[1]
Alpert, J.S. An amazing story: The discovery of insulin. Am. J. Med., 2016, 129, 231-232.
[2]
Wallia, A.; Molitch, M.E. Insulin therapy for type 2 diabetes mellitus. JAMA, 2014, 311, 2315-2325.
[3]
Westermark, P.; Andersson, A.; Westermark, G.T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol. Rev., 2011, 91, 795-826.
[4]
Ferrannini, E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: Problems and prospects. Endocr. Rev., 1998, 19, 477-490.
[5]
Hoppener, J.W.; Ahren, B.; Lips, C.J. Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med., 2000, 343, 411-419.
[6]
Kahn, S.E.; Andrikopoulos, S.; Verchere, C.B. Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes, 1999, 48, 241-253.
[7]
Opie, E.L. On the relation of chronic interstitial pancreatitis to the islands of Langerhans and to diabetes melutus. J. Exp. Med., 1901, 5, 397-428.
[8]
Westermark, P.; Wernstedt, C.; Wilander, E.; Sletten, K. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophys. Res. Commun., 1986, 140, 827-831.
[9]
Clark, A.; Cooper, G.J.; Lewis, C.E.; Morris, J.F.; Willis, A.C.; Reid, K.B.; Turner, R.C. Islet amyloid formed from diabetes-associated peptide may be pathogenic in type-2 diabetes. Lancet, 1987, 2, 231-234.
[10]
Westermark, P.; Wernstedt, C.; O’Brien, T.D.; Hayden, D.W.; Johnson, K.H. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am. J. Pathol., 1987, 127, 414-417.
[11]
Westermark, P.; Wernstedt, C.; Wilander, E.; Hayden, D.W.; O’Brien, T.D.; Johnson, K.H. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA, 1987, 84, 3881-3885.
[12]
Cooper, G.J.; Leighton, B.; Dimitriadis, G.D.; Parry-Billings, M.; Kowalchuk, J.M.; Howland, K.; Rothbard, J.B.; Willis, A.C.; Reid, K.B. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc. Natl. Acad. Sci. USA, 1988, 85, 7763-7766.
[13]
Pearse, A.G.; Ewen, S.W.; Polak, J.M. The genesis of apudamyloid in endocrine polypeptide tumours: histochemical distinction from immunamyloid. Virchows Arch. B Cell Pathol., 1972, 10, 93-107.
[14]
Westermark, P. Quantitative studies on amyloid in the islets of Langerhans. Ups. J. Med. Sci., 1972, 77, 91-94.
[15]
Bell, E.T. Hyalinization of the islets of Langerhans in nondiabetic individuals. Am. J. Pathol., 1959, 35, 801-805.
[16]
Bell, E.T. Hyalinization of the islet of Langerhans in diabetes mellitus. Diabetes, 1952, 1, 341-344.
[17]
Ehrlich, J.C.; Ratner, I.M. Amyloidosis of the islets of Langerhans. A restudy of islet hyalin in diabetic and non-diabetic individuals. Am. J. Pathol., 1961, 38, 49-59.
[18]
Cohen, A.S.; Calkins, E. Electron microscopic observations on a fibrous component in amyloid of diverse origins. Nature, 1959, 183, 1202-1203.
[19]
Glenner, G.G.; Terry, W.; Harada, M.; Isersky, C.; Page, D. Amyloid fibril proteins: Proof of homology with immunoglobulin light chains by sequence analyses. Science, 1971, 172, 1150-1151.
[20]
Benditt, E.P.; Eriksen, N.; Hermodson, M.A.; Ericsson, L.H. The major proteins of human and monkey amyloid substance: Common properties including unusual N-terminal amino acid sequences. FEBS Lett., 1971, 19, 169-173.
[21]
Sanke, T.; Bell, G.I.; Sample, C.; Rubenstein, A.H.; Steiner, D.F. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J. Biol. Chem., 1988, 263, 17243-17246.
[22]
Nishi, M.; Chan, S.J.; Nagamatsu, S.; Bell, G.I.; Steiner, D.F. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. USA, 1989, 86, 5738-5742.
[23]
Mosselman, S.; Hoppener, J.W.; Lips, C.J.; Jansz, H.S. The complete islet amyloid polypeptide precursor is encoded by two exons. FEBS Lett., 1989, 247, 154-158.
[24]
Zhao, H.L.; Lai, F.M.; Tong, P.C.; Zhong, D.R.; Yang, D.; Tomlinson, B.; Chan, J.C. Prevalence and clinicopathological characteristics of islet amyloid in chinese patients with type 2 diabetes. Diabetes, 2003, 52, 2759-2766.
[25]
Rocken, C.; Linke, R.P.; Saeger, W. Immunohistology of islet amyloid polypeptide in diabetes mellitus: Semi-quantitative studies in a post-mortem series. Virchows Arch. A Pathol. Anat. Histopathol., 1992, 421, 339-344.
[26]
Maclean, N.; Ogilvie, R.F. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes, 1955, 4, 367-376.
[27]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52, 102-110.
[28]
Sempoux, C.; Guiot, Y.; Dubois, D.; Moulin, P.; Rahier, J. Human type 2 diabetes: morphological evidence for abnormal beta-cell function. Diabetes, 2001, 50(Suppl. 1), S172-S177.
[29]
Ohsawa, H.; Kanatsuka, A.; Mizuno, Y.; Tokuyama, Y.; Takada, K.; Mikata, A.; Makino, H.; Yoshida, S. Islet amyloid polypeptide-derived amyloid deposition increases along with the duration of type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 1992, 15, 17-21.
[30]
Clark, A.; Wells, C.A.; Buley, I.D.; Cruickshank, J.K.; Vanhegan, R.I.; Matthews, D.R.; Cooper, G.J.; Holman, R.R.; Turner, R.C. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res., 1988, 9, 151-159.
[31]
Vishwanathan, K.A.; Bazaz-Malik, G.; Dandekar, J.; Vaishnava, H. A qualitative and quantitative histological study of the islets of Langerhans in diabetes mellitus. Indian J. Med. Sci., 1972, 26, 807-812.
[32]
Westermark, P.; Grimelius, L. The pancreatic islet cells in insular amyloidosis in human diabetic and non-diabetic adults. Acta Pathol. Microbiol. Scand. A, 1973, 81, 291-300.
[33]
Maloy, A.L.; Longnecker, D.S.; Greenberg, E.R. The relation of islet amyloid to the clinical type of diabetes. Hum. Pathol., 1981, 12, 917-922.
[34]
Zhao, H.L.; Sui, Y.; Guan, J.; He, L.; Lai, F.M.; Zhong, D.R.; Yang, D.; Baum, L.; Tong, P.C.; Tomlinson, B.; Chan, J.C. Higher islet amyloid load in men than in women with type 2 diabetes mellitus. Pancreas, 2008, 37, e68-e73.
[35]
Johnson, K.H.; Wernstedt, C.; O’Brien, T.D.; Westermark, P. Amyloid in the pancreatic islets of the cougar (Felis concolor) is derived from islet amyloid polypeptide (IAPP). Comp. Biochem. Physiol. B, 1991, 98, 115-119.
[36]
Martinez-Alvarez, R.M.; Volkoff, H.; Cueto, J.A.; Delgado, M.J. Molecular characterization of calcitonin gene-related peptide (CGRP) related peptides (CGRP, amylin, adrenomedullin and adrenomedullin-2/intermedin) in goldfish (Carassius auratus): Cloning and distribution. Peptides, 2008, 29, 1534-1543.
[37]
Miyazato, M.; Nakazato, M.; Shiomi, K.; Aburaya, J.; Kangawa, K.; Matsuo, H.; Matsukura, S. Molecular forms of islet amyloid polypeptide (IAPP/amylin) in four mammals. Diabetes Res. Clin. Pract., 1992, 15, 31-36.
[38]
Johnson, K.H.; O’Brien, T.D.; Betsholtz, C.; Westermark, P. Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N. Engl. J. Med., 1989, 321, 513-518.
[39]
de Koning, E.J.; Bodkin, N.L.; Hansen, B.C.; Clark, A. Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta-cell population. Diabetologia, 1993, 36, 378-384.
[40]
Betsholtz, C.; Christmanson, L.; Engstrom, U.; Rorsman, F.; Jordan, K.; O’Brien, T.D.; Murtaugh, M.; Johnson, K.H.; Westermark, P. Structure of cat islet amyloid polypeptide and identification of amino acid residues of potential significance for islet amyloid formation. Diabetes, 1990, 39, 118-122.
[41]
O’Brien, T.D.; Hayden, D.W.; Johnson, K.H.; Stevens, J.B. High dose intravenous glucose tolerance test and serum insulin and glucagon levels in diabetic and non-diabetic cats: Relationships to insular amyloidosis. Vet. Pathol., 1985, 22, 250-261.
[42]
Jakob, W. Studies on amyloidosis in carnivora with special reference to age-dependent amyloidosis. Zentralbl. Veterinarmed. A, 1970, 17, 818-829.
[43]
Westermark, P.; Johnson, K.H.; O’Brien, T.D.; Betsholtz, C. Islet amyloid polypeptide--a novel controversy in diabetes research. Diabetologia, 1992, 35, 297-303.
[44]
Westermark, P.; Eizirik, D.L.; Pipeleers, D.G.; Hellerstrom, C.; Andersson, A. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia, 1995, 38, 543-549.
[45]
Westermark, G.; Westermark, P.; Eizirik, D.L.; Hellerstrom, C.; Fox, N.; Steiner, D.F.; Andersson, A. Differences in amyloid deposition in islets of transgenic mice expressing human islet amyloid polypeptide versus human islets implanted into nude mice. Metabolism, 1999, 48, 448-454.
[46]
Westermark, P.; Engstrom, U.; Johnson, K.H.; Westermark, G.T.; Betsholtz, C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci. USA, 1990, 87, 5036-5040.
[47]
Lukinius, A.; Wilander, E.; Westermark, G.T.; Engstrom, U.; Westermark, P. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia, 1989, 32, 240-244.
[48]
Hartter, E.; Svoboda, T.; Ludvik, B.; Schuller, M.; Lell, B.; Kuenburg, E.; Brunnbauer, M.; Woloszczuk, W.; Prager, R. Basal and stimulated plasma levels of pancreatic amylin indicate its co-secretion with insulin in humans. Diabetologia, 1991, 34, 52-54.
[49]
Cooper, G.J.; Willis, A.C.; Clark, A.; Turner, R.C.; Sim, R.B.; Reid, K.B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. USA, 1987, 84, 8628-8632.
[50]
De Vroede, M.; Foriers, A.; Van de Winkel, M.; Madsen, O.; Pipeleers, D. Presence of islet amyloid polypeptide in rat islet B and D cells determines parallelism and dissociation between rat pancreatic islet amyloid polypeptide and insulin content. Biochem. Biophys. Res. Commun., 1992, 182, 886-893.
[51]
Ahren, B.; Sundler, F. Localization of calcitonin gene-related peptide and islet amyloid polypeptide in the rat and mouse pancreas. Cell Tissue Res., 1992, 269, 315-322.
[52]
Mulder, H.; Lindh, A.C.; Sundler, F. Islet amyloid polypeptide gene expression in the endocrine pancreas of the rat: A combined in situ hybridization and immunocytochemical study. Cell Tissue Res., 1993, 274, 467-474.
[53]
Asai, J.; Nakazato, M.; Miyazato, M.; Kangawa, K.; Matsuo, H.; Matsukura, S. Regional distribution and molecular forms of rat islet amyloid polypeptide. Biochem. Biophys. Res. Commun., 1990, 169, 788-795.
[54]
Miyazato, M.; Nakazato, M.; Shiomi, K.; Aburaya, J.; Toshimori, H.; Kangawa, K.; Matsuo, H.; Matsukura, S. Identification and characterization of islet amyloid polypeptide in mammalian gastrointestinal tract. Biochem. Biophys. Res. Commun., 1991, 181, 293-300.
[55]
Mulder, H.; Lindh, A.C.; Ekblad, E.; Westermark, P.; Sundler, F. Islet amyloid polypeptide is expressed in endocrine cells of the gastric mucosa in the rat and mouse. Gastroenterology, 1994, 107, 712-719.
[56]
Toshimori, H.; Narita, R.; Nakazato, M.; Asai, J.; Mitsukawa, T.; Kangawa, K.; Matsuo, H.; Matsukura, S. Islet amyloid polypeptide (IAPP) in the gastrointestinal tract and pancreas of man and rat. Cell Tissue Res., 1990, 262, 401-406.
[57]
Macdonald, I.A. Amylin and the gastrointestinal tract. Diabet. Med., 1997, 14(Suppl. 2), S24-S28.
[58]
D’Este, L.; Wimalawansa, S.J.; Renda, T.G. Amylin-immunoreactivity is co-stored in a serotonin cell subpopulation of the vertebrate stomach and duodenum. Arch. Histol. Cytol., 1995, 58, 537-547.
[59]
Mulder, H.; Leckstrom, A.; Uddman, R.; Ekblad, E.; Westermark, P.; Sundler, F. Islet amyloid polypeptide (amylin) is expressed in sensory neurons. J. Neurosci., 1995, 15, 7625-7632.
[60]
Skofitsch, G.; Wimalawansa, S.J.; Jacobowitz, D.M.; Gubisch, W. Comparative immunohistochemical distribution of amylin-like and calcitonin gene related peptide like immunoreactivity in the rat central nervous system. Can. J. Physiol. Pharmacol., 1995, 73, 945-956.
[61]
Gilbey, S.G.; Ghatei, M.A.; Bretherton-Watt, D.; Zaidi, M.; Jones, P.M.; Perera, T.; Beacham, J.; Girgis, S.; Bloom, S.R. Islet amyloid polypeptide: Production by an osteoblast cell line and possible role as a paracrine regulator of osteoclast function in man. Clin. Sci. (Lond.), 1991, 81, 803-808.
[62]
Kalaitzoglou, E.; Fowlkes, J.L.; Popescu, I.; Thrailkill, K.M. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab. Res. Rev., 2018, 35(2), e3100.
[63]
Kowalczyk, R.; Brimble, M.A.; Callon, K.E.; Watson, M.; Cornish, J. How to blast osteoblasts? Novel dicarba analogues of amylin-(1-8) to treat osteoporosis. Bioorg. Med. Chem., 2012, 20, 6011-6018.
[64]
Kowalczyk, R.; Harris, P.W.; Brimble, M.A.; Callon, K.E.; Watson, M.; Cornish, J. Synthesis and evaluation of disulfide bond mimetics of amylin-(1-8) as agents to treat osteoporosis. Bioorg. Med. Chem., 2012, 20, 2661-2668.
[65]
Ellegaard, M.; Thorkildsen, C.; Petersen, S.; Petersen, J.S.; Jorgensen, N.R.; Just, R.; Schwarz, P.; Ramirez, M.T.; Stahlhut, M. Amylin(1-8) is devoid of anabolic activity in bone. Calcif. Tissue Int., 2010, 86, 249-260.
[66]
Bronsky, J.; Prusa, R.; Nevoral, J. The role of amylin and related peptides in osteoporosis. Clin. Chim. Acta, 2006, 373, 9-16.
[67]
Bronsky, J.; Prusa, R. Amylin fasting plasma levels are decreased in patients with osteoporosis. Osteoporos. Int., 2004, 15, 243-247.
[68]
Cornish, J.; Naot, D. Amylin and adrenomedullin: Novel regulators of bone growth. Curr. Pharm. Des., 2002, 8, 2009-2021.
[69]
Wimalawansa, S.J. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: A peptide superfamily. Crit. Rev. Neurobiol., 1997, 11, 167-239.
[70]
Percy, A.J.; Trainor, D.A.; Rittenhouse, J.; Phelps, J.; Koda, J.E. Development of sensitive immunoassays to detect amylin and amylin-like peptides in unextracted plasma. Clin. Chem., 1996, 42, 576-585.
[71]
Young, A. Tissue expression and secretion of amylin. Adv. Pharmacol., 2005, 52, 19-45.
[72]
Butler, P.C.; Chou, J.; Carter, W.B.; Wang, Y.N.; Bu, B.H.; Chang, D.; Chang, J.K.; Rizza, R.A. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes, 1990, 39, 752-756.
[73]
Nakazato, M.; Asai, J.; Kangawa, K.; Matsukura, S.; Matsuo, H. Establishment of radioimmunoassay for human islet amyloid polypeptide and its tissue content and plasma concentration. Biochem. Biophys. Res. Commun., 1989, 164, 394-399.
[74]
Mitsukawa, T.; Takemura, J.; Nakazato, M.; Asai, J.; Kanagawa, K.; Matsuo, H.; Matsukura, S. Effects of aging on plasma islet amyloid polypeptide basal level and response to oral glucose load. Diabetes Res. Clin. Pract., 1992, 15, 131-134.
[75]
van Hulst, K.L.; Hackeng, W.H.; Hoppener, J.W.; van Jaarsveld, B.C.; Nieuwenhuis, M.G.; Blankenstein, M.A.; Lips, C.J. An improved method for the determination of islet amyloid polypeptide levels in plasma. Ann. Clin. Biochem., 1994, 31(Pt 2), 165-170.
[76]
Hanabusa, T.; Kubo, K.; Oki, C.; Nakano, Y.; Okai, K.; Sanke, T.; Nanjo, K. Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract., 1992, 15, 89-96.
[77]
Edwards, B.J.; Perry, H.M.; Kaiser, F.E.; Morley, J.E.; Kraenzle, D.; Kreutter, D.K.; Stevenson, R.W. Age-related changes in amylin secretion. Mech. Ageing Dev., 1996, 86, 39-51.
[78]
Eriksson, J.; Nakazato, M.; Miyazato, M.; Shiomi, K.; Matsukura, S.; Groop, L. Islet amyloid polypeptide plasma concentrations in individuals at increased risk of developing type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 1992, 35, 291-293.
[79]
van Jaarsveld, B.C.; Hackeng, W.H.; Lips, C.J.; Erkelens, D.W. Plasma concentrations of islet amyloid polypeptide after glucagon administration in type 2 diabetic patients and non-diabetic subjects. Diabet. Med., 1993, 10, 327-330.
[80]
Koda, J.E.; Fineman, M.; Rink, T.J.; Dailey, G.E.; Muchmore, D.B. 24 hour plasma amylin profiles are elevated in IGT subjects vs. normal controls. Diabetes, 1995, 44(Suppl. 1), 238A.
[81]
Sanke, T.; Hanabusa, T.; Nakano, Y.; Oki, C.; Okai, K.; Nishimura, S.; Kondo, M.; Nanjo, K. Plasma islet amyloid polypeptide (Amylin) levels and their responses to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 1991, 34, 129-132.
[82]
Blackard, W.G.; Clore, J.N.; Kellum, J.M. Amylin/insulin secretory ratios in morbidly obese man: inverse relationship with glucose disappearance rate. J. Clin. Endocrinol. Metab., 1994, 78, 1257-1260.
[83]
Kailasam, M.T.; Parmer, R.J.; Tyrell, E.A.; Henry, R.R.; O’Connor, D.T. Circulating amylin in human essential hypertension: Heritability and early increase in individuals at genetic risk. J. Hypertens., 2000, 18, 1611-1620.
[84]
Dimsdale, J.E.; Kolterman, O.; Koda, J.; Nelesen, R. Effect of race and hypertension on plasma amylin concentrations. Hypertension, 1996, 27, 1273-1276.
[85]
Ludvik, B.; Clodi, M.; Kautzky-Willer, A.; Schuller, M.; Graf, H.; Hartter, E.; Pacini, G.; Prager, R. Increased levels of circulating islet amyloid polypeptide in patients with chronic renal failure have no effect on insulin secretion. J. Clin. Invest., 1994, 94, 2045-2050.
[86]
Watschinger, B.; Hartter, E.; Traindl, O.; Pohanka, E.; Pidlich, J.; Kovarik, J. Increased levels of plasma amylin in advanced renal failure. Clin. Nephrol., 1992, 37, 131-134.
[87]
Enoki, S.; Mitsukawa, T.; Takemura, J.; Nakazato, M.; Aburaya, J.; Toshimori, H.; Matsukara, S. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res. Clin. Pract., 1992, 15, 97-102.
[88]
Permert, J.; Larsson, J.; Westermark, G.T.; Herrington, M.K.; Christmanson, L.; Pour, P.M.; Westermark, P.; Adrian, T.E. Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N. Engl. J. Med., 1994, 330, 313-318.
[89]
Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L.H.; Wang, H.; Wong, A.G.; Zhang, X.; Abedini, A.; Schmidt, A.M.; Raleigh, D.P. Islet amyloid polypeptide: Structure, function, and pathophysiology. J. Diabetes Res., 2016, 2016, 2798269.
[90]
Lutz, T.A. The role of amylin in the control of energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 298, R1475-R1484.
[91]
Young, A. Effects on plasma glucose and lactate. Adv. Pharmacol., 2005, 52, 193-208.
[92]
Young, A. Inhibition of gastric emptying. Adv. Pharmacol., 2005, 52, 99-121.
[93]
Woerle, H.J.; Albrecht, M.; Linke, R.; Zschau, S.; Neumann, C.; Nicolaus, M.; Gerich, J.E.; Goke, B.; Schirra, J. Impaired hyperglycemia-induced delay in gastric emptying in patients with type 1 diabetes deficient for islet amyloid polypeptide. Diabetes Care, 2008, 31, 2325-2331.
[94]
Reidelberger, R.D.; Arnelo, U.; Granqvist, L.; Permert, J. Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2001, 280, R605-R611.
[95]
Gedulin, B.R.; Rink, T.J.; Young, A.A. Dose-response for glucagonostatic effect of amylin in rats. Metabolism, 1997, 46, 67-70.
[96]
Young, A. Amylin and the integrated control of nutrient influx. Adv. Pharmacol., 2005, 52, 67-77.
[97]
Degano, P.; Silvestre, R.A.; Salas, M.; Peiro, E.; Marco, J. Amylin inhibits glucose-induced insulin secretion in a dose-dependent manner. Study in the perfused rat pancreas. Regul. Pept., 1993, 43, 91-96.
[98]
Kogire, M.; Ishizuka, J.; Thompson, J.C.; Greeley, G.H., Jr Inhibitory action of islet amyloid polypeptide and calcitonin gene-related peptide on release of insulin from the isolated perfused rat pancreas. Pancreas, 1991, 6, 459-463.
[99]
Sandler, S.; Stridsberg, M. Chronic exposure of cultured rat pancreatic islets to elevated concentrations of islet amyloid polypeptide (IAPP) causes a decrease in islet DNA content and medium insulin accumulation. Regul. Pept., 1994, 53, 103-109.
[100]
Akesson, B.; Panagiotidis, G.; Westermark, P.; Lundquist, I. Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets. Regul. Pept., 2003, 111, 55-60.
[101]
Young, A. Inhibition of glucagon secretion. Adv. Pharmacol., 2005, 52, 151-171.
[102]
Panagiotidis, G.; Salehi, A.A.; Westermark, P.; Lundquist, I. Homologous islet amyloid polypeptide: effects on plasma levels of glucagon, insulin and glucose in the mouse. Diabetes Res. Clin. Pract., 1992, 18, 167-171.
[103]
Silvestre, R.A.; Rodriguez-Gallardo, J.; Jodka, C.; Parkes, D.G.; Pittner, R.A.; Young, A.A.; Marco, J. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab., 2001, 280, E443-E449.
[104]
James, J.H.; Wagner, K.R.; King, J.K.; Leffler, R.E.; Upputuri, R.K.; Balasubramaniam, A.; Friend, L.A.; Shelly, D.A.; Paul, R.J.; Fischer, J.E. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am. J. Physiol., 1999, 277, E176-E186.
[105]
Young, A.A.; Mott, D.M.; Stone, K.; Cooper, G.J. Amylin activates glycogen phosphorylase in the isolated soleus muscle of the rat. FEBS Lett., 1991, 281, 149-151.
[106]
Riediger, T.; Schmid, H.A.; Lutz, T.A.; Simon, E. Amylin and glucose co-activate area postrema neurons of the rat. Neurosci. Lett., 2002, 328, 121-124.
[107]
Wimalawansa, S.J.; el-Kholy, A.A. Comparative study of distribution and biochemical characterization of brain calcitonin gene-related peptide receptors in five different species. Neuroscience, 1993, 54, 513-519.
[108]
Beaumont, K.; Kenney, M.A.; Young, A.A.; Rink, T.J. High affinity amylin binding sites in rat brain. Mol. Pharmacol., 1993, 44, 493-497.
[109]
Young, A. Central nervous system and other effects. Adv. Pharmacol., 2005, 52, 281-288.
[110]
Grabauskas, G.; Zhou, S.Y.; Das, S.; Lu, Y.; Owyang, C.; Moises, H.C. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex. J. Physiol., 2004, 561, 821-839.
[111]
Young, A. Inhibition of food intake. Adv. Pharmacol., 2005, 52, 79-98.
[112]
Bhavsar, S.; Watkins, J.; Young, A. Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol. Behav., 1998, 64, 557-561.
[113]
Cooper, G.J.; Day, A.J.; Willis, A.C.; Roberts, A.N.; Reid, K.B.; Leighton, B. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim. Biophys. Acta, 1989, 1014, 247-258.
[114]
Arnelo, U.; Permert, J.; Adrian, T.E.; Larsson, J.; Westermark, P.; Reidelberger, R.D. Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am. J. Physiol., 1996, 271, R1654-R1659.
[115]
Lutz, T.A. Amylinergic control of food intake. Physiol. Behav., 2006, 89, 465-471.
[116]
Young, A. Effects on bone. Adv. Pharmacol., 2005, 52, 269-280.
[117]
MacIntyre, I. Amylinamide, bone conservation, and pancreatic beta cells. Lancet, 1989, 2, 1026-1027.
[118]
Zaidi, M.; Datta, H.K.; Bevis, P.J.; Wimalawansa, S.J.; MacIntyre, I. Amylin-amide: A new bone-conserving peptide from the pancreas. Exp. Physiol., 1990, 75, 529-536.
[119]
Stridsberg, M.; Tjalve, H.; Wilander, E. Whole-body autoradiography of 123I-labelled islet amyloid polypeptide (IAPP). Accumulation in the lung parenchyma and in the villi of the intestinal mucosa in rats. Acta Oncol., 1993, 32, 155-159.
[120]
Wookey, P.J.; Cao, Z.; Cooper, M.E. Interaction of the renal amylin and renin-angiotensin systems in animal models of diabetes and hypertension. Miner. Electrolyte Metab., 1998, 24, 389-399.
[121]
Young, A. Renal effects. Adv. Pharmacol., 2005, 52, 251-268.
[122]
Young, A. Cardiovascular effects. Adv. Pharmacol., 2005, 52, 239-250.
[123]
Brain, S.D.; Wimalawansa, S.; MacIntyre, I.; Williams, T.J. The demonstration of vasodilator activity of pancreatic amylin amide in the rabbit. Am. J. Pathol., 1990, 136, 487-490.
[124]
Fernandes-Santos, C.; Zhang, Z.; Morgan, D.A.; Guo, D.F.; Russo, A.F.; Rahmouni, K. Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology, 2013, 154, 2481-2488.
[125]
MacIntyre, I. Treatment of bone disorders. U.S. patent 5,405,831,
April 11, 1995.
[126]
Horcajada-Molteni, M.N.; Davicco, M.J.; Lebecque, P.; Coxam, V.; Young, A.A.; Barlet, J.P. Amylin inhibits ovariectomy-induced bone loss in rats. J. Endocrinol., 2000, 165, 663-668.
[127]
Novials, A.; Rodriguez-Manas, L.; Chico, A.; El Assar, M.; Casas, S.; Gomis, R. Amylin and hypertension: Association of an amylin -G132A gene mutation and hypertension in humans and amylin-induced endothelium dysfunction in rats. J. Clin. Endocrinol. Metab., 2007, 92, 1446-1450.
[128]
Ikeda, T.; Iwata, K.; Ochi, H. Effect of insulin, proinsulin, and amylin on renin release from perfused rat kidney. Metabolism, 2001, 50, 763-766.
[129]
Bretherton-Watt, D.; Gilbey, S.G.; Ghatei, M.A.; Beacham, J.; Bloom, S.R. Failure to establish islet amyloid polypeptide (amylin) as a circulating beta cell inhibiting hormone in man. Diabetologia, 1990, 33, 115-117.
[130]
Ghatei, M.A.; Datta, H.K.; Zaidi, M.; Bretherton-Watt, D.; Wimalawansa, S.J.; MacIntyre, I.; Bloom, S.R. Amylin and amylin-amide lack an acute effect on blood glucose and insulin. J. Endocrinol., 1990, 124, R9-R11.
[131]
Wilding, J.P.; Khandan-Nia, N.; Bennet, W.M.; Gilbey, S.G.; Beacham, J.; Ghatei, M.A.; Bloom, S.R. Lack of acute effect of amylin (islet associated polypeptide) on insulin sensitivity during hyperinsulinaemic euglycaemic clamp in humans. Diabetologia, 1994, 37, 166-169.
[132]
Cooper, M.E.; McNally, P.G.; Phillips, P.A.; Johnston, C.I. Amylin stimulates plasma renin concentration in humans. Hypertension, 1995, 26, 460-464.
[133]
da Silva, D.C.; Fontes, G.N.; Erthal, L.C.; Lima, L.M. Amyloidogenesis of the amylin analogue pramlintide. Biophys. Chem., 2016, 219, 1-8.
[134]
Young, A.A.; Vine, W.; Gedulin, B.R.; Pittner, R.; Janes, S.; Gaeta, L.S.L.; Percy, A.; Moore, C.X.; Koda, J.E.; Rink, T.J.; Beaumont, K. Preclinical pharmacology of pramlintide in the rat: Comparisons with human and rat amylin. Drug Dev. Res., 1996, 37, 231-248.
[135]
Moyses, C.; Kolterman, O.; Nuttall, A.; Mant, T. First administration to man of the human amylin analogue tripro‐amylin. Diabetologia, 1994, 37, A72.
[136]
Moyses, C.; Kolterman, O.; Mant, T. Pharmacokinetics and hyperglycaemic effects of the amylin analogue, AC137, in man. Diabet. Med., 1993, 10, S25.
[137]
Amylin Pharmaceuticals Inc San Diego, CA; Amylin Pharmaceuticals, Inc., 2008.
[138]
Fineman, M.S.; Koda, J.E.; Shen, L.Z.; Strobel, S.A.; Maggs, D.G.; Weyer, C.; Kolterman, O.G. The human amylin analog, pramlintide, corrects postprandial hyperglucagonemia in patients with type 1 diabetes. Metabolism, 2002, 51, 636-641.
[139]
Fineman, M.; Weyer, C.; Maggs, D.G.; Strobel, S.; Kolterman, O.G. The human amylin analog, pramlintide, reduces postprandial hyperglucagonemia in patients with type 2 diabetes mellitus. Horm. Metab. Res., 2002, 34, 504-508.
[140]
Kong, M.F.; King, P.; Macdonald, I.A.; Stubbs, T.A.; Perkins, A.C.; Blackshaw, P.E.; Moyses, C.; Tattersall, R.B. Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia, 1997, 40, 82-88.
[141]
Kong, M.F.; Stubbs, T.A.; King, P.; Macdonald, I.A.; Lambourne, J.E.; Blackshaw, P.E.; Perkins, A.C.; Tattersall, R.B. The effect of single doses of pramlintide on gastric emptying of two meals in men with IDDM. Diabetologia, 1998, 41, 577-583.
[142]
Chapman, I.; Parker, B.; Doran, S.; Feinle-Bisset, C.; Wishart, J.; Strobel, S.; Wang, Y.; Burns, C.; Lush, C.; Weyer, C.; Horowitz, M. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia, 2005, 48, 838-848.
[143]
Thompson, R.G.; Gottlieb, A.; Organ, K.; Koda, J.; Kisicki, J.; Kolterman, O.G. Pramlintide: A human amylin analogue reduced postprandial plasma glucose, insulin, and C-peptide concentrations in patients with type 2 diabetes. Diabet. Med., 1997, 14, 547-555.
[144]
Thompson, R.G.; Peterson, J.; Gottlieb, A.; Mullane, J. Effects of pramlintide, an analog of human amylin, on plasma glucose profiles in patients with IDDM: Results of a multicenter trial. Diabetes, 1997, 46, 632-636.
[145]
Whitehouse, F.; Kruger, D.F.; Fineman, M.; Shen, L.; Ruggles, J.A.; Maggs, D.G.; Weyer, C.; Kolterman, O.G. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care, 2002, 25, 724-730.
[146]
Thompson, R.G.; Pearson, L.; Schoenfeld, S.L.; Kolterman, O.G. Pramlintide, a synthetic analog of human amylin, improves the metabolic profile of patients with type 2 diabetes using insulin. The Pramlintide in Type 2 Diabetes Group. Diabetes Care, 1998, 21, 987-993.
[147]
Singh-Franco, D.; Perez, A.; Harrington, C. The effect of pramlintide acetate on glycemic control and weight in patients with type 2 diabetes mellitus and in obese patients without diabetes: a systematic review and meta-analysis. Diabetes Obes. Metab., 2011, 13, 169-180.
[148]
Qiao, Y.C.; Ling, W.; Pan, Y.H.; Chen, Y.L.; Zhou, D.; Huang, Y.M.; Zhang, X.X.; Zhao, H.L. Efficacy and safety of pramlintide injection adjunct to insulin therapy in patients with type 1 diabetes mellitus: A systematic review and meta-analysis. Oncotarget, 2017, 8, 66504-66515.
[149]
Hollander, P.A.; Levy, P.; Fineman, M.S.; Maggs, D.G.; Shen, L.Z.; Strobel, S.A.; Weyer, C.; Kolterman, O.G. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: A 1-year randomized controlled trial. Diabetes Care, 2003, 26, 784-790.
[150]
Thompson, R.; Pearson, L.; Schoenfeld, S.; Kolterman, O. Pramlintide improves glycemic control in patients with type II diabetes requiring insulin. Diabetologia, 1997, 40, A355.
[151]
Cooper, G.J. Amylin and insulin co-replacement therapy for insulin-dependent (type I) diabetes mellitus. Med. Hypotheses, 1991, 36, 284-288.
[152]
Nyholm, B.; Orskov, L.; Hove, K.Y.; Gravholt, C.H.; Moller, N.; Alberti, K.G.; Moyses, C.; Kolterman, O.; Schmitz, O. The amylin analog pramlintide improves glycemic control and reduces postprandial glucagon concentrations in patients with type 1 diabetes mellitus. Metabolism, 1999, 48, 935-941.
[153]
Adler, B.L.; Yarchoan, M.; Hwang, H.M.; Louneva, N.; Blair, J.A.; Palm, R.; Smith, M.A.; Lee, H.G.; Arnold, S.E.; Casadesus, G. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition. Neurobiol. Aging, 2014, 35, 793-801.
[154]
Wang, E.; Zhu, H.; Wang, X.; Gower, A.C.; Wallack, M.; Blusztajn, J.K.; Kowall, N.; Qiu, W.Q. Amylin treatment reduces neuroinflammation and ameliorates abnormal patterns of gene expression in the cerebral cortex of an Alzheimer’s disease mouse model. J. Alzheimers Dis., 2017, 56, 47-61.
[155]
Ott, A.; Stolk, R.P.; van Harskamp, F.; Pols, H.A.; Hofman, A.; Breteler, M.M. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 1999, 53, 1937-1942.
[156]
Zhang, Y.; Song, W. Islet amyloid polypeptide: Another key molecule in Alzheimer’s pathogenesis? Prog. Neurobiol., 2017, 153, 100-120.
[157]
Trevaskis, J.L.; Turek, V.F.; Wittmer, C.; Griffin, P.S.; Wilson, J.K.; Reynolds, J.M.; Zhao, Y.; Mack, C.M.; Parkes, D.G.; Roth, J.D. Enhanced amylin-mediated body weight loss in estradiol-deficient diet-induced obese rats. Endocrinology, 2010, 151, 5657-5668.
[158]
Boyle, C.N.; Lutz, T.A. Amylinergic control of food intake in lean and obese rodents. Physiol. Behav., 2011, 105, 129-137.
[159]
Jhamandas, J.H.; Li, Z.; Westaway, D.; Yang, J.; Jassar, S.; MacTavish, D. Actions of beta-amyloid protein on human neurons are expressed through the amylin receptor. Am. J. Pathol., 2011, 178, 140-149.
[160]
Jhamandas, J.H.; MacTavish, D. Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons. J. Neurosci., 2004, 24, 5579-5584.
[161]
Ratner, R.E.; Want, L.L.; Fineman, M.S.; Velte, M.J.; Ruggles, J.A.; Gottlieb, A.; Weyer, C.; Kolterman, O.G. Adjunctive therapy with the amylin analogue pramlintide leads to a combined improvement in glycemic and weight control in insulin-treated subjects with type 2 diabetes. Diabetes Technol. Ther., 2002, 4, 51-61.
[162]
Young, A. Clinical studies. Adv. Pharmacol., 2005, 52, 289-320.
[163]
Kolterman, O.G.; Schwartz, S.; Corder, C.; Levy, B.; Klaff, L.; Peterson, J.; Gottlieb, A. Effect of 14 days’ subcutaneous administration of the human amylin analogue, pramlintide (AC137), on an intravenous insulin challenge and response to a standard liquid meal in patients with IDDM. Diabetologia, 1996, 39, 492-499.
[164]
Fineman, M.; Gottlieb, A.; Bahner, A.; Parker, J.; Waite, G.; Kolterman, O. Pramlintide therapy in addition to insulin in type 1 diabetes: Effect on metabolic control after 6 months. Diabetologia, 1999, 42(Suppl. 1), A232.
[165]
Zhang, X.X.; Pan, Y.H.; Huang, Y.M.; Zhao, H.L. Neuroendocrine hormone amylin in diabetes. World J. Diabetes, 2016, 7, 189-197.
[166]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300, 486-489.
[167]
Hartley, D.M.; Walsh, D.M.; Ye, C.P.; Diehl, T.; Vasquez, S.; Vassilev, P.M.; Teplow, D.B.; Selkoe, D.J. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci., 1999, 19, 8876-8884.
[168]
Walsh, D.M.; Selkoe, D.J. A beta oligomers - a decade of discovery. J. Neurochem., 2007, 101, 1172-1184.
[169]
Haataja, L.; Gurlo, T.; Huang, C.J.; Butler, P.C. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr. Rev., 2008, 29, 303-316.
[170]
Zraika, S.; Hull, R.L.; Verchere, C.B.; Clark, A.; Potter, K.J.; Fraser, P.E.; Raleigh, D.P.; Kahn, S.E. Toxic oligomers and islet beta cell death: Guilty by association or convicted by circumstantial evidence? Diabetologia, 2010, 53, 1046-1056.
[171]
Zhao, H.L.; Sui, Y.; Guan, J.; He, L.; Gu, X.M.; Wong, H.K.; Baum, L.; Lai, F.M.; Tong, P.C.; Chan, J.C. Amyloid oligomers in diabetic and nondiabetic human pancreas. Transl. Res., 2009, 153, 24-32.
[172]
Masters, S.L.; Dunne, A.; Subramanian, S.L.; Hull, R.L.; Tannahill, G.M.; Sharp, F.A.; Becker, C.; Franchi, L.; Yoshihara, E.; Chen, Z.; Mullooly, N.; Mielke, L.A.; Harris, J.; Coll, R.C.; Mills, K.H.; Mok, K.H.; Newsholme, P.; Nunez, G.; Yodoi, J.; Kahn, S.E.; Lavelle, E.C.; O’Neill, L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat. Immunol., 2010, 11, 897-904.
[173]
Janson, J.; Ashley, R.H.; Harrison, D.; McIntyre, S.; Butler, P.C. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes, 1999, 48, 491-498.
[174]
Clark, A.; Nilsson, M.R. Islet amyloid: A complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia, 2004, 47, 157-169.
[175]
Treusch, S.; Cyr, D.M.; Lindquist, S. Amyloid deposits: Protection against toxic protein species? Cell Cycle, 2009, 8, 1668-1674.
[176]
Shah, S.A.; Yoon, G.H.; Chung, S.S.; Abid, M.N.; Kim, T.H.; Lee, H.Y.; Kim, M.O. Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol. Psychiatry, 2017, 22, 407-416.
[177]
Hu, R.; Zhang, M.; Chen, H.; Jiang, B.; Zheng, J. Cross-seeding interaction between beta-amyloid and human islet amyloid polypeptide. ACS Chem. Neurosci., 2015, 6, 1759-1768.
[178]
Olcott, A.P.; Tian, J.; Walker, V.; Dang, H.; Middleton, B.; Adorini, L.; Washburn, L.; Kaufman, D.L. Antigen-based therapies using ignored determinants of beta cell antigens can more effectively inhibit late-stage autoimmune disease in diabetes-prone mice. J. Immunol., 2005, 175, 1991-1999.
[179]
Westwell-Roper, C.; Dunne, A.; Kim, M.L.; Verchere, C.B.; Masters, S.L. Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods Mol. Biol., 2013, 1040, 9-18.
[180]
Baker, R.L.; Delong, T.; Barbour, G.; Bradley, B.; Nakayama, M.; Haskins, K. Cutting edge: CD4 T cells reactive to an islet amyloid polypeptide peptide accumulate in the pancreas and contribute to disease pathogenesis in nonobese diabetic mice. J. Immunol., 2013, 191, 3990-3994.
[181]
Zhang, X.X.; Qiao, Y.C.; Li, W.; Zou, X.; Chen, Y.L.; Shen, J.; Liao, Q.Y.; Zhang, Q.J.; He, L.; Zhao, H.L. Human amylin induces CD4+Foxp3+ regulatory T cells in the protection from autoimmune diabetes. Immunol. Res., 2018, 66, 179-186.
[182]
Paul, K.C.; Jerrett, M.; Ritz, B. Type 2 diabetes mellitus and Alzheimer’s disease: Overlapping Biologic mechanisms and environmental risk factors. Curr. Environ. Health Rep., 2018, 5, 44-58.
[183]
Baglietto-Vargas, D.; Shi, J.; Yaeger, D.M.; Ager, R.; LaFerla, F.M. Diabetes and Alzheimer’s disease crosstalk. Neurosci. Biobehav. Rev., 2016, 64, 272-287.
[184]
Biessels, G.J.; Strachan, M.W.; Visseren, F.L.; Kappelle, L.J.; Whitmer, R.A. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. Lancet Diabetes Endocrinol., 2014, 2, 246-255.
[185]
Akter, K.; Lanza, E.A.; Martin, S.A.; Myronyuk, N.; Rua, M.; Raffa, R.B. Diabetes mellitus and Alzheimer’s disease: Shared pathology and treatment? Br. J. Clin. Pharmacol., 2011, 71, 365-376.
[186]
Dash, S.K. Cognitive impairment and diabetes. Recent Pat. Endocr. Metab. Immune Drug Discov., 2013, 7, 155-165.
[187]
Jucker, M.; Walker, L.C. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol., 2011, 70, 532-540.
[188]
Adam, A.P. A potential new mechanism linking type II diabetes mellitus and Alzheimer’s disease. Bioessays, 2018, 40, e1800061.
[189]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8, 499-509.
[190]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
[191]
Williams, T.L.; Serpell, L.C. Membrane and surface interactions of Alzheimer’s Abeta peptide--insights into the mechanism of cytotoxicity. FEBS J., 2011, 278, 3905-3917.
[192]
Luca, S.; Yau, W.M.; Leapman, R.; Tycko, R. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR. Biochemistry, 2007, 46, 13505-13522.
[193]
Brender, J.R.; Salamekh, S.; Ramamoorthy, A. Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc. Chem. Res., 2012, 45, 454-462.
[194]
Andreetto, E.; Yan, L.M.; Tatarek-Nossol, M.; Velkova, A.; Frank, R.; Kapurniotu, A. Identification of hot regions of the Abeta-IAPP interaction interface as high-affinity binding sites in both cross- and self-association. Angew. Chem. Int. Ed. Engl., 2010, 49, 3081-3085.
[195]
Lu, Y.; Derreumaux, P.; Guo, Z.; Mousseau, N.; Wei, G. Thermodynamics and dynamics of amyloid peptide oligomerization are sequence dependent. Proteins, 2009, 75, 954-963.
[196]
Kalia, M.; Costa, E.S.J. Biomarkers of psychiatric diseases: Current status and future prospects. Metabolism, 2015, 64, S11-S15.
[197]
Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik, K.H.; Multhaup, G.; Beyreuther, K.; Muller-Hill, B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987, 325, 733-736.
[198]
Ponte, P.; Gonzalez-DeWhitt, P.; Schilling, J.; Miller, J.; Hsu, D.; Greenberg, B.; Davis, K.; Wallace, W.; Lieberburg, I.; Fuller, F. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature, 1988, 331, 525-527.
[199]
Bogoyevitch, M.A.; Boehm, I.; Oakley, A.; Ketterman, A.J.; Barr, R.K. Targeting the JNK MAPK cascade for inhibition: basic science and therapeutic potential. Biochim. Biophys. Acta, 2004, 1697, 89-101.
[200]
Tabaton, M.; Zhu, X.; Perry, G.; Smith, M.A.; Giliberto, L. Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Exp. Neurol., 2010, 221, 18-25.
[201]
Zou, K.; Gong, J.S.; Yanagisawa, K.; Michikawa, M. A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J. Neurosci., 2002, 22, 4833-4841.
[202]
Hiltunen, M.; van Groen, T.; Jolkkonen, J. Functional roles of amyloid-beta protein precursor and amyloid-beta peptides: Evidence from experimental studies. J. Alzheimers Dis., 2009, 18, 401-412.
[203]
Glabe, C.G.; Kayed, R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006, 66, S74-S78.
[204]
Gotz, J.; Lim, Y.A.; Eckert, A. Lessons from two prevalent amyloidoses-what amylin and Abeta have in common. Front. Aging Neurosci., 2013, 5, 38.
[205]
Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimers Res. Ther., 2014, 6, 37.
[206]
Penninkilampi, R.; Brothers, H.M.; Eslick, G.D. Safety and efficacy of anti-amyloid-beta immunotherapy in Alzheimer’s disease: a systematic review and meta-analysis. J. Neuroimmune Pharmacol., 2017, 12, 194-203.
[207]
Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci., 2015, 18, 794-799.