Review Article

将对硼毒性的恐惧转变为含硼药物设计

卷 26, 期 26, 2019

页: [5005 - 5018] 页: 14

弟呕挨: 10.2174/0929867326666190327154954

价格: $65

摘要

背景:尽管历史上出于医学目的使用含硼化合物(BCC),但在20世纪报道的人类BCC毒性案例驱使我们迈向“硼回收”时期。幸运的是,仍将硼酸用于特定目的,发现具有生物学活性的天然BCC对治疗具有吸引力,以及引入一些新的BCC用于临床用途,重新激发了人们对研究这些BCC性质的兴趣。 方法:我们对书目数据库进行了结构化搜索,以查找有关硼毒性的科学同行评审研究文献,并将该信息与药物设计和开发中的BCC相关联。使用演绎定性内容分析方法,使用理论提纲来分析纳入研究的干预措施和发现。 结果:本次审查概述了时间表:硼在医学中的用途,有关某些BCC的毒理学特征,用于癌症和传染病治疗的某些BCC的药理特性以及BCC的已知特性的已知数据最近被引入临床试验,并确定它们的结构-活性关系以用于毒性和治疗用途。然后,我们将讨论利用一些毒理学数据的新方法,以确定有效且有效的预防和治疗BCC,同时限制其毒性作用的方法。 结论:硼毒性数据可策略性地用于含硼药物设计。

关键词: 硼,含硼化合物,结构-毒性关系,药物设计,毒理学,传染病治疗。

[1]
Farfán-García, E.D.; Castillo-Mendieta, N.T.; Ciprés-Flores, F.J.; Padilla-Martínez, I.I.; Trujillo-Ferrara, J.G.; Soriano-Ursúa, M.A. Current data regarding the structure-toxicity relationship of boron-containing compounds. Toxicol. Lett., 2016, 258, 115-125.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.018] [PMID: 27329537]
[2]
Kim, H.; Furukawa, Y.; Kakegawa, T.; Bita, A.; Scorei, R.; Benner, S. Angew. Chem. Int. Ed., 2016, 55, 15816-15820.
[http://dx.doi.org/10.1002/anie.201608001]
[3]
Woods, W.G. An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect., 1994, 102(Suppl. 7), 5-11.
[PMID: 7889881]
[4]
Watson, E.H. Boric acid: A dangerous drug of little value. JAMA, 1945, 129(5), 332-333.
[http://dx.doi.org/10.1001/jama.1945.02860390018004]
[5]
Krackow, E.H. Toxicity and health hazards of boron hydrides. A.M.A. Arch. Ind. Hyg. Occup. Med., 1953, 8(4), 335-339.
[PMID: 13091433]
[6]
Soriano-Ursúa, M.; Das, B. Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. J. Exp. Opin. Ther. Pat, 2014, 24, 485-500.
[7]
Hosmane, N.S. Boron science: new technologies and applications, (1st ed.), CRC Press Published October 3. 2011.
[8]
Bregadze, V.; Xie, Z. Boron chemistry: a rapid expanding research field. Eur. J. Inorg. Chem., 2017, 4348-4349.
[http://dx.doi.org/10.1002/ejic.201701175]
[9]
Bolt, H.; Duydu, Y.; Başaran, N.; Golka, K. Boron and its compounds: current biological research activities. Arch. Toxicol., 2017, 91, 2719-2722.
[http://dx.doi.org/10.1007/s00204-017-2010-1]
[10]
Habes, D.; Morakchi, S.; Aribi, N.; Farine, J.; Soltani, N. Boric acid toxicity to the German cockroach, Blattella germanica: alterations in midgut structure, and acetylcholinesterase and glutathione S-transferase activity. Pestic. Biochem. Physiol., 2006, 84, 17-24.
[http://dx.doi.org/10.1016/j.pestbp.2005.05.002]
[11]
Gentz, M.M.C.; Grace, J.K. A Review of boron toxicity in insects with an emphasis on termites. J. Agric. Urban Entomol., 2006, 23(4), 201-207.
[12]
Howe, P.D. A review of boron effects in the environment. Biol. Trace Elem. Res., 1998, 66(1-3), 153-166.
[http://dx.doi.org/10.1007/BF02783135] [PMID: 10050917]
[13]
Pérez-Rodríguez, M.; García-Mendoza, E.; Farfán-García, E.D.; Das, B.C.; Ciprés-Flores, F.J.; Trujillo-Ferrara, J.G.; Tamay-Cach, F.; Soriano-Ursúa, M.A. Not all boronic acids with a five-membered cycle induce tremor, neuronal damage and decreased dopamine. Neurotoxicology, 2017, 62, 92-99.
[http://dx.doi.org/10.1016/j.neuro.2017.06.004] [PMID: 28595910]
[14]
Başaran, N.; Duydu, Y.; Bolt, H.M. Reproductive toxicity in boron exposed workers in Bandirma, Turkey. J. Trace Elem. Med. Biol., 2012, 26(2-3), 165-167.
[http://dx.doi.org/10.1016/j.jtemb.2012.04.013] [PMID: 22575543]
[15]
Culver, B.D.; Hubbard, S.A. Inorganic boron health effects in humans: an aid to risk assessment and clinical judgment. J. Trace Elem. Exp. Med., 1996, 9(4), 175-184.
[http://dx.doi.org/10.1002/(SICI)1520-670X(1996)9:4<175:AID-JTRA5>3.0.CO;2-Q]
[16]
McNally, W.D.; Rust, C.A. The distribution of boric acid in human organs in six deaths due to boric acid poisoning. JAMA, 1928, 90(5), 382-383.
[http://dx.doi.org/10.1001/jama.1928.02690320044013]
[17]
Garabrant, D.H.; Bernstein, L.; Peters, J.M.; Smith, T.J.; Wright, W.E. Respiratory effects of borax dust. Br. J. Ind. Med., 1985, 42(12), 831-837.
[PMID: 3878156]
[18]
Benderdour, M.; Bui-Van, T.; Dicko, A.; Belleville, F. In vivo and in vitro effects of boron and boronated compounds. J. Trace Elem. Med. Biol., 1998, 12(1), 2-7.
[http://dx.doi.org/10.1016/S0946-672X(98)80014-X] [PMID: 9638606]
[19]
Diaz, D.B.; Yudin, A.K. The versatility of boron in biological target engagement. Nat. Chem., 2017, 9(8), 731-742.
[http://dx.doi.org/10.1038/nchem.2814] [PMID: 28754930]
[20]
Uluisik, I.; Karakaya, H.C.; Koc, A. The importance of boron in biological systems. J. Trace Elem. Med. Biol., 2018, 45, 156-162.
[http://dx.doi.org/10.1016/j.jtemb.2017.10.008] [PMID: 29173473]
[21]
Yilmaz, M.T. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk. J. Med. Sci., 2012, 42(S2), 1423-1429.
[22]
Bailey, P.J.; Cousins, G.; Snow, G.A.; White, A.J. Boron-containing antibacterial agents: Effects on growth and morphology of bacteria under various culture conditions. Antimicrob. Agents Chemother., 1980, 17(4), 549-553.
[http://dx.doi.org/10.1128/AAC.17.4.549] [PMID: 6994634]
[23]
O’Donovan, M.R.; Mee, C.D.; Fenner, S.; Teasdale, A.; Phillips, D.H. Boronic acids-a novel class of bacterial mutagen. Mutat. Res., 2011, 724(1-2), 1-6.
[http://dx.doi.org/10.1016/j.mrgentox.2011.05.006] [PMID: 21645632]
[24]
Ciaravino, V.; Plattner, J.; Chanda, S. An assessment of the genetic toxicology of novel boron-containing therapeutic agents. Environ. Mol. Mutagen., 2013, 54(5), 338-346.
[http://dx.doi.org/10.1002/em.21779] [PMID: 23625818]
[25]
Ahmed, I.; Yokota, A.; Fujiwara, T. A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles, 2007, 11(2), 217-224.
[http://dx.doi.org/10.1007/s00792-006-0027-0] [PMID: 17072687]
[26]
Şen, M.; Yılmaz, U.; Baysal, A.; Akman, S.; Çakar, Z.P. In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus. Antonie van Leeuwenhoek, 2011, 99(4), 825-835.
[http://dx.doi.org/10.1007/s10482-011-9557-2] [PMID: 21279440]
[27]
Ahmed, I.; Fujiwara, T. Mechanism of boron tolerance in soil bacteria. Can. J. Microbiol., 2010, 56(1), 22-26.
[http://dx.doi.org/10.1139/W09-106] [PMID: 20130690]
[28]
Deora, A.; Gossen, B.D.; Walley, F.; McDonald, M.R. Boron reduces development of clubroot in canola. Can. J. Plant Pathol., 2011, 33(4), 475-484.
[http://dx.doi.org/10.1080/07060661.2011.620630]
[29]
Rolshausen, P.E.; Gubler, W.D. Use of boron for the control of eutypa dieback of grapevines. Plant Dis., 2005, 89(7), 734-738.
[http://dx.doi.org/10.1094/PD-89-0734] [PMID: 30791243]
[30]
Bowen, J.E.; Gauch, H.G. Nonessentiality of boron in fungi and the nature of its toxicity. Plant Physiol., 1966, 41(2), 319-324.
[http://dx.doi.org/10.1104/pp.41.2.319] [PMID: 16656256]
[31]
Camacho-Cristóbal, J.J.; Rexach, J.; González-Fontes, A. Boron in plants: Deficiency and toxicity. J. Integr. Plant Biol., 2008, 50(10), 1247-1255.
[http://dx.doi.org/10.1111/j.1744-7909.2008.00742.x] [PMID: 19017112]
[32]
Reid, R.J.; Hayes, J.E.; Post, A.; Stangoulis, J.C.R.; Graham, R.D. A Critical analysis of the causes of boron toxicity in plants. Plant Cell Environ., 2004, 27(11), 1405-1414.
[http://dx.doi.org/10.1111/j.1365-3040.2004.01243.x]
[33]
Liu, C.; Lu, W.; Ma, Q.; Ma, C. Effect of silicon on the alleviation of boron toxicity in wheat growth, boron accumulation, photosynthesis activities, and oxidative responses. J. Plant Nutr., 2017, 40(17), 2458-2467.
[http://dx.doi.org/10.1080/01904167.2017.1380817]
[34]
Brown, P.H.; Bellaloui, N.; Wimmer, M.A.; Bassil, E.S.; Ruiz, J.; Hu, H.; Pfeffer, H.; Dannel, F.; Römheld, V. Boron in plant biology. Plant Biol., 2002, 4(2), 205-223.
[http://dx.doi.org/10.1055/s-2002-25740]
[35]
Nable, R.O.; Bañuelos, G.S.; Paull, J.G. Boron Toxicity. Plant Soil, 1997, 193, 181-198.
[http://dx.doi.org/10.1023/A:1004272227886]
[36]
Bourgeois, A.C.; Koski, K.G.; Scott, M.E. Comparative sensitivity of feeding and nonfeeding stages of Heligmosomoides bakeri (Nematoda) to boron. Comp. Parasitol., 2007, 74(2), 319-326.
[http://dx.doi.org/10.1654/4275.1]
[37]
Rajaratnam, J.A.; Hock, L.I. Effect of Boron Nutrition on intensity of red spider mite attack on oil palm seedlings. Exp. Agric., 1975, 11(1), 59-63.
[http://dx.doi.org/10.1017/S0014479700006232]
[38]
English, M.D.; Robertson, G.J.; Mallory, M.L. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada. Mar. Pollut. Bull., 2015, 101(1), 466-472.
[http://dx.doi.org/10.1016/j.marpolbul.2015.09.046] [PMID: 26490410]
[39]
Taylor, D.; Maddock, B.G.; Mance, G. The acute toxicity of nine “grey list” metals (arsenic, boron, chromium, copper, lead, nickel, tin, vanadium and zinc) to two marine fish species: Dab (Limanda Limanda) and Grey Mullet (Chelon Labrosus). Aquat. Toxicol., 1985, 7(3), 135-144.
[http://dx.doi.org/10.1016/S0166-445X(85)80001-1]
[40]
Topal, A.; Oruc, E.; Altun, S.; Ceyhun, S.B.; Atamanalp, M. The Effects of acute boric acid treatment on gill, kidney and muscle tissues in juvenile rainbow trout. J. Appl. Anim. Res., 2016, 44(1), 297-302.
[http://dx.doi.org/10.1080/09712119.2015.1031784]
[41]
Fort, D.J.; Stover, E.L.; Strong, P.L.; Murray, F.J.; Keen, C.L. Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. J. Nutr., 1999, 129(11), 2055-2060.
[http://dx.doi.org/10.1093/jn/129.11.2055] [PMID: 10539784]
[42]
Zhang, S.; Henehan, M.J.; Hull, P.M.; Reid, R.P.; Hardisty, D.S.; Hood, A.V.S.; Planavsky, N.J. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett., 2017, 458, 380-393.
[http://dx.doi.org/10.1016/j.epsl.2016.10.059]
[43]
Wilson, J.H.; Ruszler, P.L. Effects of boron on growing pullets. Biol. Trace Elem. Res., 1997, 56(3), 287-294.
[http://dx.doi.org/10.1007/BF02785300] [PMID: 9197925]
[44]
Smith, G.J.; Anders, V.P. Toxic effects of boron on mallard reproduction. Environ. Toxicol. Chem., 1989, 8(10), 943-950.
[http://dx.doi.org/10.1002/etc.5620081013]
[45]
Price, C.J.; Strong, P.L.; Murray, F.J.; Goldberg, M.M. Blood boron concentrations in pregnant rats fed boric acid throughout gestation. Reprod. Toxicol., 1997, 11(6), 833-842.
[http://dx.doi.org/10.1016/S0890-6238(97)00067-1] [PMID: 9407594]
[46]
Murray, F.J. A human health risk assessment of boron (boric acid and borax) in drinking water. Regul. Toxicol. Pharmacol., 1995, 22(3), 221-230.
[http://dx.doi.org/10.1006/rtph.1995.0004] [PMID: 8837846]
[47]
Scorei, R.I.; Popa, R., Jr Boron-containing compounds as preventive and chemotherapeutic agents for cancer. Anticancer. Agents Med. Chem., 2010, 10(4), 346-351.
[http://dx.doi.org/10.2174/187152010791162289] [PMID: 19912103]
[48]
Borzelleca, J.F. Paracelsus: herald of modern toxicology. Toxicol. Sci., 2000, 53(1), 2-4.
[http://dx.doi.org/10.1093/toxsci/53.1.2] [PMID: 10653514]
[49]
Kohno, J.; Kawahata, T.; Otake, T.; Morimoto, M.; Mori, H.; Ueba, N.; Nishio, M.; Kinumaki, A.; Komatsubara, S.; Kawashima, K. Boromycin, an anti-HIV antibiotic. Biosci. Biotechnol. Biochem., 1996, 60(6), 1036-1037.
[http://dx.doi.org/10.1271/bbb.60.1036] [PMID: 8695905]
[50]
Dias, D.A.; Kouremenos, K.A.; Beale, D.J.; Callahan, D.L.; Jones, O.A.H. Metal and metalloid containing natural products and a brief overview of their applications in biology, biotechnology and biomedicine. Biometals, 2016, 29(1), 1-13.
[http://dx.doi.org/10.1007/s10534-015-9892-2] [PMID: 26553050]
[51]
Das, B.C.; Thapa, P.; Karki, R.; Schinke, C.; Das, S.; Kambhampati, S.; Banerjee, S.K.; Van Veldhuizen, P.; Verma, A.; Weiss, L.M.; Evans, T. Boron chemicals in diagnosis and therapeutics. Future Med. Chem., 2013, 5(6), 653-676.
[http://dx.doi.org/10.4155/fmc.13.38] [PMID: 23617429]
[52]
Baker, S.J.; Tomsho, J.W.; Benkovic, S.J. Boron-containing inhibitors of synthetases. Chem. Soc. Rev., 2011, 40(8), 4279-4285.
[http://dx.doi.org/10.1039/c0cs00131g] [PMID: 21298158]
[53]
García-López, D.; Cid, J.; Marqués, R.; Fernández, E.; Carbó, J.J. Quantitative structure-activity relationships for the nucleophilicity of trivalent boron compounds. Chemistry, 2017, 23(21), 5066-5075.
[http://dx.doi.org/10.1002/chem.201605798] [PMID: 28177532]
[54]
Di Fiore, A.; Monti, S.M.; Innocenti, A.; Winum, J.Y.; De Simone, G.; Supuran, C.T. Carbonic anhydrase inhibitors: crystallographic and solution binding studies for the interaction of a boron-containing aromatic sulfamide with mammalian isoforms I-XV. Bioorg. Med. Chem. Lett., 2010, 20(12), 3601-3605.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.114] [PMID: 20472429]
[55]
Alterio, V.; Cadoni, R.; Esposito, D.; Vullo, D.; Fiore, A.D.; Monti, S.M.; Caporale, A.; Ruvo, M.; Sechi, M.; Dumy, P.; Supuran, C.T.; De Simone, G.; Winum, J.Y. Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chem. Commun. (Camb.), 2016, 52(80), 11983-11986.
[http://dx.doi.org/10.1039/C6CC06399C] [PMID: 27722534]
[56]
Geninatti-Crich, S.; Deagostino, A.; Toppino, A.; Alberti, D.; Venturello, P.; Aime, S. Boronated compounds for imaging guided BNCT applications. Anticancer. Agents Med. Chem., 2012, 12(5), 543-553.
[http://dx.doi.org/10.2174/187152012800617786] [PMID: 22263798]
[57]
Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014, 88, 2-11.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.109] [PMID: 24355301]
[58]
Nedunchezhian, K.; Aswath, N.; Thiruppathy, M.; Thirugnanamurthy, S. Boron neutron capture therapy - a literature review. J. Clin. Diagn. Res., 2016, 10(12), ZE01-ZE04.
[http://dx.doi.org/10.7860/JCDR/2016/19890.9024] [PMID: 28209015]
[59]
Alberti, D.; Toppino, A.; Geninatti Crich, S.; Meraldi, C.; Prandi, C.; Protti, N.; Bortolussi, S.; Altieri, S.; Aime, S.; Deagostino, A. Synthesis of a carborane-containing cholesterol derivative and evaluation as a potential dual agent for MRI/BNCT applications. Org. Biomol. Chem., 2014, 12(15), 2457-2467.
[http://dx.doi.org/10.1039/C3OB42414F] [PMID: 24604345]
[60]
Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol., 2017, 14(7), 417-433.
[http://dx.doi.org/10.1038/nrclinonc.2016.206] [PMID: 28117417]
[61]
Schrader, J.; Henneberg, F.; Mata, R.A.; Tittmann, K.; Schneider, T.R.; Stark, H.; Bourenkov, G.; Chari, A. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 2016, 353(6299), 594-598.
[http://dx.doi.org/10.1126/science.aaf8993] [PMID: 27493187]
[62]
Ge, Y.; Li, A.; Wu, J.; Feng, H.; Wang, L.; Liu, H.; Xu, Y.; Xu, Q.; Zhao, L.; Li, Y. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors. Eur. J. Med. Chem., 2017, 128, 180-191.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.034] [PMID: 28182990]
[63]
Teicher, B.A.; Tomaszewski, J.E. Proteasome inhibitors. Biochem. Pharmacol., 2015, 96(1), 1-9.
[http://dx.doi.org/10.1016/j.bcp.2015.04.008] [PMID: 25935605]
[64]
Trippier, P.C.; McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. MedChemComm, 2010, 1(3), 183.
[http://dx.doi.org/10.1039/c0md00119h]
[65]
Pizzorno, L. Nothing boring about boron. Integr. Med. (Encinitas), 2015, 14(4), 35-48.
[PMID: 26770156]
[66]
Yılmaz, S.; Ustundag, A.; Cemiloglu Ulker, O.; Duydu, Y. Protective effect of boric acid on oxidative DNA damage in chinese hamster lung fibroblast V79 cell lines. Cell J., 2016, 17(4), 748-754.
[PMID: 26862534]
[67]
Turkez, H.; Tatar, A.; Hacimuftuoglu, A.; Ozdemir, E. Boric acid as a protector against paclitaxel genotoxicity. Acta Biochim. Pol., 2010, 57(1), 95-97.
[http://dx.doi.org/10.18388/abp.2010_2378] [PMID: 20300661]
[68]
Yang, F.; Zhu, M.; Zhang, J.; Zhou, H. Synthesis of biologically active boron-containing compounds. MedChemComm, 2017, 9(2), 201-211.
[http://dx.doi.org/10.1039/C7MD00552K] [PMID: 30108914]
[69]
Atiyeh, B.S.; Dibo, S.A.; Hayek, S.N. Wound cleansing, topical antiseptics and wound healing. Int. Wound J., 2009, 6(6), 420-430.
[http://dx.doi.org/10.1111/j.1742-481X.2009.00639.x] [PMID: 20051094]
[70]
Hunt, C.D. Regulation of enzymatic activity: one possible role of dietary boron in higher animals and humans. Biol. Trace Elem. Res., 1998, 66(1-3), 205-225.
[http://dx.doi.org/10.1007/BF02783139] [PMID: 10050921]
[71]
Schmidt, M. Boric acid inhibition of Trichophyton rubrum growth and conidia formation. Biol. Trace Elem. Res., 2017, 180(2), 349-354.
[http://dx.doi.org/10.1007/s12011-017-1019-x] [PMID: 28391495]
[72]
Larsen, B.; Petrovic, M.; De Seta, F. Boric acid and commercial organoboron products as inhibitors of drug-resistant Candida albicans. Mycopathologia, 2019, 183(2), 349-357.
[http://dx.doi.org/10.1007/s11046-017-0209-6] [PMID: 28993976]
[73]
Thorley, N.; Ross, J. Intravaginal boric acid: is it an alternative therapeutic option for vaginal trichomoniasis? Sex. Transm. Infect., 2018, 94(8), 574-577.
[http://dx.doi.org/10.1136/sextrans-2017-053343] [PMID: 29223972]
[74]
Galstyan, A.; Schiller, R.; Dobrindt, U. Boronic acid‐functionalized photosensitizers: a straightforward strategy to target the sweet site of bacteria and implement active agents in polymer coating. Angew. Chem. Int. Ed. Engl., 2017, 56(35), 10362-10366.
[http://dx.doi.org/10.1002/anie.201703398] [PMID: 28675648]
[75]
Santucci, M.; Spyrakis, F.; Cross, S.; Quotadamo, A.; Farina, D.; Tondi, D.; De Luca, F.; Docquier, J.D.; Prieto, A.I.; Ibacache, C.; Blázquez, J.; Venturelli, A.; Cruciani, G.; Costi, M.P. Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Sci. Rep., 2017, 7(1), 17716.
[http://dx.doi.org/10.1038/s41598-017-17399-7] [PMID: 29255163]
[76]
Venugopal, D.V.R.; Rao, A.K.; Devi, P.U.; Sastry, Y.N.; Lakshmi, K.A.; Ramji, M.T.; Shiralgi, Y. Design, synthesis and characterization of peptidyl boronate analogues as effective antimicrobial agents. Res. Chem. Intermed., 2017, 43(10), 5755-5778.
[http://dx.doi.org/10.1007/s11164-017-2961-0]
[77]
Cahill, S.T.; Cain, R.; Wang, D.Y.; Lohans, C.T.; Wareham, D.W.; Oswin, H.P.; Mohammed, J.; Spencer, J.; Fishwick, C.W.G.; McDonough, M.A.; Schofield, C.J.; Brem, J. Cyclic boronates inhibit all classes of β-lactamases. Antimicrob. Agents Chemother., 2017, 61(4), e02260-e16.
[http://dx.doi.org/10.1128/AAC.02260-16] [PMID: 28115348]
[78]
Benkovic, S.J.; Baker, S.J.; Alley, M.R.K.; Woo, Y.H.; Zhang, Y.K.; Akama, T.; Mao, W.; Baboval, J.; Rajagopalan, P.T.R.; Wall, M.; Kahng, L.S.; Tavassoli, A.; Shapiro, L. Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. J. Med. Chem., 2005, 48(23), 7468-7476.
[http://dx.doi.org/10.1021/jm050676a] [PMID: 16279806]
[79]
Jacobs, R.T.; Plattner, J.J.; Keenan, M. Boron-based drugs as antiprotozoals. Curr. Opin. Infect. Dis., 2011, 24(6), 586-592.
[http://dx.doi.org/10.1097/QCO.0b013e32834c630e] [PMID: 22001943]
[80]
Akama, T.; Zhang, Y.K.; Freund, Y.R.; Berry, P.; Lee, J.; Easom, E.E.; Jacobs, R.T.; Plattner, J.J.; Witty, M.J.; Peter, R.; Rowan, T.G.; Gillingwater, K.; Brun, R.; Nare, B.; Mercer, L.; Xu, M.; Wang, J.; Liang, H. Identification of a 4-fluorobenzyl l-valinate amide benzoxaborole (AN11736) as a potential development candidate for the treatment of Animal African Trypanosomiasis (AAT). Bioorg. Med. Chem. Lett., 2018, 28(1), 6-10.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.028] [PMID: 29169674]
[81]
Sonoiki, E.; Ng, C.L.; Lee, M.C.S.; Guo, D.; Zhang, Y.K.; Zhou, Y.; Alley, M.R.K.; Ahyong, V.; Sanz, L.M.; Lafuente-Monasterio, M.J.; Dong, C.; Schupp, P.G.; Gut, J.; Legac, J.; Cooper, R.A.; Gamo, F.J.; DeRisi, J.; Freund, Y.R.; Fidock, D.A.; Rosenthal, P.J. A potent antimalarial benzoxaborole targets a Plasmodium falciparum cleavage and polyadenylation specificity factor homologue. Nat. Commun., 2017, 8, 14574.
[http://dx.doi.org/10.1038/ncomms14574] [PMID: 28262680]
[82]
Bennett, A.; Rowe, R.I.; Soch, N.; Eckhert, C.D. Boron stimulates yeast (Saccharomyces cerevisiae) growth. J. Nutr., 1999, 129(12), 2236-2238.
[http://dx.doi.org/10.1093/jn/129.12.2236] [PMID: 10573556]
[83]
Del Rosso, J.Q.; Plattner, J.J. From the test tube to the treatment room: fundamentals of boron-containing compounds and their relevance to dermatology. J. Clin. Aesthet. Dermatol., 2014, 7(2), 13-21.
[PMID: 24578778]
[84]
Thareja, S.; Zhu, M.; Ji, X.; Wang, B. Boron-based small molecules in disease detection and treatment (2013-2016). Heterocycl. Commun., 2017, 23(3), 137-153.
[http://dx.doi.org/10.1515/hc-2017-0086]
[85]
Elewski, B.E.; Aly, R.; Baldwin, S.L.; González Soto, R.F.; Rich, P.; Weisfeld, M.; Wiltz, H.; Zane, L.T.; Pollak, R. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: Results from 2 randomized phase-III studies. J. Am. Acad. Dermatol., 2015, 73(1), 62-69.
[http://dx.doi.org/10.1016/j.jaad.2015.04.010] [PMID: 25956661]
[86]
Baker, S.J.; Zhang, Y.K.; Akama, T.; Lau, A.; Zhou, H.; Hernandez, V.; Mao, W.; Alley, M.R.K.; Sanders, V.; Plattner, J.J. Discovery of a new boron-containing antifungal agent, 5-fluoro-1,3-dihydro-1-hydroxy-2,1- benzoxaborole (AN2690), for the potential treatment of onychomycosis. J. Med. Chem., 2006, 49(15), 4447-4450.
[http://dx.doi.org/10.1021/jm0603724] [PMID: 16854048]
[87]
Bicho, R.C.; Gomes, S.I.L.; Soares, A.M.V.M.; Amorim, M.J.B. Non-avoidance behaviour in enchytraeids to boric acid is related to the GABAergic mechanism. Environ. Sci. Pollut. Res. Int., 2015, 22(9), 6898-6903.
[http://dx.doi.org/10.1007/s11356-014-3921-5] [PMID: 25471724]
[88]
Kilani-Morakchi, S.; Aribi, N.; Soltani, N. Activity of boric acid on german cockroaches: analysis of residues and effects on reproduction. Afr. J. Biotechnol., 2009, 8(4), 703-708.
[89]
Schulz, M.; Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie, 2003, 58(7), 447-474.
[PMID: 12889529]
[90]
Turkez, H.; Geyikoglu, F.; Tatar, A.; Keles, M.S.; Kaplan, I. The effects of some boron compounds against heavy metal toxicity in human blood. Exp. Toxicol. Pathol., 2012, 64(1-2), 93-101.
[http://dx.doi.org/10.1016/j.etp.2010.06.011] [PMID: 20663653]
[91]
Çelikezen, F.Ç.; Toğar, B.; Özgeriş, F.B.; İzgi, M.S.; Türkez, H. Cytogenetic and oxidative alterations after exposure of cultured human whole blood cells to lithium metaborate dehydrate. Cytotechnology, 2016, 68(4), 821-827.
[http://dx.doi.org/10.1007/s10616-014-9833-x] [PMID: 25680697]
[92]
Oto, G.; Arihan, O.; Celikezen, F.C.; Basbugan, Y.; Sen, S. Effect of doxorubicin and some boron compounds on erythrocyte fragility in rats. Nat. Sci. Discov., 2015, 1(2), 50-53.
[http://dx.doi.org/10.20863/nsd.27011]
[93]
Akbaba, G.B.; Turkez, H.; Sönmez, E.; Tatar, A.; Yilmaz, M. Genotoxicity in primary human peripheral lymphocytes after exposure to lithium titanate nanoparticles in vitro. Toxicol. Ind. Health, 2016, 32(8), 1423-1429.
[http://dx.doi.org/10.1177/0748233714562624] [PMID: 25552539]
[94]
Jin, E.; Li, S.; Ren, M.; Hu, Q.; Gu, Y.; Li, K. Boron affects immune function through modulation of splenic t lymphocyte subsets, cytokine secretion, and lymphocyte proliferation and apoptosis in rats. Biol. Trace Elem. Res., 2017, 178(2), 261-275.
[http://dx.doi.org/10.1007/s12011-017-0932-3] [PMID: 28092075]
[95]
Routray, I.; Ali, S. Boron induces lymphocyte proliferation and modulates the priming effects of lipopolysaccharide on macrophages. PLoS One, 2016, 11(3)e0150607
[http://dx.doi.org/10.1371/journal.pone.0150607] [PMID: 26934748]
[96]
Canturk, Z.; Tunali, Y.; Korkmaz, S.; Gulbaş, Z. Cytotoxic and apoptotic effects of boron compounds on leukemia cell line. Cytotechnology, 2016, 68(1), 87-93.
[http://dx.doi.org/10.1007/s10616-014-9755-7] [PMID: 25159521]
[97]
Kopalli, S.R.; Kang, T-B.; Lee, K-H.; Koppula, S. NLRP3 inflammasome activation inhibitors in inflammation-associated cancer immunotherapy: an update on the recent patents. Recent Patents Anticancer Drug Discov., 2018, 13(1), 106-117.
[http://dx.doi.org/10.2174/1574892812666171027102627] [PMID: 29076433]
[98]
Ameen, H.N.M.; Hussain, S.A.; Ahmed, Z.A.; Aziz, T.A. Anti-inflammatory effects of boron alone or as adjuvant with dexamethasone in animal models of chronic and granulomatous inflammation. Int. J. Basic Clin. Pharmacol., 2017, 4(4), 701-707.
[99]
Hunt, C.D. Dietary boron: an overview of the evidence for its role in immune function. J. Trace Elem. Exp. Med., 2003, 16, 291-306.
[http://dx.doi.org/10.1002/jtra.10041]
[100]
Baldwin, A.G.; Rivers-Auty, J.; Daniels, M.J.D.; White, C.S.; Schwalbe, C.H.; Schilling, T.; Hammadi, H.; Jaiyong, P.; Spencer, N.G.; England, H.; Luheshi, N.M.; Kadirvel, M.; Lawrence, C.B.; Rothwell, N.J.; Harte, M.K.; Bryce, R.A.; Allan, S.M.; Eder, C.; Freeman, S.; Brough, D. Boron-based inhibitors of the NLRP3 inflammasome. Cell Chem. Biol., 2017, 24(11), 1321-1335.e5.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.011] [PMID: 28943355]
[101]
Baldwin, A.G.; Tapia, V.S.; Swanton, T.; White, C.S.; Beswick, J.A.; Brough, D.; Freeman, S. Design, synthesis and evaluation of oxazaborine inhibitors of the NLRP3 inflammasome. ChemMedChem, 2018, 13(4), 312-320.
[http://dx.doi.org/10.1002/cmdc.201700731] [PMID: 29331080]
[102]
Doble, A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol. Ther., 1999, 81(3), 163-221.
[http://dx.doi.org/10.1016/S0163-7258(98)00042-4] [PMID: 10334661]
[103]
Macrez, R.; Stys, P.K.; Vivien, D.; Lipton, S.A.; Docagne, F. Mechanisms of glutamate toxicity in multiple sclerosis: biomarker and therapeutic opportunities. Lancet Neurol., 2016, 15(10), 1089-1102.
[http://dx.doi.org/10.1016/S1474-4422(16)30165-X] [PMID: 27571160]
[104]
Cisneros-Mejorado, A.; Pérez-Samartín, A.; Gottlieb, M.; Matute, C. ATP signaling in brain: release, excitotoxicity and potential therapeutic targets. Cell. Mol. Neurobiol., 2015, 35(1), 1-6.
[http://dx.doi.org/10.1007/s10571-014-0092-3] [PMID: 25096398]
[105]
Xu, R.; Dwoskin, L.P.; Grinevich, V.P.; Deaciuc, G.; Crooks, P.A. Neuronal nicotinic acetylcholine receptor binding affinities of boron-containing nicotine analogues. Bioorg. Med. Chem. Lett., 2001, 11(9), 1245-1248.
[http://dx.doi.org/10.1016/S0960-894X(01)00193-7] [PMID: 11354387]
[106]
Soriano-Ursúa, M.A.; Farfán-García, E.D.; López-Cabrera, Y.; Querejeta, E.; Trujillo-Ferrara, J.G. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy. Neurotoxicology, 2014, 40, 8-15.
[http://dx.doi.org/10.1016/j.neuro.2013.10.005] [PMID: 24189445]
[107]
Araujo-Alvarez, J.M.; Trujillo-Ferrara, J.G.; Ponce-Franco, D.; Correa-Basurto, J.; Delgado, A.; Querejeta, E. (+)-(S)-trujillon, (+)-(S)-4-(2,2-diphenyl-1,3,2-oxazabolidin-5-oxo)propionic acid, a novel glutamatergic analog, modifies the activity of globus pallidus neurons by selective NMDA receptor activation. Chirality, 2011, 23(6), 429-437.
[http://dx.doi.org/10.1002/chir.20594] [PMID: 18570295]
[108]
Tang, J.; Zheng, X.T.; Xiao, K.; Wang, K.L.; Wang, J.; Wang, Y.X.; Wang, K.; Wang, W.; Lu, S.; Yang, K.L.; Sun, P.P.; Khaliq, H.; Zhong, J.; Peng, K.M. Effect of boric acid supplementation on the expression of BDNF in African ostrich chick brain. Biol. Trace Elem. Res., 2016, 170(1), 208-215.
[http://dx.doi.org/10.1007/s12011-015-0428-y] [PMID: 26226831]
[109]
Eisenstein, S.A.; Koller, J.M.; Black, K.D.; Campbell, M.C.; Lugar, H.M.; Ushe, M.; Tabbal, S.D.; Karimi, M.; Hershey, T.; Perlmutter, J.S.; Black, K.J. Functional anatomy of subthalamic nucleus stimulation in Parkinson disease. Ann. Neurol., 2014, 76(2), 279-295.
[http://dx.doi.org/10.1002/ana.24204] [PMID: 24953991]
[110]
Kızılay, Z.; Erken, H.A.; Çetin, N.K.; Aktaş, S.; Abas, B.İ.; Yılmaz, A. Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regen. Res., 2016, 11(10), 1660-1665.
[http://dx.doi.org/10.4103/1673-5374.193247] [PMID: 27904499]
[111]
Çolak, S.; Geyikoğlu, F.; Keles, O.N.; Türkez, H.; Topal, A.; Unal, B. The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity. Toxicol. Ind. Health, 2011, 27(8), 700-710.
[http://dx.doi.org/10.1177/0748233710395349] [PMID: 21543463]
[112]
Robbins, W.A.; Wei, F.; Elashoff, D.A.; Wu, G.; Xun, L.; Jia, J.Y. X sperm ratio in boron-exposed men. J. Androl., 2008, 29(1), 115-121.
[http://dx.doi.org/10.2164/jandrol.107.003541] [PMID: 17881766]
[113]
Duydu, Y.; Başaran, N.; Ustündağ, A.; Aydın, S.; Undeğer, U.; Ataman, O.Y.; Aydos, K.; Düker, Y.; Ickstadt, K.; Waltrup, B.S.; Golka, K.; Bolt, H.M. Is boric acid toxic to reproduction in humans? Assessment of the animal reproductive toxicity data and epidemiological study results. Curr. Drug Deliv., 2016, 13(3), 324-329.
[http://dx.doi.org/10.2174/1567201812666151029101514] [PMID: 26511087]
[114]
Robbins, W.A.; Xun, L.; Jia, J.; Kennedy, N.; Elashoff, D.A.; Ping, L. Chronic boron exposure and human semen parameters. Reprod. Toxicol., 2010, 29(2), 184-190.
[http://dx.doi.org/10.1016/j.reprotox.2009.11.003] [PMID: 19962437]
[115]
Bustos-Obregon, E.; Carvallo, M.; Hartley-Belmar, R.; Sarabia, L.; Ponce, C. Histopathological and histometrical assessment of boron exposure effects on mouse spermatogenesis. Int. J. Morphol., 2007, 25(4), 919-925.
[http://dx.doi.org/10.4067/S0717-95022007000400039]
[116]
Fail, P.A.; George, J.D.; Seely, J.C.; Grizzle, T.B.; Heindel, J.J. Reproductive toxicity of boric acid in Swiss (CD-1) mice: assessment using the continuous breeding protocol. Fundam. Appl. Toxicol., 1991, 17(2), 225-239.
[http://dx.doi.org/10.1016/0272-0590(91)90215-P] [PMID: 1765217]
[117]
Espinoza-Navarro, O.; Vilaxa, A.; Granifo, L.; Rojas, S.; Rodríguez, H. Histological study on the male reproductive organs of mouse CF1 treated with boron. Int. J. Morphol., 2007, 25(2), 341-347.
[http://dx.doi.org/10.4067/S0717-95022007000200017]
[118]
Naghii, M.R.; Mofid, M.; Asgari, A.R.; Hedayati, M.; Daneshpour, M.S. Comparative effects of daily and weekly boron supplementation on plasma steroid hormones and proinflammatory cytokines. J. Trace Elem. Med. Biol., 2011, 25(1), 54-58.
[http://dx.doi.org/10.1016/j.jtemb.2010.10.001] [PMID: 21129941]
[119]
Hou, M.; Eriksson, E.; Svechnikov, K.; Jahnukainen, K.; Söder, O.; Meinhardt, A.; Sävendahl, L. Bortezomib treatment causes long-term testicular dysfunction in young male mice. Mol. Cancer, 2014, 13(1), 155.
[http://dx.doi.org/10.1186/1476-4598-13-155] [PMID: 24950741]
[120]
Li, W.; Fu, J.; Zhang, S.; Zhao, J.; Xie, N.; Cai, G. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis. Toxicol. Appl. Pharmacol., 2015, 285(2), 98-109.
[http://dx.doi.org/10.1016/j.taap.2015.04.001] [PMID: 25886977]
[121]
Dixon, R.L.; Lee, I.P.; Sherins, R.J. Methods to assess reproductive effects of environmental chemicals: studies of cadmium and boron administered orally. Environ. Health Perspect., 1976, 13, 59-67.
[http://dx.doi.org/10.1289/ehp.761359] [PMID: 1269508]
[122]
Mahabir, S.; Spitz, M.R.; Barrera, S.L.; Dong, Y.Q.; Eastham, C.; Forman, M.R. Dietary boron and hormone replacement therapy as risk factors for lung cancer in women. Am. J. Epidemiol., 2008, 167(9), 1070-1080.
[http://dx.doi.org/10.1093/aje/kwn021] [PMID: 18343880]
[123]
Sheng, M.H.C.; Taper, L.J.; Veit, H.; Thomas, E.A.; Ritchey, S.J.; Lau, K.H.W. Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in ovariectomized rats. Biol. Trace Elem. Res., 2001, 81(1), 29-45.
[http://dx.doi.org/10.1385/BTER:81:1:29] [PMID: 11508330]
[124]
Nielsen, F.H.; Gallagher, S.K.; Johnson, L.K.; Nielsen, E.J. Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J. Trace Elem. Exp. Med., 1992, 5(4), 237-246.
[125]
Jin, E.; Ren, M.; Liu, W.; Liang, S.; Hu, Q.; Gu, Y.; Li, S. Effect of boron on thymic cytokine expression, hormone secretion, antioxidant functions, cell proliferation, and apoptosis potential via the extracellular signal-regulated kinases 1 and 2 signaling pathway. J. Agric. Food Chem., 2017, 65(51), 11280-11291.
[http://dx.doi.org/10.1021/acs.jafc.7b04069] [PMID: 29032684]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy