Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Antidotes Against Methanol Poisoning: A Review

Author(s): Miroslav Pohanka *

Volume 19, Issue 14, 2019

Page: [1126 - 1133] Pages: 8

DOI: 10.2174/1389557519666190312150407

Price: $65

Abstract

Methanol is the simplest alcohol. Compared to ethanol that is fully detoxified by metabolism. Methanol gets activated in toxic products by the enzymes, alcohol dehydrogenase and aldehyde dehydrogenase. Paradoxically, the same enzymes convert ethanol to harmless acetic acid. This review is focused on a discussion and overview of the literature devoted to methanol toxicology and antidotal therapy. Regarding the antidotal therapy, three main approaches are presented in the text: 1) ethanol as a competitive inhibitor in alcohol dehydrogenase; 2) use of drugs like fomepizole inhibiting alcohol dehydrogenase; 3) tetrahydrofolic acid and its analogues reacting with the formate as a final product of methanol metabolism. All the types of antidotal therapies are described and how they protect from toxic sequelae of methanol is explained.

Keywords: Alcohol dehydrogenase, aldehyde dehydrogenase, catalase, ethanol, folic acid, fomepizole, formic acid, formaldehyde, methanol, tetrahydrofolate, therapy.

Graphical Abstract

[1]
Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Publisher correction: Alcoholic liver disease. Nat. Rev. Dis. Primers, 2018, 4(1), 16.
[2]
Schiavoni, V.S.; Silva, J.P.D.; Lizarte Neto, F.S.; Assis, M.L.C.; Tazima, M.; Carvalho, C.A.M.; Tirapelli, D.; Carlotti, C.G., Jr; Colli, B.O.; Tirapelli, L.F. Morphological and immunohisto-chemical analysis of proteins caspase 3 and xiap in rats subjected to cerebral ischemia and chronic alcoholism. Acta Cir. Bras., 2018, 33(8), 652-663.
[3]
Dguzeh, U.; Haddad, N.C.; Smith, K.T.S.; Johnson, J.O.; Doye, A.A.; Gwathmey, J.K.; Haddad, G.E. Alcoholism: A multi-systemic cellular insult to organs. Int. J. Environ. Res. Public Health, 2018, 15(6)E1083
[4]
Dal-Fabbro, R.; Marques-de-Almeida, M.; Cosme-Silva, L.; Ervolino, E.; Cintra, L.T.A.; Gomes-Filho, J.E. Chronic alcohol consumption increases inflammation and osteoclastogenesis in apical periodontitis. Int. Endod. J., 2018, 14(10), 13014.
[5]
Duggan, S.N. Negotiating the complexities of exocrine and endocrine dysfunction in chronic pancreatitis. Proc. Nutr. Soc., 2017, 76(4), 484-494.
[6]
Neuman, M.G.; French, S.W.; French, B.A.; Seitz, H.K.; Cohen, L.B.; Mueller, S.; Osna, N.A.; Kharbanda, K.K.; Seth, D.; Bautista, A.; Thompson, K.J.; McKillop, I.H.; Kirpich, I.A.; McClain, C.J.; Bataller, R.; Nanau, R.M.; Voiculescu, M.; Opris, M.; Shen, H.; Tillman, B.; Li, J.; Liu, H.; Thomes, P.G.; Ganesan, M.; Malnick, S. Alcoholic and non-alcoholic steatohepatitis. Exp. Mol. Pathol., 2014, 97(3), 492-510.
[7]
Johnson, W.D., II; Howard, R.J.; Trudell, J.R.; Harris, R.A. The tm2 6′ position of gaba(a) receptors mediates alcohol inhibition. J. Pharmacol. Exp. Ther., 2012, 340(2), 445-456.
[8]
Akinshola, B.E. Straight-chain alcohols exhibit a cutoff in potency for the inhibition of recombinant glutamate receptor subunits. Br. J. Pharmacol., 2001, 133(5), 651-658.
[9]
Zuo, Y.; Aistrup, G.L.; Marszalec, W.; Gillespie, A.; Chavez-Noriega, L.E.; Yeh, J.Z.; Narahashi, T. Dual action of n-alcohols on neuronal nicotinic acetylcholine receptors. Mol. Pharmacol., 2001, 60(4), 700-711.
[10]
Hermenegildo, C.; Morcaida, G.; Montoliu, C.; Grisolia, S.; Minana, M.D.; Felipo, V. NMDA receptor antagonists prevent acute ammonia toxicity in mice. Neurochem. Res., 1996, 21(10), 1237-1244.
[11]
Jornvall, H. The alcohol dehydrogenase system. EXS, 1994, 71, 221-229.
[12]
Hoog, J.O.; Ostberg, L.J. Mammalian alcohol dehydrogenases--a comparative investigation at gene and protein levels. Chem. Biol. Interact., 2011, 191(1-3), 2-7.
[13]
Lange, L.G.; Sytkowski, A.J.; Vallee, B.L. Human liver alcohol dehydrogenase: Purification, composition, and catalytic features. Biochemistry, 1976, 15(21), 4687-4693.
[14]
Hoshino, T.; Ishiguro, I.; Ohta, Y. Rabbit liver alcohol dehydrogenase: Purification and properties. J. Biochem., 1985, 97(4), 1163-1172.
[15]
Dafeldecker, W.P.; Meadow, P.E.; Pares, X.; Vallee, B.L. Simian liver alcohol dehydrogenase: Isolation and characterization of isoenzymes from Macaca mulatta. Biochemistry, 1981, 20(23), 6729-6734.
[16]
McCall, K.A.; Huang, C.; Fierke, C.A. Function and mechanism of zinc metalloenzymes. J. Nutr, 2000. 130(5S Suppl), 1437S-1446S.
[17]
Kollock, R.; Frank, H.; Seidel, A.; Meinl, W.; Glatt, H. Oxidation of alcohols and reduction of aldehydes derived from methyl- and dimethylpyrenes by cDNA-expressed human alcohol dehydrogenases. Toxicology, 2008, 245(1-2), 65-75.
[18]
Jelski, W.; Szmitkowski, M. Alcohol dehydrogenase (adh) and aldehyde dehydrogenase (aldh) in the cancer diseases. Clin. Chim. Acta, 2008, 395(1-2), 1-5.
[19]
Cea, G.; Wilson, L.; Bolivar, J.; Markovits, A.; Illanes, A. Effect of chain length on the activity of free and immobilized alcohol dehydrogenase towards aliphatic alcohols. Enzyme Microb. Technol., 2009, 44, 135-138.
[20]
Moosavi-Movahedi, F.; Saboury, A.A.; Alijanvand, H.H.; Bohlooli, M.; Salami, M.; Moosavi-Movahedi, A.A. Thermal inactivation and conformational lock studies on horse liver alcohol dehydrogenase: Structural mechanism. Int. J. Biol. Macromol., 2013, 58, 66-72.
[21]
Lamed, R.; Zeikus, J.G. Ethanol production by thermophilic bacteria: Relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol., 1980, 144(2), 569-578.
[22]
Hess, M.; Antranikian, G. Archaeal alcohol dehydrogenase active at increased temperatures and in the presence of organic solvents. Appl. Microbiol. Biotechnol., 2008, 77(5), 1003-1013.
[23]
Nie, Y.; Xu, Y.; Mu, X.Q.; Wang, H.Y.; Yang, M.; Xiao, R. Purification, characterization, gene cloning, and expression of a novel alcohol dehydrogenase with anti-prelog stereospecificity from Candida parapsilosis. Appl. Environ. Microbiol., 2007, 73(11), 3759-3764.
[24]
Liu, X.; Dong, Y.; Zhang, J.; Zhang, A.; Wang, L.; Feng, L. Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus thermodenitrificans ng80-2. Microbiology, 2009, 155(Pt 6), 2078-2085.
[25]
Ying, X.; Wang, Y.; Xiong, B.; Wu, T.; Xie, L.; Yu, M.; Wang, Z. Characterization of an allylic/benzyl alcohol dehydrogenase from yokenella sp. Strain wzy002, an organism potentially useful for the synthesis of alpha,beta-unsaturated alcohols from allylic aldehydes and ketones. Appl. Environ. Microbiol., 2014, 80(8), 2399-2409.
[26]
Felder, M.R.; Watson, G.; Huff, M.O.; Ceci, J.D. Mechanism of induction of mouse kidney alcohol dehydrogenase by androgen. Androgen-induced stimulation of transcription of the adh-1 gene. J. Biol. Chem., 1988, 263(28), 14531-14537.
[27]
Panisello-Rosello, A.; Lopez, A.; Folch-Puy, E.; Carbonell, T.; Rolo, A.; Palmeira, C.; Adam, R.; Net, M.; Rosello-Catafau, J. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J. Gastroenterol., 2018, 24(27), 2984-2994.
[28]
Gao, N.; Li, J.; Li, M.R.; Qi, B.; Wang, Z.; Wang, G.J.; Gao, J.; Qiao, H.L. Higher activity of alcohol dehydrogenase is correlated with hepatic fibrogenesis. J. Pharmacol. Exp. Ther., 2018, 18(118)249425
[29]
Ledesma, J.C.; Balino, P.; Aragon, C.M.G. Reduction in central H2O2 levels prevents voluntary ethanol intake in mice: A role for the brain catalase H2O2 system in alcohol binge drinking. Alcoholism, 2014, 38(1), 60-67.
[30]
Raducan, A.; Cantemir, A.R.; Puiu, M.; Oancea, D. Kinetics of hydrogen peroxide decomposition by catalase: Hydroxylic solvent effects. Bioprocess Biosyst. Eng., 2012, 35(9), 1523-1530.
[31]
Schad, A.; Fahimi, H.D.; Volkl, A.; Baumgart, E. Expression of catalase mRNA and protein in adult rat brain: Detection by nonradioactive in situ hybridization with signal amplification by catalyzed reporter deposition (ish-card) and immunohistochemistry (ihc)/immunofluorescence (if). J. Histochem. Cytochem., 2003, 51(6), 751-760.
[32]
Aspberg, A.; Soderback, M.; Tottmar, O. Increase in catalase activity in developing rat-brain cell reaggegation cultures in the presence of ethanol. Biochem. Pharmacol., 1993, 46(10), 1873-1876.
[33]
Lieber, C.S.; DeCarli, L.M. Hepatic microsomal ethanol-oxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem., 1970, 245(10), 2505-2512.
[34]
Carter, E.A.; Isselbacher, K.J. The role of microsomes in the hepatic metabolism of ethanol. Ann. N. Y. Acad. Sci., 1971, 179, 282-294.
[35]
McGehee, R.E., Jr; Ronis, M.J.; Cowherd, R.M.; Ingelman-Sundberg, M.; Badger, T.M. Characterization of cytochrome p450 2e1 induction in a rat hepatoma fgc-4 cell model by ethanol. Biochem. Pharmacol., 1994, 48(9), 1823-1833.
[36]
Guo, Y.M.; Wang, Q.; Liu, Y.Z.; Chen, H.M.; Qi, Z.; Guo, Q.H. Genetic polymorphisms in cytochrome p4502e1, alcohol and aldehyde dehydrogenases and the risk of esophageal squamous cell carcinoma in gansu chinese males. World J. Gastroenterol., 2008, 14(9), 1444-1449.
[37]
Cichoz-Lach, H.; Celinki, K.; Woicierowski, J.; Slomka, M.; Lis, E. Genetic polymorphism of alcohol-metabolizing enzyme and alcohol dependence in polish men. Braz. J. Med. Biol. Res., 2010, 43(3), 257-261.
[38]
Orlicky, D.J.; Roede, J.R.; Bales, E.; Greenwood, C.; Greenberg, A.; Petersen, D.; McManaman, J.L. Chronic ethanol consumption in mice alters hepatocyte lipid droplet properties. Alcohol. Clin. Exp. Res., 2011, 35(6), 1020-1033.
[39]
Lu, Y.; Cederbaum, A.I. Cytochrome p450s and alcoholic liver disease. Curr. Pharm. Des., 2018, 24(14), 1502-1517.
[40]
Chen, X.; Ward, S.C.; Cederbaum, A.I.; Xiong, H.; Lu, Y. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis. Toxicology, 2017, 379, 12-21.
[41]
Leung, T.M.; Lu, Y. Alcoholic liver disease: From CYP2E1 to CYP2A5. Curr. Mol. Pharmacol., 2017, 10(3), 172-178.
[42]
Barnett, S.D.; Buxton, I.L.O. The role of s-nitrosoglutathione reductase (gsnor) in human disease and therapy. Crit. Rev. Biochem. Mol. Biol., 2017, 52(3), 340-354.
[43]
Ticha, T.; Lochman, J.; Cincalova, L.; Luhova, L.; Petrivalsky, M. Redox regulation of plant s-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 27-33.
[44]
Ken, C.F.; Huang, C.Y.; Wen, L.; Huang, J.K.; Lin, C.T. Modulation of nitrosative stress via glutathione-dependent formaldehyde dehydrogenase and s-nitrosoglutathione reductase. Int. J. Mol. Sci., 2014, 15(8), 14166-14179.
[45]
Orywal, K.; Jelski, W.; Werel, T.; Szmitkowski, M. The activity of class i-iv alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in bladder cancer cells. Cancer Invest., 2018, 36(1), 66-72.
[46]
Liesivuori, J.; Savolainen, H. Methanol and formic acid toxicity: Biochemical mechanisms. Pharmacol. Toxicol., 1991, 69(3), 157-163.
[47]
Young, A.; Gardiner, D.; Brosnan, M.E.; Brosnan, J.T.; Mailloux, R.J. Physiological levels of formate activate mitochondrial superoxide/hydrogen peroxide release from mouse liver mitochondria. FEBS J., 2017, 591(16), 2426-2438.
[48]
Jones, A.W. Elimination half-life of methanol during hangover. Pharmacol. Toxicol., 1987, 60(3), 217-220.
[49]
Bouchard, M.; Brunet, R.C.; Droz, P.O.; Carrier, G. A biologically based dynamic model for predicting the disposition of methanol and its metabolites in animals and humans. Toxicol. Sci., 2001, 64(2), 169-184.
[50]
Moon, C.S. Estimations of the lethal and exposure doses for representative methanol symptoms in humans. Ann. Occup. Environ. Med, 2017. 29(44), 017-0197.
[51]
McMartin, K.; Jacobsen, D.; Hovda, K.E. Antidotes for poisoning by alcohols that form toxic metabolites. Br. J. Clin. Pharmacol., 2016, 81(3), 505-515.
[52]
McCoy, H.G.; Cipolle, R.J.; Ehlers, S.M.; Sawchuk, R.J.; Zaske, D.E. Severe methanol poisoning. Application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am. J. Med., 1979, 67(5), 804-807.
[53]
Palatnick, W.; Redman, L.W.; Sitar, D.S.; Tenenbein, M. Methanol half-life during ethanol administration: Implications for management of methanol poisoning. Ann. Emerg. Med., 1995, 26(2), 202-207.
[54]
Haffner, H.T.; Banger, M.; Graw, M.; Besserer, K.; Brink, T. The kinetics of methanol elimination in alcoholics and the influence of ethanol. Forensic Sci. Int., 1997, 89(1-2), 129-136.
[55]
Jones, A.W. Pharmacokinetics of ethanol - issues of forensic importance. Forensic Sci. Rev., 2011, 23(2), 91-136.
[56]
McMartin, K.E.; Sebastian, C.S.; Dies, D.; Jacobsen, D. Kinetics and metabolism of fomepizole in healthy humans. Clin. Toxicol. (Phila.), 2012, 50(5), 375-383.
[57]
Hovda, K.E.; Andersson, K.S.; Urdal, P.; Jacobsen, D. Methanol and formate kinetics during treatment with fomepizole. Clin. Toxicol. (Phila.), 2005, 43(4), 221-227.
[58]
Maskell, K.F.; Beckett, S.; Cumpston, K.L. Methanol kinetics in chronic kidney disease after fomepizole: A case report. Am. J. Ther., 2016, 23(6), e1949-e1951.
[59]
Hall, T.L. Fomepizole in the treatment of ethylene glycol poisoning. CJEM, 2002, 4(3), 199-204.
[60]
De Brabander, N.; Wojciechowski, M.; De Decker, K.; De Weerdt, A.; Jorens, P.G. Fomepizole as a therapeutic strategy in paediatric methanol poisoning. A case report and review of the literature. Eur. J. Pediatr., 2005, 164(3), 158-161.
[61]
Hovda, K.E.; Jacobsen, D. Expert opinion: Fomepizole may ameliorate the need for hemodialysis in methanol poisoning. Hum. Exp. Toxicol., 2008, 27(7), 539-546.
[62]
Zabrodskii, P.F.; Maslyakov, V.V.; Gromov, M.S. Effect of 4-methylpyrazole on immune response, function of th1 and th2 lymphocytes, and cytokine concentration in rat blood after acute methanol poisoning. Eksp. Klin. Farmakol., 2016, 79(3), 37-40.
[63]
Zakharov, S.; Pelclova, D.; Navratil, T.; Belacek, J.; Komarc, M.; Eddleston, M.; Hovda, K.E. Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak. Clin. Toxicol. (Phila.), 2015, 53(8), 797-806.
[64]
Zakharov, S.; Pelclova, D.; Urban, P.; Navratil, T.; Diblik, P.; Kuthan, P.; Hubacek, J.A.; Miovsky, M.; Klempir, J.; Vaneckova, M.; Seidl, Z.; Pilin, A.; Fenclova, Z.; Petrik, V.; Kotikova, K.; Nurieva, O.; Ridzon, P.; Rulisek, J.; Komarc, M.; Hovda, K.E. Czech mass methanol outbreak 2012: Epidemiology, challenges and clinical features. Clin. Toxicol. (Phila.), 2014, 52(10), 1013-1024.
[65]
Zakharov, S.; Navratil, T.; Pelclova, D. Fomepizole in the treatment of acute methanol poisonings: Experience from the czech mass methanol outbreak 2012-2013. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2014, 158(4), 641-649.
[66]
Zakharov, S.; Pelclova, D.; Diblik, P.; Urban, P.; Kuthan, P.; Nurieva, O.; Kotikova, K.; Navratil, T.; Komarc, M.; Belacek, J.; Seidl, Z.; Vaneckova, M.; Hubacek, J.A.; Bezdicek, O.; Klempir, J.; Yurchenko, M.; Ruzicka, E.; Miovsky, M.; Janikova, B.; Hovda, K.E. Long-term visual damage after acute methanol poisonings: Longitudinal cross-sectional study in 50 patients. Clin. Toxicol. (Phila.), 2015, 53(9), 884-892.
[67]
Zakharov, S.; Pelclova, D.; Navratil, T.; Belacek, J.; Kurcova, I.; Komzak, O.; Salek, T.; Latta, J.; Turek, R.; Bocek, R.; Kucera, C.; Hubacek, J.A.; Fenclova, Z.; Petrik, V.; Cermak, M.; Hovda, K.E. Intermittent hemodialysis is superior to continuous veno-venous hemodialysis/hemodiafiltration to eliminate methanol and formate during treatment for methanol poisoning. Kidney Int., 2014, 86(1), 199-207.
[68]
Paasma, R.; Hovda, K.E.; Hassanian-Moghaddam, H.; Brahmi, N.; Afshari, R.; Sandvik, L.; Jacobsen, D. Risk factors related to poor outcome after methanol poisoning and the relation between outcome and antidotes - a multicenter study. Clin. Toxicol., 2012, 50(9), 823-831.
[69]
El-Bakary, A.A.; El-Dakrory, S.A.; Attalla, S.M.; Hasanein, N.A.; Malek, H.A. Ranitidine as an alcohol dehydrogenase inhibitor in acute methanol toxicity in rats. Hum. Exp. Toxicol., 2010, 29(2), 93-101.
[70]
Svensson, S.; Hoog, J.O.; Schneider, G.; Sandalova, T. Crystal structures of mouse class ii alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency. J. Mol. Biol., 2000, 302(2), 441-453.
[71]
Plapp, B.V.; Savarimuthu, B.R.; Ferraro, D.J.; Rubach, J.K.; Brown, E.N.; Ramaswamy, S. Horse liver alcohol dehydrogenase: Zinc coordination and catalysis. Biochemistry, 2017, 56(28), 3632-3646.
[72]
Langeland, B.T.; Morris, D.L.; McKinley-McKee, J.S. Metal binding properties of thiols; complexes with horse liver alcohol dehydrogenase. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1999, 123(2), 155-162.
[73]
Plapp, B.V.; Berst, K.B. Specificity of human alcohol dehydrogenase 1c*2 (gamma2gamma2) for steroids and simulation of the uncompetitive inhibition of ethanol metabolism. Chem. Biol. Interact., 2003, 144, 183-193.
[74]
Tsai, C.S. Multifunctionality of liver alcohol dehydrogenase: Kinetic and mechanistic studies of esterase reaction. Arch. Biochem. Biophys., 1982, 213(2), 635-642.
[75]
Soyka, M.; Muller, C.A. Pharmacotherapy of alcoholism - an update on approved and off-label medications. Expert Opin. Pharmacother., 2017, 18(12), 1187-1199.
[76]
Koh, H.K.; Seo, S.Y.; Kim, J.H.; Kim, H.J.; Chie, E.K.; Kim, S.K.; Kim, I.H. Disulfiram, a re-positioned aldehyde dehydrogenase inhibitor, enhances radiosensitivity of human glioblastoma cells in vitro. Cancer Res. Treat., 2018, 13(249), 249.
[77]
Grzybowski, A.; Zulsdorff, M.; Wilhelm, H.; Tonagel, F. Toxic optic neuropathies: An updated review. Acta Ophthalmol., 2015, 93(5), 402-410.
[78]
Verly, W.G.; Kinney, J.M.; Du Vigneaud, V. Effect of folic acid and leucovorin on synthesis of the labile methyl group from methanol in the rat. J. Biol. Chem., 1952, 196(1), 19-23.
[79]
Fatterpaker, P.; Marfatia, U.; Sreenivasan, A. A sparing effect of formate or methanol on the impairment of creatine metabolism in folic acid deficiency. Nature, 1952, 170(4334), 894-895.
[80]
Black, K.A.; Eells, J.T.; Noker, P.E.; Hawtrey, C.A.; Tephly, T.R. Role of hepatic tetrahydrofolate in the species difference in methanol toxicity. Proc. Natl. Acad. Aci. USA, 1985, 82(11), 3854-3858.
[81]
Cook, R.J.; Champion, K.M.; Giometti, C.S. Methanol toxicity and formate oxidation in NEUT2 mice. Arch. Biochem. Biophys., 2001, 393(2), 192-198.
[82]
Noker, P.E.; Eells, J.T.; Tephly, T.R. Methanol toxicity: Treatment with folic acid and 5-formyl tetrahydrofolic acid. Alcohol. Clin. Exp. Res., 1980, 4(4), 378-383.
[83]
Nazir, S.; Melnick, S.; Ansari, S.; Kanneh, H.T. Mind the gap: A case of severe methanol intoxication. BMJ Case Rep., 2016, 2016bcr2015214272
[http://dx.doi.org/10.1136/bcr-2015-214272]
[84]
Barceloux, D.G.; Bond, G.R.; Krenzelok, E.P.; Cooper, H.; Vale, J.A. American academy of clinical toxicology practice guidelines on the treatment of methanol poisoning. J. Toxicol. Clin. Toxicol., 2002, 40(4), 415-446.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy