[1]
Deng, J.; Wong, H.S.P. A compact SPICE model for carbon nanotube field effect transistors including non-idealities and its application-part I: Model of the intrinsic channel region. IEEE Trans. Electron Dev., 2007, 54(12), 3186-3194.
[2]
Javey, A.; Guo, J.; Farmer, D.B.; Wang, Q.; Yenilmez, E.; Gordon, R.G.; Lundstrom, M.; Dai, H. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett., 2004, 4, 1319-1322.
[3]
Javey, A.; Tu, R.; Farmer, D.B.; Guo, J.; Gordon, R.G.; Dai, H. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts. Nano Lett., 2005, 5(2), 345-348.
[4]
Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett., 2003, 3, 1541-1544.
[5]
Yao, Z.; Kane, C.L.; Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett., 2000, 84(13), 2941-2944.
[6]
Mc Euen, P.L.; Fuhrer, M.S.; Park, H. Single-walled carbon nanotube electronics. IEEE Trans. NanoTechnol., 2002, 1, 78-85.
[8]
Ram, S.; Rahi, O.P.; Sharma, V.; Murthy, K.S.R. Investigations in to induction motor drive using slip power recovery scheme with GTO inverter and chopper. In: Proceedings of the 14th IEEE India Council International Conference (INDICON), 2017, pp. 1-6.
[9]
Pennington, G.; Goldsman, N. Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys. Rev. B Condens. Matter Mater. Phys., 2003, 68(4)045426
[10]
Wei, B.Q.; Vajtai, R.; Ajayan, P.M. Reliability and current carrying capability of carbon nanotubes. Appl. Phys. Lett., 2001, 79, 1172-1174.
[11]
Appenzeller, J. Carbon nanotubes for high-performance electronics - Progress and prospect. In: Proceedings of the IEEE, 2008, 96(2), 201-211.
[12]
Saini, J.K.; Srinivasulu, A.; Singh, B.P. A new low-power fulladder
cell for low voltage using CNTFETs. In: Proceedings of
IEEE International Conference on Electronics, Computers and Artificial
Intelligence (IEEE ECAI 2017), Targoviste, Romania. 2017, p. 6.
[13]
Kavitha, P.; Sarada, M.; Vijayavardhan, K.; Sudhavani, Y. Carbon nano tube field effect transistors based ternary Ex-OR and Ex-NOR gates. Curr. Nanosci., 2016, 12(4), 1-7.
[14]
Bhargav, A.; Srinivasulu, A.; Pal, D. An operational transconductance amplifiers based sinusoidal oscillator using CNTFETs. In: IEEE International Conference on Applied Electronics (AE), 2018, pp. 1-6.
[15]
Kartik, P.L.; Balakrishna, K.; Sarada, M. A new low voltage high performance Dual Port 7-CNT SRAM Cell with improved differential reference based sense amplifier. Int. J. Sensors Wirel. Commun. Control, 2017, 7(3), 246-254.
[16]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[18]
Kedzierski, J.; Pei-Lan, H.; Healey, P.; Wyatt, P.W.; Keast, C.L.; Sprinkle, M.; Berger, C.; De, H.; Walt, A. Epitaxial graphene transistors on SiC substrates. IEEE Trans. Electron Dev., 2008, 55(8), 2078-2085.
[20]
Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett., 2008, 100(20)206803
[21]
Biolek, D.; Senani, R.; Biolková, V.; Kolka, Z. Active elements for analog signal processing: Classification, review, and new proposals. Wuxiandian Gongcheng, 2008, 17(4), 15-32.
[22]
Siripruchyanun, M.; Payakkakul, K.; Pipatthitikorn, P.; Satthaphol, P. A current mode square/triangular wave generator based on multiple-
output VDTA’s. Int. Electr. Eng. Congress, 2016, 86, 152-155.
[23]
Shankar, C.; Singh, S.V. Electronically tunable current mode biquad filter based on single VDTA and grounded passive elements. Int. J. Eng. Technol., 2017, 9(2), 271-279.
[24]
Mehra, R.; Kumar, V.; Aminul, I. Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands. Int. J. Electron. Commun., 2018, 83, 1-10.
[25]
Yesil, A.; Kacar, F.; Kuntman, H. New simple CMOS realization of voltage difference transconductance amplifier and its RF filter application. Wuxiandian Gongcheng, 2011, 20(3), 632-637.
[26]
Gupta, G.; Singh, S.V.; Bhooshan, S.V. VDTA based electronically tunable voltage- mode and trans-admittance biquad filter. Circ. Syst., 2015, 6, 93-102.
[27]
Yesil, A.; Kacar, F. Electronically tunable resistor less mixed-mode biquad filters. Radioengineering, 2013, 22(4), 1016-1025.biquad filters. Radioengineering, 2013, 22(4), 1016-1025.
[28]
Alaybeyoglu, E.; Kuntman, H. CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integr. Circuits Signal Process., 2016, 89(3), 675-684.
[29]
Prasad, D.; Ahmad, J.; Srivastava, M. A novel grounded to floating admittance converter with electronic control. Indian J. Phys., 2018, 92(1), 1077.
[30]
Chen, H.P.; Hwang, Y.S.; Ku, Y.T. A new resistorless and electronic tunable third-order quadrature oscillator with current and voltage outputs. Inst. Electron. Telecommun. Eng. Tech. Rev., 2018, 35(4), 426-438.
[31]
Pandey, N.; Kumar, P.; Paul, S.K. Voltage differencing transconductance amplifier based resistor less and electronically tunable wave active filter. Analog Integr. Circuits Signal Process., 2015, 84(1), 107-117.
[32]
Pal, D.; Srinivasulu, A.; Pal, B.B.; Demosthenous, A.; Das, B.N. Current conveyor-based square/triangular wave generators with improved linearity. IEEE Trans. Instrum. Meas., 2009, 58(7), 2174-2180.
[33]
Srinivasulu, A. Current conveyor based relaxation oscillator with
tunable grounded resistor/capacitor. Int. J. Des. Anal. Tools Circ.
Syst. (Hong-Kong), 2012, 3(2), 1-7.
[34]
Srinivasulu, A. A novel current conveyor based-Schmitt trigger and its application as a relaxation oscillator. Int. J. Circuit Theory Appl., 2011, 39(6), 679-686.
[36]
Bhasker, D.R.; Tripati, M.P.; Senani, R. A Class of three OTA- two capacitor oscillators with non-interacting controls. Int. J. Electron., 1993, 74(03), 459-463.
[37]
Chung, W.S.; Kim, H.; Cha, H.W.; Kim, H.J. Triangular/square wave generator with independently controllable frequency and amplitude. IEEE Trans. Instrum. Meas., 2005, 54(1), 105-109.
[38]
Srinivasulu, A.; Shaker, C.P. Grounded resistance/capacitance-controlled sinusoidal oscillators using operational transresistance amplifier. WSEAS Trans. Circ. Syst., 2014, 13, 145-152.
[40]
Lo, Y.K.; Chien, H.C. Switch controllable OTRA based
square/triangular waveform generator. IEEE Trans. Circuits, Syst.-
II, 2007, 54, (12), 1110-1114.
[42]
Jaikla, W.; Siripruchyanum, M.; Bajer, J.; Biolek, D. A simple current-mode quadrature oscillator using CDTA. Wuxiandian Gongcheng, 2008, 17(4), 33-40.
[43]
Tangsrirat, W. Synthesis of current differencing transconductance amplifier – based current limiters and its applications. Int. J. Circ. Syst. Comput., 2011, 20, 185-206.
[44]
Linita, R.; Reddy, V.V.; Srinivasulu, A. An integrator circuit using differential difference current conveyor transconductance amplifier. In: Proceedings of the IEEE International Conference on Signal Processing, Communications and Networking, Chennai, India2017, p. 4.
[45]
Sedra, A.; Smith, K.C. Microelectronic Circuits, 5th ed; Oxford University Press: London, U.K., 2004, pp. 105-113.
[46]
Patranabis, D.; Ghosh, D.K. Integrators and differentiators with current conveyors. IEEE Trans. Circ. Syst., 1984, 31(6), 567-569.
[47]
Lee, J.Y.; Tsao, H.W. True RC integrators based on current conveyors with tunable time constants using active control and modified loop technique. IEEE Trans. Instrum. Meas., 1992, 41(5), 709-714.
[48]
Arbel, A.F.; Goldminz, L. Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circuits Signal Process., 1992, 2(3), 243-255.
[49]
Nagaria, R.K.; Goswami, A.; Venkateswaran, P.; Sanyal, S.K.; Nandi, R. Voltage controlled integrators/differentiators using current feedback amplifier. In: Proceedings of the International Symposium on Signals, Circuits and Systems, Iasi, Romania2003, Vol. 2, pp. 573-576.
[50]
Lee, J.L.; Liu, S.I. Integrator and differentiator with time constant multiplication using current feedback amplifier. Electron. Lett., 2001, 37(6), 331-333.
[51]
Liu, S.I.; Hwang, Y.S. Dual-input differentiators and integrators with tunable time constants using current conveyors. IEEE Trans. Instrum. Meas., 1994, 43(4), 650-654.
[52]
Minaei, S. Dual-input current-mode integrator and differentiator using single DVCC and grounded passive elements. In: Proceedings of the 12th IEEE Mediterranean Electro technical Conference, 2004, pp. 123-126.
[53]
Kumbun, J.; Siripruchyanun, M. MO-CTTA-based electronically controlled current mode square/triangular wave generator. In: Proceedings of the International Conference on Technical Education, 2010, pp. 158-162.
[54]
Vijay, V.; Srinivasulu, A. A low power waveform generator using DCCII with grounded capacitor. Int. J. Public Sector Perform. Manage., 2019, 5(2), 134-145.
[55]
Vijay, V.; Srinivasulu, A. A novel square wave generator using second generation differential current conveyor. Arab. J. Sci. Eng., 2017, 42(12), 4983-4990.