signaling pathway. Mol Med Rep 2018; 17(3): 3877-83.
[89]
Olszanecki R, Bujak-Gizycka B, Madej J, et al. Kaempferol, but not resveratrol inhibits angiotensin converting enzyme. J Physiol Pharmacol 2008; 59(2): 387-92.
[90]
Guerrero L, Castillo J, Quiñones M, et al. Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One 2012; 7(11)e49493
[91]
Liu Y, Gao L, Guo S, et al. Kaempferol Alleviates Angiotensin II-Induced Cardiac Dysfunction and Interstitial Fibrosis in Mice. Cell Physiol Biochem 2017; 43(6): 2253-63.
[92]
Zhang W, Yuan W, Xu N, Li J, Chang W. Icariin improves acute kidney injury and proteinuria in a rat model of pregnancy-induced hypertension. Mol Med Rep 2017; 16(5): 7398-404.
[93]
Dong H, Ming S, Fang J, Li Y, Liu L. Icariin ameliorates angiotensin II-induced cerebrovascular remodeling by inhibiting Nox2-containing NADPH oxidase activation. Hum Cell 2018.
[http://dx.doi.org/10.1007/s13577-018-0220-3]
[94]
Baur JA and, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 2006; 6: 493-506.
[95]
Dorri Mashhadi F, Zavvar Reza J, Jamhiri M, Hafizi Z, Zare Mehrjardi F, Safari F. The effect of resveratrol on angiotensin II levels and the rate of transcription of its receptors in the rat cardiac hypertrophy model. J Physiol Sci 2017; 67(2): 303-9.
[96]
Hossain E, Anand-Srivastava MB. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors. Can J Physiol Pharmacol 2017; 95(8): 945-53.
[97]
Almajdoob S, Hossain E, Anand-Srivastava MB. Resveratrol attenuates hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats: Role of ROS and ROS-mediated cell signaling. Vascul Pharmacol 2018; 101: 48-56.
[98]
Lin X, Cheng C, Zhong J, et al. Resveratrol inhibits angiotensin II-induced proliferation of A7r5 cells and decreases neointimal hyperplasia by inhibiting the CaMKII-HDAC4 signaling pathway. Mol Med Rep 2018; 18(1): 1007-14.
[99]
Kim EN, Kim MY, Lim JH, et al. The protective effect of resveratrol on vascular aging by modulation of the renin-angiotensin system. Atherosclerosis 2018; 270: 123-31.
[100]
Jang IA, Kim EN, Lim JH, et al. Effects of Resveratrol on the Renin-Angiotensin System in the Aging Kidney. Nutrients 2018; 10(11)
[101]
Sattarinezhad A, Roozbeh J, Shirazi Yeganeh B, Omrani GR, Shams M. Resveratrol reduces albuminuria in diabetic nephropathy: A randomized double-blind placebo-controlled clinical trial. Diabetes Metab 2018.
[http://dx.doi.org/10.1016/j.diabet.2018.05.010]
[102]
Yazaki K, Arimura GI, Ohnishi T. ‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles. Plant Cell Physiol 2017; 58: 1615-21.
[103]
Suručić R, Kundaković T, Lakušić B, Drakul D, Milovanović SR, Kovačević N. Variations in Chemical Composition, Vasorelaxant and Angiotensin I-Converting Enzyme Inhibitory Activities of Essential Oil from Aerial Parts of Seseli pallasii Besser (Apiaceae). Chem Biodivers 2017; 14(5)
[104]
Kim MS, Oh KS, Lee JH, Ryu SY, Mun J, Lee BH. Kamolonol suppresses angiotensin II-induced stress fiber formation and cellular hypertrophy through inhibition of Rho-associated kinase 2 activity. Biochem Biophys Res Commun 2013; 438(2): 318-23.
[105]
Liu Q, Hu HJ, Li PF, et al. Diterpenoids and phenylethanoid glycosides from the roots of Clerodendrum bungei and their inhibitory effects against angiotensin converting enzyme and α-glucosidase. Phytochemistry 2014; 103: 196-202.
[106]
Ahn YM, Choi YH, Yoon JJ, et al. Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. Eur J Pharmacol 2017; 809: 231-41.
[107]
Pan Y, Zhou F, Song Z, et al. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediatedangiotensin (Ang)-(1-7) upregulation. Biomed Pharmacother 2018; 97: 1694-700.
[108]
Peng J, Ren X, Lan T, Chen Y, Shao Z, Yang C. Renoprotective effects of ursolic acid on ischemia/reperfusion induced acute kidney injury through oxidative stress, inflammation and the inhibition of STAT3 and NF κB activities. Mol Med Rep 2016; 14(4): 3397-402.
[109]
Bunbupha S, Pakdeechote P, Kukongviriyapan U, Prachaney P, Kukongviriyapan V. Asiatic acid reduces blood pressure by enhancing nitric oxide bioavailability with modulation of eNOS and p47phox expression in L-NAME-induced hypertensive rats. Phytother Res 2014; 28(10): 1506-12.
[110]
Maneesai P, Bunbupha S, Kukongviriyapan U, et al. Asiatic acid attenuates renin-angiotensin system activation and improves vascular function in high-carbohydrate, high-fat diet fed rats. BMC Complement Altern Med 2016; 16: 123.
[111]
Maneesai P, Bunbupha S, Kukongviriyapan U, et al. Effect of asiatic acid on the Ang II-AT1R-NADPH oxidase-NF-κB pathway in renovascular hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(10): 1073-83.
[112]
Martín R, Miana M, Jurado-López R, et al. DIOL triterpenes block profibrotic effects of angiotensin II and protect from cardiac hypertrophy. PloS One 2012; 7(7)e41545
[113]
Li M, Liu X, He Y, et al. Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway. Eur J Pharmacol 2017; 797: 124-33.
[114]
Xu XJ, Zhao WB, Feng SB, et al. Celastrol alleviates angiotensin II mediated vascular smooth muscle cell senescence via induction of autophagy. Mol Med Rep 2017; 16(5): 7657-64.
[115]
Lee JW, Baek NI, Lee DY. Inhibitory Effects of seco-Triterpenoids from Acanthopanax sessiliflorus Fruits on HUVEC Invasion and ACE Activity. Nat Prod Commun 2015; 10(9): 1517-20.
[116]
Ozmutlu S, Dede S, Ceylan E. The effect of lycopene treatment on ACE activity in rats with experimental diabetes. J Renin Angiotensin Aldosterone Syst 2012; 13(3): 328-33.
[117]
Kaliappan G, Nagarajan P, Moorthy R, et al. Ang II induce kidney damage by recruiting inflammatory cells and up regulates PPAR gamma and Renin 1 gene: effect of β carotene on chronic renal damage. J Thromb Thrombolysis 2013; 36(3): 277-85.
[118]
Gómez GI, Velarde V. Boldine Improves Kidney Damage in the Goldblatt 2K1C Model Avoiding the Increase in TGF-β. Int J Mol Sci 2018; 19(7)
[119]
O’Brien P, Carrasco-Pozo C, Speisky H. Boldine and its antioxidant or health-promoting properties. Chem Biol Interact 2006; 159: 1-17.
[120]
Lau YS, Machha A, Achike FI, Murugan D, Mustafa MR. The aporphine alkaloid boldine improves endothelial function in spontaneously hypertensive rats. Exp Biol Med (Maywood) 2012; 237(1): 93-8.
[121]
Cheng J, Zhou W, Warner GM, et al. Temporal analysis of signaling pathways activated in a murine model of two-kidney, one-clip hypertension. Am J Physiol Renal Physiol 2009; 297(4): F1055-68.
[122]
Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 2015; 243(2): 449-61.
[123]
Zeng X, Zeng X. Relationship between the clinical effects of berberine on severe congestive heart failure and its concentration in plasma studied by HPLC. Biomed Chromatogr 1999; 13(7): 442-4.
[124]
Sabir M, Bhide NK. Study of some pharmacological actions of berberine. Indian J Physiol Pharmacol 1971; 15(3): 111-32.
[125]
Chun YT, Yip TT, Lau KL, Kong YC, Sankawa U. A biochemical study on the hypotensive effect of berberine in rats. Gen Pharmacol 1979; 10(3): 177-82.
[126]
Chiou WF, Liao JF, Chen CF. Comparative study of the vasodilatory effects of three quinazoline alkaloids isolated from Evodia rutaecarpa. J Nat Prod 1996; 59(4): 374-8.
[127]
Ko WH, Yao XQ, Lau CW, et al. Vasorelaxant and antiproliferative effects of berberine. Eur J Pharmacol 2000; 399(2-3): 187-96.
[128]
Kang DG, Sohn EJ, Kwon EK, Han JH, Oh H, Lee HS. Effects of berberine on angiotensin-converting enzyme and NO/cGMP system in vessels. Vascul Pharmacol 2002; 39(6): 281-6.
[129]
Guo Z, Sun H, Zhang H, Zhang Y. Anti-hypertensive and renoprotective effects of berberine in spontaneously hypertensive rats. Clin Exp Hypertens 2015; 37(4): 332-9.
[130]
Shi N, Chen SY. Smooth muscle cell differentiation: model systems, regulatory mechanisms, and vascular diseases. J Cell Physiol 2015; 231: 777-87.
[131]
Ruiz-Ortega M, Esteban V, Egido J. The regulation of the inflammatory response through nuclear factor-kappa B pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 2007; 17: 19-25.
[132]
Liang KW, Yin SC, Ting CT, et al. Berberine inhibits platelet-derived growth factor-induced growth and migration partly through an AMPK-dependent pathway in vascular smooth muscle cells. Eur J Pharmacol 2008; 590: 343-54.
[133]
Wu M, Wang J, Liu LT. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin J Integr Med 2010; 16: 188-92.
[134]
Liu J, Xiu J, Cao J, Gao Q, Ma D, Fu L. Berberine cooperates with adrenal androgen dehydroepiandrosterone sulfate to attenuate PDGF-induced proliferation of vascular smooth muscle cell A7r5 through Skp2 signaling pathway. Mol Cell Biochem 2011; 355: 127-34.
[135]
Qiu H, Wu Y, Wang Q, et al. Effect of berberine on PPARα-NO signalling pathway in vascular smooth muscle cell proliferation induced by angiotensin IV. Pharm Biol 2017; 55(1): 227-32.
[136]
Xiao JH, Zhang YL, Feng XL, Wang JL, Qian JQ. Effects of isoliensinine on angiotensin II-induced proliferation of porcine coronary arterial smooth muscle cells. J Asian Nat Prod Res 2006; 8(3): 209-16.
[137]
Wang W, Cai J, Tang S, et al. Sinomenine Attenuates Angiotensin II-Induced Autophagy via Inhibition of P47-Phox Translocation to the Membrane and Influences Reactive Oxygen Species Generation in Podocytes. Kidney Blood Press Res 2016; 41(2): 158-67.
[138]
Li Y, Cui S, Cheng Y, Chen X, Hu Z. Application of nonaqueous capillary electrophoresis for quantitative analysis of quinolizidine alkaloids in Chinese herbs. Anal Chim Acta 2004; 508: 17-22.
[139]
Zhao ZZ, Liang ZT, Zhou H, et al. Quantification of sinomenine in caulis sinomenii collected from different growing regions and wholesale herbal markets by a modified HPLC method. Biol Pharm Bul 2005; 28(1): 105-9.
[140]
Yamasaki H. Pharmacology of sinomenine, an anti-rheumatic alkaloids from sinomenine acutum. Acta Med Okayama 1976; 30: 1-20.
[141]
Liu L, Buchner E, Beitze D, et al. Amelioration of rat experimental arthritides by treatment with the alkaloid sinomenine. Int J Immunopharmacol 1996; 18(10): 529-43.
[142]
Nishida S, Satoh H. Cardiovascular pharmacology of sinomenine: the mechanical and electropharmacological actions. Drug Target Insights 2007; 2: 97-104.
[143]
Estellés R, López-Martín J, Milian L, et al. Effect of two phenanthrene alkaloids on angiotensin II-induced leukocyte-endothelial cell interactions in vivo. Br J Pharmacol 2004; 142(1)
[144]
O22h9. H, Kang DG, Lee S, Lee Y, Lee HS. Angiotensin converting enzyme (ACE) inhibitory alkaloids from Fritillaria ussuriensis. Planta Med 2003; 69(6): 564-5.
[145]
An JJ, Zhou JL, Li HJ, Jiang Y, Li P. Puqienine E: an angiotensin converting enzyme inhibitory steroidal alkaloid from Fritillaria puqiensis. Fitoterapia 2010; 81(3): 149-52.
[146]
Caballero-George C, Vanderheyden PM, Apers S, et al. Inhibitory activity on binding of specific ligands to the human angiotensin II AT(1) and endothelin 1 ET(A) receptors: bioactive benzo[c] phenanthridine alkaloids from the root of Bocconia frutescens. Planta Med 2002; 68(9): 770-5.
[147]
Hung PH, Lin LC, Wang GJ, Chen CF, Wang PS. Inhibitory effect of evodiamine on aldosterone release by Zona glomerulosa cells in male rats. Chin J Physiol 2001; 44(2): 53-7.
[148]
He N, Gong QH, Zhang F, et al. Evodiamine inhibits angiotensin II-induced rat cardiomyocyte hypertrophy. Chin J Integr Med 2018; 24(5): 359-65.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy