[1]
Balan, B.J.; Zygmanowska, E.; Radomska-Lesniewska, D.M. Disorders noticed during development of pancreatic cancer: Potential opportunities for early and effective diagnostics and therapy. Cent. Eur. J. Immunol., 2017, 42, 377-382.
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66, 7-30.
[3]
van Erning, F.N.; Mackay, T.M.; van der Geest, L.G.M.; Groot Koerkamp, B.; van Laarhoven, H.W.M.; Bonsing, B.A.; Wilmink, J.W.; van Santvoort, H.C.; de Vos-Geelen, J.; van Eijck, C.H.J.; Busch, O.R.; Lemmens, V.E.; Besselink, M.G. Dutch pancreatic cancer group association of the location of pancreatic ductal adenocarcinoma (head, body, tail) with tumor stage, treatment, and survival: A population-based analysis. Acta Oncol., 2018, 57(12), 1655-1662.
[4]
Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int. J. Mol. Sci., 2017, 18(7)E1338
[5]
Bernard, V.; Fleming, J.; Maitra, A. Molecular and genetic basis of pancreatic carcinogenesis: Which concepts may be clinically relevant? Surg. Oncol. Clin. N. Am., 2016, 25, 227-238.
[6]
Soliman, G.A.; Steenson, S.M.; Etekpo, A.H. Effects of metformin and a mammalian target of rapamycin (mTOR) ATP-competitive inhibitor on targeted metabolomics in pancreatic cancer cell line. Metabolomics (Los Angel.), 2016, 6(3), 183.
[7]
Nevler, A.; Muller, A.J.; Sutanto-Ward, E.; DuHadaway, J.B.; Nagatomo, K.; Londin, E.; O’Hayer, K.; Cozzitorto, J.A.; Lavu, H.; Yeo, T.P.; Curtis, M.T.; Villatoro, T.; Leiby, B.E.; Mandik-Nayak, L.; Winter, J.M.; Yeo, C.J.; Prendergast, G.C.; Brody, J.R. Host IDO2 gene status influences tumor progression and radiotherapy response in KRAS-driven sporadic pancreatic cancers. Clin. Cancer Res., 2019, 25(2), 724-734.
[8]
Chung, W.J.; Daemen, A.; Cheng, J.H.; Long, J.E.; Cooper, J.E.; Wang, B.E.; Tran, C.; Singh, M.; Gnad, F.; Modrusan, Z.; Foreman, O.; Junttila, M.R. Kras mutant genetically engineered mouse models of human cancers are genomically heterogeneous. Proc. Natl. Acad. Sci. USA, 2017, 114, E10947-E10955.
[9]
Kopp, J.L.; Dubois, C.L.; Schaeffer, D.F.; Samani, A.; Taghizadeh, F.; Cowan, R.W.; Rhim, A.D.; Stiles, B.L.; Valasek, M.; Sander, M. Loss of pten and activation of kras synergistically induce formation of intraductal papillary mucinous neoplasia from pancreatic ductal cells in mice. Gastroenterology, 2018, 154, 1509-1523.
[10]
Colvin, E.K.; Scarlett, C.J. A historical perspective of pancreatic cancer mouse models. Semin. Cell Dev. Biol., 2014, 27, 96-105.
[11]
Zhao, X.; Wang, X.; Fang, L.; Lan, C.; Zheng, X.; Wang, Y.; Zhang, Y.; Han, X.; Liu, S.; Cheng, K.; Zhao, Y.; Shi, J.; Guo, J.; Hao, J.; Ren, H.; Nie, G. A combinatorial strategy using YAP and pan-RAF inhibitors for treating KRAS-mutant pancreatic cancer. Cancer Lett., 2017, 402, 61-70.
[12]
Ischenko, I.; Petrenko, O.; Hayman, M.J.A. MEK/PI3K/HDAC inhibitor combination therapy for KRAS mutant pancreatic cancer cells. Oncotarget, 2015, 6, 15814-15827.
[13]
Liao, J.; Hwang, S.H.; Li, H.; Yang, Y.; Yang, J.; Wecksler, A.T.; Liu, J.Y.; Hammock, B.D.; Yang, G.Y. Inhibition of mutant KrasG12D-initiated murine pancreatic carcinoma growth by a dual c-Raf and soluble epoxide hydrolase inhibitor t-CUPM. Cancer Lett., 2016, 371, 187-193.
[14]
Huang, M.; Tang, S.N.; Upadhyay, G.; Marsh, J.L.; Jackman, C.P.; Shankar, S.; Srivastava, R.K. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting akt and sonic hedgehog pathways. PLoS One, 2014, 9e92161
[15]
Jun, E.; Hong, S.M.; Yoo, H.J.; Kim, M.B.; Won, J.S.; An, S.; Shim, I.K.; Chang, S.; Hoffman, R.M.; Kim, S.C. Genetic and metabolic comparison of orthotopic and heterotopic patient-derived pancreatic-cancer xenografts to the original patient tumors. Oncotarget, 2017, 9, 7867-7881.
[16]
Ma, J.; Hui, P.; Meng, W.; Wang, N.; Xiang, S. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis. Biochem. Biophys. Res. Commun., 2017, 484, 746-752.
[17]
Jun, E.; Jung, J.; Jeong, S.Y.; Choi, E.K.; Kim, M.B.; Lee, J.S.; Hong, S.M.; Seol, H.S.; Hwang, C.; Hoffman, R.M.; Shim, I.K.; Chang, S.; Kim, S.C. Surgical and oncological factors affecting the successful engraftment of patient-derived xenografts in pancreatic ductal adenocarcinoma. Anticancer Res., 2016, 36, 517-521.
[18]
Lo, J.H.; Hao, L.; Muzumdar, M.D.; Raghavan, S.; Kwon, E.J.; Pulver, E.M.; Hsu, F.; Aguirre, A.J.; Wolpin, B.M.; Fuchs, C.S.; Hahn, W.C.; Jacks, T.; Bhatia, S.N. iRGD-guided tumor-penetrating nanocomplexes for therapeutic siRNA delivery to pancreatic cancer. Mol. Cancer Ther., 2018, 17(11), 2377-2388.
[19]
Kaur, K.; Chang, H.H.; Cook, J.; Eibl, G.; Jewett, A. Suppression of gingival NK cells in precancerous and cancerous stages of pancreatic cancer in KC and BLT-humanized mice. Front. Immunol., 2017, 8, 1606.
[20]
Holzapfel, B.M.; Thibaudeau, L.; Hesami, P.; Taubenberger, A.; Holzapfel, N.P.; Mayer-Wagner, S.; Power, C.; Clements, J.; Russell, P.; Hutmacher, D.W. Humanised xenograft models of bone metastasis revisited: Novel insights into species-specific mechanisms of cancer cell osteotropism. Cancer Metastasis Rev., 2013, 32, 129-145.
[21]
Rongvaux, A.; Willinger, T.; Martinek, J.; Strowig, T.; Gearty, S.V.; Teichmann, L.L.; Saito, Y.; Marches, F.; Halene, S.; Palucka, A.K.; Manz, M.G.; Flavell, R.A. Development and function of human innate immune cells in a humanized mouse model. Nat. Biotechnol., 2014, 32, 364-372.
[22]
Guo, X.; Zheng, L.; Jiang, J.; Zhao, Y.; Wang, X.; Shen, M.; Zhu, F.; Tian, R.; Shi, C.; Xu, M.; Li, X.; Peng, F.; Zhang, H.; Feng, Y.; Xie, Y.; Xu, X.; Jia, W.; He, R.; Xie, C.; Hu, J.; Ye, D.; Wang, M.; Qin, R. Blocking NF-kappaB Is essential for the immunotherapeutic effect of recombinant IL18 in pancreatic cancer. Clin. Cancer Res., 2016, 22, 5939-5950.
[23]
Basel, M.T.; Narayanan, S.; Ganta, C.; Shreshta, T.B.; Marquez, A.; Pyle, M.; Hill, J.; Bossmann, S.H.; Troyer, D.L. Developing a xenograft human tumor model in immunocompetent mice. Cancer Lett., 2018, 412, 256-263.
[24]
Mazur, P.K.; Herner, A.; Neff, F.; Siveke, J.T. Current methods in mouse models of pancreatic cancer. Methods Mol. Biol., 2015, 1267, 185-215.
[25]
Salzwedel, A.O.; Han, J.; LaRocca, C.J.; Shanley, R.; Yamamoto, M.; Davydova, J. Combination of interferon-expressing oncolytic adenovirus with chemotherapy and radiation is highly synergistic in hamster model of pancreatic cancer. Oncotarget, 2018, 9, 18041-18052.
[26]
Spyridopoulou, K.; Aindelis, G.; Lampri, E.; Giorgalli, M.; Lamprianidou, E.; Kotsianidis, I.; Tsingotjidou, A.; Pappa, A.; Kalogirou, O.; Chlichlia, K. Improving the subcutaneous mouse tumor model by effective manipulation of magnetic nanoparticles-treated implanted cancer cells. Ann. Biomed. Eng., 2018, 46(12), 1975-1987.
[27]
Bocci, G.; Buffa, F.; Canu, B.; Concu, R.; Fioravanti, A.; Orlandi, P.; Pisanu, T. A new biometric tool for three-dimensional subcutaneous tumor scanning in mice. In Vivo, 2014, 28, 75-80.
[28]
Jiang, Y.J.; Lee, C.L.; Wang, Q.; Zhou, Z.W.; Yang, F.; Jin, C.; Fu, D.L. Establishment of an orthotopic pancreatic cancer mouse model: Cells suspended and injected in Matrigel. World J. Gastroenterol., 2014, 20, 9476-9485.
[29]
Krempley, B.D.; Yu, K.H. Preclinical models of pancreatic ductal adenocarcinoma. Chin. Clin. Oncol, 2017, 6, 25.
[30]
Song, S.Y.; Kim, K.P.; Jeong, S.Y.; Park, J.; Park, J.; Jung, J.; Chung, H.K.; Lee, S.W.; Seo, M.H.; Lee, J.S.; Jung, K.H.; Choi, E.K. Polymeric nanoparticle-docetaxel for the treatment of advanced solid tumors: Phase I clinical trial and preclinical data from an orthotopic pancreatic cancer model. Oncotarget, 2016, 7, 77348-77357.
[31]
Condeelis, J.; Weissleder, R. In vivo imaging in cancer. Cold Spring Harb. Perspect. Biol., 2010, 2a003848
[32]
Noguchi, K.; Konno, M.; Eguchi, H.; Kawamoto, K.; Mukai, R.; Nishida, N.; Koseki, J.; Wada, H.; Akita, H.; Satoh, T.; Marubashi, S.; Nagano, H.; Doki, Y.; Mori, M.; Ishii, H. c-Met affects gemcitabine resistance during carcinogenesis in a mouse model of pancreatic cancer. Oncol. Lett., 2018, 16, 1892-1898.
[33]
Thomas, R.M.; Gharaibeh, R.Z.; Gauthier, J.; Beveridge, M.; Pope, J.L.; Guijarro, M.V.; Yu, Q.; He, Z.; Ohland, C.; Newsome, R.; Trevino, J.; Hughes, S.J.; Reinhard, M.; Winglee, K.; Fodor, A.A.; Zajac-Kaye, M.; Jobin, C. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis, 2018, 39(8), 1068-1078.
[34]
Hamada, S.; Taguchi, K.; Masamune, A.; Yamamoto, M.; Shimosegawa, T. Nrf2 promotes mutant K-ras/p53-driven pancreatic carcinogenesis. Carcinogenesis, 2017, 38, 661-670.
[35]
Husain, K.; Centeno, B.A.; Chen, D.T.; Hingorani, S.R.; Sebti, S.M.; Malafa, M.P. Vitamin E delta-tocotrienol prolongs survival in the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) transgenic mouse model of pancreatic cancer. Cancer Prev. Res. (Phila.), 2013, 6, 1074-1083.
[36]
Nguyen, H.H.; Aronchik, I.; Brar, G.A.; Nguyen, D.H.; Bjeldanes, L.F.; Firestone, G.L. The dietary phytochemical indole-3-carbinol is a natural elastase enzymatic inhibitor that disrupts cyclin E protein processing. Proc. Natl. Acad. Sci. USA, 2008, 105, 19750-19755.
[37]
Nakagawa-Goto, K.; Yamada, K.; Nakamura, S.; Chen, T.H.; Chiang, P.C.; Bastow, K.F.; Wang, S.C.; Spohn, B.; Hung, M.C.; Lee, F.Y.; Lee, F.C.; Lee, K.H. Antitumor agents. 258. Syntheses and evaluation of dietary antioxidant--taxoid conjugates as novel cytotoxic agents. Bioorg. Med. Chem. Lett., 2007, 17, 5204-5209.
[38]
Wormann, S.M.; Song, L.; Ai, J.; Diakopoulos, K.N.; Kurkowski, M.U.; Gorgulu, K.; Ruess, D.; Campbell, A.; Doglioni, C.; Jodrell, D.; Neesse, A.; Demir, I.E.; Karpathaki, A.P.; Barenboim, M.; Hagemann, T.; Rose-John, S.; Sansom, O.; Schmid, R.M.; Protti, M.P.; Lesina, M.; Algul, H. Loss of P53 function activates JAK2-STAT3 signaling to promote pancreatic tumor growth, stroma modification, and gemcitabine resistance in mice and is associated with patient survival. Gastroenterology, 2016, 151, 180-193.
[39]
Singh, M.; Lima, A.; Molina, R.; Hamilton, P.; Clermont, A.C.; Devasthali, V.; Thompson, J.D.; Cheng, J.H.; Bou Reslan, H.; Ho, C.C.; Cao, T.C.; Lee, C.V.; Nannini, M.A.; Fuh, G.; Carano, R.A.; Koeppen, H.; Yu, R.X.; Forrest, W.F.; Plowman, G.D.; Johnson, L. Assessing therapeutic responses in Kras mutant cancers using genetically engineered mouse models. Nat. Biotechnol., 2010, 28, 585-593.
[40]
Kao, C.T.; Aziz, M.; Kasi, A. Pathological complete response in pancreatic adenocarcinoma with FOLFIRINOX. BMJ Case Rep, 2018. 2018.
[41]
Tong, H.; Fan, Z.; Liu, B.; Lu, T. The benefits of modified FOLFIRINOX for advanced pancreatic cancer and its induced adverse events: A systematic review and meta-analysis. Sci. Rep., 2018, 8, 8666.
[42]
Kim, J.H.; Lee, S.C.; Oh, S.Y.; Song, S.Y.; Lee, N.; Nam, E.M.; Lee, S.; Hwang, I.G.; Lee, H.R.; Lee, K.T.; Bae, S.B.; Kim, H.J.; Jang, J.S.; Lim, D.H.; Lee, H.W.; Kang, S.Y.; Kang, J.H. Attenuated FOLFIRINOX in the salvage treatment of gemcitabine-refractory advanced pancreatic cancer: A phase II study. Cancer Commun. (Lond), 2018, 38, 32.
[43]
Luu, A.M.; Herzog, T.; Hoehn, P.; Reinacher-Schick, A.; Munding, J.; Uhl, W.; Braumann, C. FOLFIRINOX treatment leading to pathologic complete response of a locally advanced pancreatic cancer. J. Gastrointest. Oncol., 2018, 9, E9-E12.
[45]
Verma, R.K.; Yu, W.; Shrivastava, A.; Shankar, S.; Srivastava, R.K. alpha-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (Kras(G12D), and Kras(G12D)/tp53R270H) mice. Sci. Rep., 2016, 6, 32743.
[46]
Weyandt, J.D.; Lampson, B.L.; Tang, S.; Mastrodomenico, M.; Cardona, D.M.; Counter, C.M. Wild-type hras suppresses the earliest stages of tumorigenesis in a genetically engineered mouse model of pancreatic cancer. PLoS One, 2015, 10e0140253
[47]
Botta, G.P.; Reichert, M.; Reginato, M.J.; Heeg, S.; Rustgi, A.K.; Lelkes, P.I. ERK2-regulated TIMP1 induces hyperproliferation of K-Ras(G12D)-transformed pancreatic ductal cells. Neoplasia, 2013, 15, 359-372.
[48]
D’Costa, Z.; Jones, K.; Azad, A.; van Stiphout, R.; Lim, S.Y.; Gomes, A.L.; Kinchesh, P.; Smart, S.C.; McKenna, W.G.; Buffa, F.M.; Sansom, O.J.; Muschel, R.J.; O’Neill, E.; Fokas, E. Gemcitabine-induced TIMP1 attenuates therapy response and promotes tumor growth and liver metastasis in pancreatic cancer. Cancer Res., 2017, 77(21), 5952-5962.
[49]
Chow, J.Y.; Ban, M.; Wu, H.L.; Nguyen, F.; Huang, M.; Chung, H.; Dong, H.; Carethers, J.M. TGF-beta downregulates PTEN via activation of NF-kappaB in pancreatic cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 298, G275-G282.
[50]
Setia, S.; Sanyal, S.N. Nuclear factor kappa B: A pro-inflammatory, transcription factor-mediated signalling pathway in lung carcinogenesis and its inhibition by nonsteroidal anti-inflammatory drugs. J. Environ. Pathol. Toxicol. Oncol., 2012, 31, 27-37.
[51]
Yip-Schneider, M.T.; Wu, H.; Stantz, K.; Agaram, N.; Crooks, P. A.; Schmidt, C.M. Dimethylaminoparthenolide and gemcitabine: A survival study using a genetically engineered mouse model of pancreatic cancer. BMC Cancer, 2013. 13, 194-2407-13-194.
[52]
Orozco, C.A.; Martinez-Bosch, N.; Guerrero, P.E.; Vinaixa, J.; Dalotto-Moreno, T.; Iglesias, M.; Moreno, M.; Djurec, M.; Poirier, F.; Gabius, H.J.; Fernandez-Zapico, M.E.; Hwang, R.F.; Guerra, C.; Rabinovich, G.A.; Navarro, P. Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc. Natl. Acad. Sci. USA, 2018, 115, E3769-E3778.
[53]
Lu, Z.; Weniger, M.; Jiang, K.; Boeck, S.; Zhang, K.; Bazhin, A.; Miao, Y.; Werner, J. DHaese, J.G. Therapies targeting the tumor stroma and the vegf/vegfr axis in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Target. Oncol., 2018, 13(4), 447-459.
[54]
Frese, K.K.; Neesse, A.; Cook, N.; Bapiro, T.E.; Lolkema, M.P.; Jodrell, D.I.; Tuveson, D.A. Nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov., 2012, 2, 260-269.
[55]
Miller, B.W.; Morton, J.P.; Pinese, M.; Saturno, G.; Jamieson, N.B.; McGhee, E.; Timpson, P.; Leach, J.; McGarry, L.; Shanks, E.; Bailey, P.; Chang, D.; Oien, K.; Karim, S.; Au, A.; Steele, C.; Carter, C.R.; McKay, C.; Anderson, K.; Evans, T.R.; Marais, R.; Springer, C.; Biankin, A.; Erler, J.T.; Sansom, O.J. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: Inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med., 2015, 7, 1063-1076.
[56]
Whatcott, C.J.; Ng, S.; Barrett, M.T.; Hostetter, G.; Von Hoff, D.D.; Han, H. Inhibition of ROCK1 kinase modulates both tumor cells and stromal fibroblasts in pancreatic cancer. PLoS One, 2017, 12e0183871
[57]
Carapuca, E.F.; Gemenetzidis, E.; Feig, C.; Bapiro, T.E.; Williams, M.D.; Wilson, A.S.; Delvecchio, F.R.; Arumugam, P.; Grose, R.P.; Lemoine, N.R.; Richards, F.M.; Kocher, H.M. Anti-stromal treatment together with chemotherapy targets multiple signalling pathways in pancreatic adenocarcinoma. J. Pathol., 2016, 239, 286-296.
[58]
Jacobetz, M.A.; Chan, D.S.; Neesse, A.; Bapiro, T.E.; Cook, N.; Frese, K.K.; Feig, C.; Nakagawa, T.; Caldwell, M.E.; Zecchini, H.I.; Lolkema, M.P.; Jiang, P.; Kultti, A.; Thompson, C.B.; Maneval, D.C.; Jodrell, D.I.; Frost, G.I.; Shepard, H.M.; Skepper, J.N.; Tuveson, D.A. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 2013, 62, 112-120.
[59]
Rucki, A.A.; Xiao, Q.; Muth, S.; Chen, J.; Che, X.; Kleponis, J.; Sharma, R.; Anders, R.A.; Jaffee, E.M.; Zheng, L. Dual inhibition of hedgehog and c-met pathways for pancreatic cancer treatment. Mol. Cancer Ther., 2017, 16, 2399-2409.
[60]
Feng, B.; Zhou, F.; Hou, B.; Wang, D.; Wang, T.; Fu, Y.; Ma, Y.; Yu, H.; Li, Y. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater., 2018.e1803001
[61]
Beatty, G.L.; Chiorean, E.G.; Fishman, M.P.; Saboury, B.; Teitelbaum, U.R.; Sun, W.; Huhn, R.D.; Song, W.; Li, D.; Sharp, L.L.; Torigian, D.A.; O’Dwyer, P.J.; Vonderheide, R.H. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science, 2011, 331, 1612-1616.
[62]
Zhang, H.; Song, Y.; Zhou, C.; Bai, Y.; Yuan, D.; Pan, Y.; Shao, C. Blocking endogenous H2S signaling attenuated radiation-induced long-term metastasis of residual HepG2 cells through inhibition of EMT. Radiat. Res., 2018, 190(4), 374-384.
[63]
Aiello, N.M.; Maddipati, R.; Norgard, R.J.; Balli, D.; Li, J.; Yuan, S.; Yamazoe, T.; Black, T.; Sahmoud, A.; Furth, E.E.; Bar-Sagi, D.; Stanger, B.Z. EMT Subtype influences epithelial plasticity and mode of cell migration. Dev. Cell, 2018, 45, 681-695.e4.
[64]
Meng, Q.; Shi, S.; Liang, C.; Liang, D.; Hua, J.; Zhang, B.; Xu, J.; Yu, X. Abrogation of glutathione peroxidase-1 drives EMT and chemoresistance in pancreatic cancer by activating ROS-mediated Akt/GSK3beta/Snail signaling. Oncogene, 2018, 37(44), 5843-5857.
[65]
Su, Y.; Li, J.; Witkiewicz, A.K.; Brennan, D.; Neill, T.; Talarico, J.; Radice, G.L. N-cadherin haploinsufficiency increases survival in a mouse model of pancreatic cancer. Oncogene, 2012, 31, 4484-4489.
[66]
Banerjee, S.; Modi, S.; McGinn, O.; Zhao, X.; Dudeja, V.; Ramakrishnan, S.; Saluja, A.K. Impaired synthesis of stromal components in response to minnelide improves vascular function, drug delivery, and survival in pancreatic cancer. Clin. Cancer Res., 2016, 22, 415-425.
[67]
Koikawa, K.; Ohuchida, K.; Ando, Y.; Kibe, S.; Nakayama, H.; Takesue, S.; Endo, S.; Abe, T.; Okumura, T.; Iwamoto, C.; Moriyama, T.; Nakata, K.; Miyasaka, Y.; Ohtsuka, T.; Nagai, E.; Mizumoto, K.; Hashizume, M.; Nakamura, M. Basement membrane destruction by pancreatic stellate cells leads to local invasion in pancreatic ductal adenocarcinoma. Cancer Lett., 2018, 425, 65-77.
[68]
Sarper, M.; Cortes, E.; Lieberthal, T.J.; Del, R.H.A. ATRA modulates mechanical activation of TGF-beta by pancreatic stellate cells. Sci. Rep., 2016, 6, 27639.
[69]
Froeling, F.E.; Feig, C.; Chelala, C.; Dobson, R.; Mein, C.E.; Tuveson, D.A.; Clevers, H.; Hart, I.R.; Kocher, H.M. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-beta-catenin signaling to slow tumor progression. Gastroenterology, 2011. 141, 1486-97, 1497.e1-14.
[70]
Liby, K.T.; Royce, D.B.; Risingsong, R.; Williams, C.R.; Maitra, A.; Hruban, R.H.; Sporn, M.B. Synthetic triterpenoids prolong survival in a transgenic mouse model of pancreatic cancer. Cancer Prev. Res. (Phila.), 2010, 3, 1427-1434.
[71]
Akimoto, M.; Maruyama, R.; Kawabata, Y.; Tajima, Y.; Takenaga, K. Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERKdependent
necroptosis. Cell. Death Dis.,2018, 9, 804-018-0851-z.
[72]
Chen, C.; Xiao, W.; Huang, L.; Yu, G.; Ni, J.; Yang, L.; Wan, R.; Hu, G. Shikonin induces apoptosis and necroptosis in pancreatic cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am. J. Transl. Res., 2017, 9, 5507-5517.
[73]
Xie, Y.; Zhu, S.; Zhong, M.; Yang, M.; Sun, X.; Liu, J.; Kroemer, G.; Lotze, M.; Zeh, H.J., III; Kang, R.; Tang, D. Inhibition of aurora kinase an induces necroptosis in pancreatic carcinoma. Gastroenterology, 2017, 153(5), 1429-1443.e5.
[74]
Weber, K.; Roelandt, R.; Bruggeman, I.; Estornes, Y.; Vandenabeele, P. Nuclear RIPK3 and MLKL contribute to cytosolic necrosome formation and necroptosis. Commun. Biol., 2018, 6.
[75]
Zhou, J.E.; Yu, J.; Gao, L.; Sun, L.; Peng, T.; Wang, J.; Zhu, J.; Lu, W.; Zhang, L.; Yan, Z.; Yu, L. iNGR-modified liposomes for tumor vascular targeting and tumor tissue penetrating delivery in the treatment of glioblastoma. Mol. Pharm., 2017, 14, 1811-1820.
[76]
Miao, L.; Newby, J.M.; Lin, C.M.; Zhang, L.; Xu, F.; Kim, W.Y.; Forest, M.G.; Lai, S.K.; Milowsky, M.I.; Wobker, S.E.; Huang, L. The binding site barrier elicited by tumor-associated fibroblasts interferes disposition of nanoparticles in stroma-vessel type tumors. ACS Nano, 2016, 10(10), 9243-9258.
[77]
Chandra, D.; Selvanesan, B.C.; Yuan, Z.; Libutti, S.K.; Koba, W.; Beck, A.; Zhu, K.; Casadevall, A.; Dadachova, E.; Gravekamp, C. 32-Phosphorus selectively delivered by listeria to pancreatic cancer demonstrates a strong therapeutic effect. Oncotarget, 2017, 8, 20729-20740.
[78]
Bobrov, E.; Skobeleva, N.; Restifo, D.; Beglyarova, N.; Cai, K.Q.; Handorf, E.; Campbell, K.; Proia, D.A.; Khazak, V.; Golemis, E.A.; Astsaturov, I. Targeted delivery of chemotherapy using HSP90 inhibitor drug conjugates is highly active against pancreatic cancer models. Oncotarget, 2017, 8, 4399-4409.
[79]
Farr, N.; Wang, Y.N.; D’Andrea, S.; Starr, F.; Partanen, A.; Gravelle, K.M.; McCune, J.S.; Risler, L.J.; Whang, S.G.; Chang, A.; Hingorani, S.R.; Lee, D.; Hwang, J.H. Hyperthermia-enhanced targeted drug delivery using magnetic resonance-guided focussed ultrasound: A pre-clinical study in a genetic model of pancreatic cancer. Int. J. Hyperthermia, 2018, 34(3), 284-291.
[80]
Jiang, H.; Hegde, S.; Knolhoff, B.L.; Zhu, Y.; Herndon, J.M.; Meyer, M.A.; Nywening, T.M.; Hawkins, W.G.; Shapiro, I.M.; Weaver, D.T.; Pachter, J.A.; Wang-Gillam, A.; DeNardo, D.G. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med., 2016, 22, 851-860.
[81]
Joensson, P.; Hotz, B.; Buhr, H.J.; Hotz, H.G. A novel antiangiogenic approach for adjuvant therapy of pancreatic carcinoma. Langenbecks Arch. Surg., 2011, 396, 535-541.
[82]
Gurlevik, E.; Fleischmann-Mundt, B.; Brooks, J.; Demir, I.E.; Steiger, K.; Ribback, S.; Yevsa, T.; Woller, N.; Kloos, A.; Ostroumov, D.; Armbrecht, N.; Manns, M.P.; Dombrowski, F.; Saborowski, M.; Kleine, M.; Wirth, T.C.; Oettle, H.; Ceyhan, G.O.; Esposito, I.; Calvisi, D.F.; Kubicka, S.; Kuhnel, F. Administration of gemcitabine after pancreatic tumor resection in mice induces an antitumor immune response mediated by natural killer cells. Gastroenterology, 2016, 151, 338-350.e7.
[83]
Renz, B.W.; Takahashi, R.; Tanaka, T.; Macchini, M.; Hayakawa, Y.; Dantes, Z.; Maurer, H.C.; Chen, X.; Jiang, Z.; Westphalen, C.B.; Ilmer, M.; Valenti, G.; Mohanta, S.K.; Habenicht, A.J.R.; Middelhoff, M.; Chu, T.; Nagar, K.; Tailor, Y.; Casadei, R.; Di Marco, M.; Kleespies, A.; Friedman, R.A.; Remotti, H.; Reichert, M.; Worthley, D.L.; Neumann, J.; Werner, J.; Iuga, A.C.; Olive, K.P.; Wang, T.C. Beta2 adrenergic-neurotrophin feedforward Loop Promotes Pancreatic Cancer. Cancer Cell, 2018, 33, 75-90.e7.
[84]
Ambree, O.; Ruland, C.; Scheu, S.; Arolt, V.; Alferink, J. Alterations of the innate immune system in susceptibility and resilience after social defeat stress. Front. Behav. Neurosci., 2018, 12, 141.
[85]
Clark, S.M.; Song, C.; Li, X.; Keegan, A.D.; Tonelli, L.H. CD8(+) T cells promote cytokine responses to stress. Cytokine, 2018, 113, 256-264.
[86]
Morran, D.C.; Wu, J.; Jamieson, N.B.; Mrowinska, A.; Kalna, G.; Karim, S.A.; Au, A.Y.; Scarlett, C.J.; Chang, D.K.; Pajak, M.Z.; Oien, K.A.; McKay, C.J.; Carter, C.R.; Gillen, G.; Champion, S.; Pimlott, S.L.; Anderson, K.I.; Evans, T.R.; Grimmond, S.M.; Biankin, A.V.; Sansom, O.J.; Morton, J.P. Targeting mTOR dependency in pancreatic cancer. Gut, 2014, 63, 1481-1489.
[87]
Konings, I.C.A.W.; Cahen, D.L.; Harinck, F.; Fockens, P.; van Hooft, J.E.; Poley, J.W.; Bruno, M.J. Evolution of features of chronic pancreatitis during endoscopic ultrasound-based surveillance of individuals at high risk for pancreatic cancer. Endosc. Int. Open, 2018, 6, E541-E548.
[88]
Ikuta, K.; Fukuda, A.; Ogawa, S.; Masuo, K.; Goto, N.; Hiramatsu, Y.; Tsuda, M.; Kimura, Y.; Matsumoto, Y.; Kimura, Y.; Maruno, T.; Kanda, K.; Nishi, K.; Takaori, K.; Uemoto, S.; Takaishi, S.; Chiba, T.; Nishi, E.; Seno, H. Nardilysin inhibits pancreatitis and suppresses pancreatic ductal adenocarcinoma initiation in mice. Gut, 2018. pii: gutjnl-2017-315425.
[89]
Mohammed, A.; Janakiram, N.B.; Madka, V.; Brewer, M.; Ritchie, R.L.; Lightfoot, S.; Kumar, G.; Sadeghi, M.; Patlolla, J.M.; Yamada, H.Y.; Cruz-Monserrate, Z.; May, R.; Houchen, C.W.; Steele, V.E.; Rao, C.V. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression. Oncotarget, 2015, 6, 15524-15539.
[90]
Mohammed, A.; Janakiram, N.B.; Li, Q.; Madka, V.; Ely, M.; Lightfoot, S.; Crawford, H.; Steele, V.E.; Rao, C.V. The epidermal growth factor receptor inhibitor gefitinib prevents the progression of pancreatic lesions to carcinoma in a conditional LSL-KrasG12D/+ transgenic mouse model. Cancer Prev. Res. (Phila.), 2010, 3, 1417-1426.
[91]
Li, H.; Yang, A.L.; Chung, Y.T.; Zhang, W.; Liao, J.; Yang, G.Y. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10). Carcinogenesis, 2013, 34, 2090-2098.
[92]
Lee, J.J.; Perera, R.M.; Wang, H.; Wu, D.C.; Liu, X.S.; Han, S.; Fitamant, J.; Jones, P.D.; Ghanta, K.S.; Kawano, S.; Nagle, J.M.; Deshpande, V.; Boucher, Y.; Kato, T.; Chen, J.K.; Willmann, J.K.; Bardeesy, N.; Beachy, P.A. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl. Acad. Sci. USA, 2014, 111, E3091-E3100.
[93]
de Oliveira, M.R.; de Bittencourt Brasil, F.; Furstenau, C.R. Inhibition of the Nrf2/HO-1 axis suppresses the mitochondria-related protection promoted by gastrodin in human neuroblastoma cells exposed to paraquat. Mol. Neurobiol., 2019, 56(3), 2174-2184.
[94]
Song, Y.; Gao, L.; Tang, Z.; Li, H.; Sun, B.; Chu, P.; Qaed, E.; Ma, X.; Peng, J.; Wang, S.; Hu, M.; Tang, Z. Anticancer effect of SZC015 on pancreatic cancer via mitochondria-dependent apoptosis and the constitutive suppression of activated nuclear factor kappaB and STAT3 in vitro and in vivo. J. Cell. Physiol., 2018, 234(1), 777-788.
[95]
Sotgia, F.; Fiorillo, M.; Lisanti, M.P. Mitochondrial markers predict recurrence, metastasis and tamoxifen-resistance in breast cancer patients: Early detection of treatment failure with companion diagnostics. Oncotarget, 2017, 8, 68730-68745.
[96]
Viale, A.; Pettazzoni, P.; Lyssiotis, C.A.; Ying, H.; Sanchez, N.; Marchesini, M.; Carugo, A.; Green, T.; Seth, S.; Giuliani, V.; Kost-Alimova, M.; Muller, F.; Colla, S.; Nezi, L.; Genovese, G.; Deem, A.K.; Kapoor, A.; Yao, W.; Brunetto, E.; Kang, Y.; Yuan, M.; Asara, J.M.; Wang, Y.A.; Heffernan, T.P.; Kimmelman, A.C.; Wang, H.; Fleming, J.B.; Cantley, L.C.; DePinho, R.A.; Draetta, G.F. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514, 628-632.
[97]
Wang, Y.; Chen, Y.; Guan, L.; Zhang, H.; Huang, Y.; Johnson, C.H.; Wu, Z.; Gonzalez, F.J.; Yu, A.; Huang, P.; Wang, Y.; Yang, S.; Chen, P.; Fan, X.; Huang, M.; Bi, H. Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ., 2018, 25, 733-746.
[98]
Chen, L.; Sun, Q.; Zhou, D.; Song, W.; Yang, Q.; Ju, B.; Zhang, L.; Xie, H.; Zhou, L.; Hu, Z.; Yao, H.; Zheng, S.; Wang, W. HINT2 triggers mitochondrial Ca(2+) influx by regulating the mitochondrial Ca(2+) uniporter (MCU) complex and enhances gemcitabine apoptotic effect in pancreatic cancer. Cancer Lett., 2017, 411, 106-116.
[99]
Schmohl, K.A.; Gupta, A.; Grunwald, G.K.; Trajkovic-Arsic, M.; Klutz, K.; Braren, R.; Schwaiger, M.; Nelson, P.J.; Ogris, M.; Wagner, E.; Siveke, J.T.; Spitzweg, C. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene. Oncotarget, 2017, 8, 33393-33404.
[100]
Schmitz-Winnenthal, F.H.; Hohmann, N.; Schmidt, T.; Podola, L.; Friedrich, T.; Lubenau, H.; Springer, M.; Wieckowski, S.; Breiner, K.M.; Mikus, G.; Buchler, M.W.; Keller, A.V.; Koc, R.; Springfeld, C.; Knebel, P.; Bucur, M.; Grenacher, L.; Haefeli, W.E.; Beckhove, P. A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. OncoImmunology, 2018, 7e1303584
[102]
Cappello, P.; Rolla, S.; Chiarle, R.; Principe, M.; Cavallo, F.; Perconti, G.; Feo, S.; Giovarelli, M.; Novelli, F. Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer. Gastroenterology, 2013, 144, 1098-1106.
[103]
Sahu, R.P.; Ferracini, M.; Travers, J.B. Systemic chemotherapy is modulated by platelet-activating factor-receptor agonists. Mediators Inflamm., 2015, 2015820543
[104]
Sahu, R.P.; Harrison, K.A.; Weyerbacher, J.; Murphy, R.C.; Konger, R.L.; Garrett, J.E.; Chin-Sinex, H.J.; Johnston, M.E., II; Dynlacht, J.R.; Mendonca, M.; McMullen, K.; Li, G.; Spandau, D.F.; Travers, J.B. Radiation therapy generates platelet-activating factor agonists. Oncotarget, 2016, 7, 20788-20800.
[106]
Chammas, R.; de Sousa Andrade, L.N.; Jancar, S. Oncogenic effects of PAFR ligands produced in tumours upon chemotherapy and radiotherapy. Nat. Rev. Cancer, 2017, 17, 253.
[107]
Hackler, P.C.; Reuss, S.; Konger, R.L.; Travers, J.B.; Sahu, R.P. Systemic platelet-activating factor receptor activation augments experimental lung tumor growth and metastasis. Cancer Growth Metastasis, 2014, 7, 27-32.