[1]
Seo, H.I.; Cheon, Y.A.; Chung, B.G. Graphene and thermo-responsive polymeric nanocomposites for therapeutic applications. Biomed. Eng. Lett., 2016, 6, 10-15.
[2]
Paulchamy, B.; Arthi, G.; Lignesh, B.D. A simple approach to stepwise synthesis of graphene oxide nanomaterial. J. Nanomed. Nanotechnol., 2015, 6(1), 253.
[3]
Gaikwad, G.; Patil, P.; Patil, D.; Naik, J. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites. Mater. Sci. Eng. B, 2017, 218, 14-22.
[4]
Shareena, T.P.D.; Mc Shan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Lett., 2018, 10(3), 53.
[5]
Rana, V.K.; Choi, M.C.; Kong, J.Y.; Ha, C.S.; Mishra, S. Synthesis and drug delivery behaviour of chitosan functionalized graphene oxide hybrid nanosheets. Macromol. Mater., 2011, 296, 131-140.
[6]
Lu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent progress on nanostructures for drug delivery applications. J. Nanomater., 2016, 2016, 20.
[7]
Liu, J.H.; Wang, T.; Wang, H.; Gu, Y.; Xu, Y.; Tang, H.; Jia, G.; Liu, Y. Biocompatibility of graphene oxide intravenously administrated in mice-effects of dose, size and exposure protocols. Toxicol. Res., 2015, 4(1), 83-91.
[8]
Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterial for drug delivery and tissue engineering. J. Control. Release, 2014, 173, 75-88.
[9]
Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Guyader, L.; Gao, G.; Chen, C. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials, 2012, 33, 402-411.
[10]
Waghulde, M.R.; Naik, J.B. Experimental article poly-€-caprolactone-loaded miglitol microspheres for the treatment of type- 2 diabetes mellitus using the response surface methodology. J. Taibah Univ. Med. Sci., 2014, 11, 364-373.
[11]
Waghulde, M.R.; Naik, J.B. Comparative study of encapsulated vildagliptin microparticles produced by spray drying and solvent evaporation technique. Dry. Technol., 2017, 35, 1644-1645.
[12]
Bari, S.S.; Mishra, S. Calcium silicate nanowires. An effective alternative for improving mechanical properties of chitosan-hydroxyethyl methacrylate (HEMA) copolymer nanocomposites. Carbohydr. Polym., 2017, 169, 426-432.
[13]
Bari, S.S.; Mishra, S. Effect of calcium sulphate nanorods on mechanical properties of chitosan-hydroxyethyl methacrylate (HEMA) copolymer nanocomposites. Carbohydr. Polym., 2017, 157, 409-418.
[14]
Rodrigues, S.; Dionisio, M.; Lopez, C.R.; Grenha, A. Biocompatibility of chitosan carriers with application in drug delivery. J. Funct. Biomater., 2012, 3, 615-641.
[15]
Zhang, H.; Oh, M.; Allen, C.; Kumacheva, E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules, 2004, 5, 2461-2468.
[16]
Yan, T.; Zhang, H.; Huang, D.; Feng, S.; Fujita, M.; Gao, X.D. Chitosan-functionalized graphene oxide as a potential immunoadjuvant. Nanomaterials (Basel), 2017, 7, 59.
[17]
Khairnar, G.; Mokale, V.; Naik, J. Formulation and development of Nateglinide loaded sustained release ethyl cellulose microspheres by O/W solvent emulsification technique. J. Pharm. Investig., 2014, 44, 411-422.
[18]
Naik, J.; Lokhande, A.; Mishra, S.; Kulkarni, R. Preparation and characterization of Nateglinide loaded hydrophobic biocompatible polymer nanoparticles. J. Inst. Eng. India Ser., 2016, 98, 269-277.
[19]
Lokhande, A.; Mishra, S.; Kulkarni, R.; Naik, J. Development and evaluation of nateglinide loaded polycaprolactone nanoparticles. Micro Nanosyst., 2015, 7, 43-48.
[20]
Lokhande, A.; Mishra, S.; Kulkarni, R.; Naik, J. Development and evaluation of nateglinide loaded polycaprolactone nanoparticles. Micro Nanosyst., 2015, 7(1), 43-48.
[21]
Kumari, A.; Singla, R.; Guliani, A.; Yadav, S.K. Review article: Nanoencapsulation for drug delivery. EXCLI J., 2014, 13, 265-286.
[22]
Deshmukh, R.K.; Naik, J.B. Diclofenac sodium-loaded Eudragit® microspheres: Optimization using statistical experimental design. J. Pharm. Innov., 2013, 8, 276-287.
[23]
Patil, P.; Khairnar, G.; Naik, J. Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: Microreactor precipitation. Chem. Eng. Res. Des., 2015, 104, 98-109.
[24]
Deshmukh, R.K.; Naik, J.B. Aceclofenac microspheres: Quality by design approach. Mater. Sci. Eng. C, 2014, 36, 320-328.
[25]
Jain, R.; Mishra, S. Electrical and electrochemical properties of graphene modulated through surface functionalization. RSC Advances, 2016, 6, 27404-27415.
[26]
Bari, P.; Lanjewar, S.; Hansora, D.P.; Mishra, S. Influence of the coupling agent and graphene oxide on the thermal and mechanical behaviour of tea dust–polypropylene composites. J. Appl. Polym. Sci., 2015, 133(4), 42927.
[27]
Patil, J.S.; Patil, P.B.; Sonawane, P.; Naik, J.B. Design and development of sustained release glyburide-loaded silica nanoparticles. Bull. Mater. Sci., 2017, 40, 263-270.
[28]
Yadava, S.K.; Naik, J.B.; Patil, J.S.; Mokale, V.J.; Singh, R. Enhanced solubility and bioavailability of lovastatin using stabilized form of self-emulsifying drug delivery system. Colloids Surf. A Physicochem. Eng. Asp., 2015, 481, 63-71.
[29]
Deshmukh, R.K.; Naik, J.B. Formulation of diclofenac sodium-loaded ethylcellulose microparticles using 23 factorial design approach. Micro Nanosyst., 2017, 9(1), 7-15.
[30]
Yadava, S.; Naik, J.; Patil, J.; Mokale, V. Development of encapsulated self healed microparticles: Evaluation by RSM. Micro Nanosyst., 2016, 8(1), 31-40.
[31]
Naik, J.B.; Lokhande, A.B.; Mishra, S.; Kulkarni, R.D. Effect of solvents, drug/polymer ratios, surfactant concentration on in vitro characteristics of repaglinide loaded poly (meth) acrylates nanoparticles: A comparative study. Micro Nanosyst., 2014, 6(4), 241-253.
[32]
Deshmukh, R.K.; Naik, J.B. The impact of preparation parameters on sustained release aceclofenac microspheres: A design of experiments. Adv. Powder Technol., 2015, 26(1), 244-252.
[33]
Khairnar, G.; Patil, P.; Mokale, V.; Naik, J.B. Investigation on the development of Losartan Potassium sustained release microspheres by solvent evaporation methods. Micro Nanosyst., 2015, 7(3), 190-196.
[35]
Indian Pharmacopoeia. Indian Pharmacopoeia Commission Ghaziabad. 2007, 1, 480.
[36]
Mokale, V.J.; Khatumaria, B.; Naik, J.B.; Verma, U. Formulation and development of nanoparticles for quick and complete release of Hydrochlorothiazide by nanonization technique. Micro Nanosyst., 2014, 6, 109-117.
[37]
Deshmukh, R.; Naik, J.; Mishra, S. Preparation and characterization of glipizide loaded eudragit microparticle. Micro Nanosyst., 2018, 10(2), 129-136.
[38]
Depan, D.; Shah, J.; Misra, R.D.K. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C, 2011, 31, 1305-1312.
[39]
Yang, H.; Bremner, D.H.; Tao, L.; Li, H.; Hu, J.; Zhu, L. Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydr. Polym., 2016, 135, 72-78.