Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Current Status and Perspectives of Delivery Strategy for Boronbased Drugs

Author(s): Zhu Yinghuai*, Xinglong Lin, Hongming Xie, Jianlin Li, Narayan S. Hosmane* and Yingjun Zhang *

Volume 26, Issue 26, 2019

Page: [5019 - 5035] Pages: 17

DOI: 10.2174/0929867325666180904105212

Price: $65

Abstract

Boron-containing compounds are essential micronutrients for animals and plants despite their low-level natural occurrence. They can strengthen the cell walls of the plants and they play important role in supporting bone health. However, surprisingly, boron-containing compounds are seldom found in pharmaceutical drugs. In fact, there are no inherent disadvantages reported so far in terms of the incorporation of boron into medicines. Indeed, drugs based on boron-containing compounds, such as tavaborole (marked name Kerydin) and bortezomib (trade name Velcade) have been investigated and they are used in clinical treatment. In addition, following the advanced development of boron neutron capture therapy and a new emerging proton boron fusion therapy, more boron-containing medicinals are to be expected. This review discusses the current status and perspectives of delivery strategy for boron-containing drugs.

Keywords: Boron, boron-containing compounds, boron-containing drugs, onychomycosis treatment, anti-cancer drugs, drug delivery, boron neutron capture therapy.

[1]
Laubengayer, A.W.; Hurd, D.T.; Newkirk, A.E.; Hoard, J.L. Boron. I. Preparation and Properties of Pure Crystalline Boron. J. Am. Chem. Soc., 1943, 65, 1924-1931.
[http://dx.doi.org/10.1021/ja01250a036]
[3]
Hammond, C.R. The Elements. Handbook of Chemistry and Physics, 81st ed; CRC press, 2004.
[4]
Klotz, J.H.; Moss, J.I.; Zhao, R.; Davis, L.R., Jr; Patterson, R.S. Oral toxicity of boric acid and other boron compounds to immature cat fleas (Siphonaptera: Pulicidae). J. Econ. Entomol., 1994, 87(6), 1534-1536.
[http://dx.doi.org/10.1093/jee/87.6.1534] [PMID: 7836612]
[5]
Eisler, R. Handbook of chemical risk assessment: Health hazards to humans, plants, and animals. Vol 3.Metalloids, radiation, cumulative index to chemicals and species; Lewis Publishers, 2000, 3, pp. 1501-1903.
[6]
Fort, D.J.; Rogers, R.L.; Stover, E.L.; Strong, P.L.; Murray, F.J. Nutritional Essentiality of Boron for Development, Maturation, and Reproduction in Frogs.Trace Elements in Man and Animals 10; Roussel, A.M.; Anderson, R.A; Favrier, A.E., Ed.; Springer: Boston, MA, 2002, pp. 1057-1060.
[http://dx.doi.org/10.1007/0-306-47466-2_324]
[7]
Mogoşanu, G.D.; Biţă, A.; Bejenaru, L.E.; Bejenaru, C.; Croitoru, O.; Rău, G.; Rogoveanu, O.C.; Florescu, D.N.; Neamţu, J.; Scorei, I.D.; Scorei, R.I. Calcium Fructoborate for Bone and Cardiovascular Health. Biol. Trace Elem. Res., 2016, 172(2), 277-281.
[http://dx.doi.org/10.1007/s12011-015-0590-2] [PMID: 26686846]
[9]
Moss, R.L. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot., 2014, 88, 2-11.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.109] [PMID: 24355301]
[10]
Hosmane, N.S.; Maguire, J.A.; Zhu, Y.; Masao, T. Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, World Scientific Publishing Co. Pte. Ltd: Singapore. 2012.
[http://dx.doi.org/10.1142/8056]
[11]
Zhu, Y.; Hosmane, N.S. Nanostructured Boron Compounds for Cancer Therapy. Pure Appl. Chem., 2018, 90, 653-663.
[http://dx.doi.org/10.1515/pac-2017-0903]
[12]
Mogoşanu, G.D.; Biţă, A.; Bejenaru, L.E.; Bejenaru, C.; Croitoru, O.; Rău, G.; Rogoveanu, O.C.; Florescu, D.N.; Neamţu, J.; Scorei, I.D.; Scorei, R.I. Calcium Fructoborate for Bone and Cardiovascular Health. Biol. Trace Elem. Res., 2016, 172(2), 277-281.
[http://dx.doi.org/10.1007/s12011-015-0590-2] [PMID: 26686846]
[13]
Dinca, L.; Scorei, R. Boron in human nutrition and its regulations use. J. Nutr. Ther., 2013, 2, 22-29.
[16]
"U.S. Department of Health and Human Services". fda. gov. June 23, 2008.
[17]
"Millenium: The Takeda Oncology Company". Millennium. com.2014-08-08.
[18]
Gelman, J.S.; Sironi, J.; Berezniuk, I.; Dasgupta, S.; Castro, L.M.; Gozzo, F.C.; Ferro, E.S.; Fricker, L.D. Alterations of the intracellular peptidome in response to the proteasome inhibitor bortezomib. PLoS One, 2013, 8(1)e53263
[http://dx.doi.org/10.1371/journal.pone.0053263] [PMID: 23308178]
[19]
Bonvini, P.; Zorzi, E.; Basso, G.; Rosolen, A. Bortezomib-mediated 26S proteasome inhibition causes cell-cycle arrest and induces apoptosis in CD-30+ anaplastic large cell lymphoma. Leukemia, 2007, 21(4), 838-842.
[http://dx.doi.org/10.1038/sj.leu.2404528] [PMID: 17268529]
[20]
Adams, J. The proteasome: A suitable antineoplastic target. Nat. Rev. Cancer, 2004, 4(5), 349-360.
[http://dx.doi.org/10.1038/nrc1361] [PMID: 15122206]
[21]
Reece, D.E.; Sullivan, D.; Lonial, S.; Mohrbacher, A.F.; Chatta, G.; Shustik, C.; Burris, H., III; Venkatakrishnan, K.; Neuwirth, R.; Riordan, W.J.; Karol, M.; von Moltke, L.L.; Acharya, M.; Zannikos, P.; Keith Stewart, A. Pharmacokinetic and pharmacodynamic study of two doses of bortezomib in patients with relapsed multiple myeloma. Cancer Chemother. Pharmacol., 2011, 67(1), 57-67.
[http://dx.doi.org/10.1007/s00280-010-1283-3] [PMID: 20306195]
[22]
Voorhees, P.M.; Dees, E.C.; O’Neil, B.; Orlowski, R.Z. The proteasome as a target for cancer therapy. Clin. Cancer Res., 2003, 9(17), 6316-6325.
[PMID: 14695130]
[23]
Moreau, P.; Pylypenko, H.; Grosicki, S.; Karamanesht, I.; Leleu, X.; Grishunina, M.; Rekhtman, G.; Masliak, Z.; Robak, T.; Shubina, A.; Arnulf, B.; Kropff, M.; Cavet, J.; Esseltine, D.L.; Feng, H.; Girgis, S.; van de Velde, H.; Deraedt, W.; Harousseau, J.L. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol., 2011, 12(5), 431-440.
[http://dx.doi.org/10.1016/S1470-2045(11)70081-X] [PMID: 21507715]
[25]
Alexander, T.; Sarfert, R.; Klotsche, J.; Kühl, A.A.; Rubbert-Roth, A.; Lorenz, H-M.; Rech, J.; Hoyer, B.F.; Cheng, Q.; Waka, A.; Taddeo, A.; Wiesener, M.; Schett, G.; Burmester, G.R.; Radbruch, A.; Hiepe, F.; Voll, R.E. The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann. Rheum. Dis., 2015, 74(7), 1474-1478.
[http://dx.doi.org/10.1136/annrheumdis-2014-206016] [PMID: 25710470]
[27]
FDA Approves Anacor Pharmaceuticals' KERYDIN™ (Tavaborole) Topical Solution, 5% for the Treatment of Onychomycosis of the Toenails. Market Watch. 2014.
[28]
Rosen, T.; Stein Gold, L.F. Antifungal drugs for onychomycosis: Efficacy, safety, and mechanism of Action. Semin. Cutan. Med. Surg., 2016, 35(3)(Suppl. 3), S51-S55.
[http://dx.doi.org/10.12788/j.sder.2016.009] [PMID: 27074700]
[29]
Elewski, B.E.; Aly, R.; Baldwin, S.L.; González Soto, R.F.; Rich, P.; Weisfeld, M.; Wiltz, H.; Zane, L.T.; Pollak, R. Efficacy and safety of tavaborole topical solution, 5%, a novel boron-based antifungal agent, for the treatment of toenail onychomycosis: Results from 2 randomized phase-III studies. J. Am. Acad. Dermatol., 2015, 73(1), 62-69.
[http://dx.doi.org/10.1016/j.jaad.2015.04.010] [PMID: 25956661]
[30]
Gupta, A.K.; Daigle, D. Potential role of tavaborole for the treatment of onychomycosis. Future Microbiol., 2014, 9(11), 1243-1250.
[http://dx.doi.org/10.2217/fmb.14.76] [PMID: 25437186]
[31]
Elewski, B.E.; Tosti, A. Tavaborole for the treatment of onychomycosis. Expert Opin. Pharmacother., 2014, 15(10), 1439-1448.
[http://dx.doi.org/10.1517/14656566.2014.921158] [PMID: 24856836]
[34]
Nazarian, R.; Weinberg, J.M. AN-2728, a PDE4 inhibitor for the potential topical treatment of psoriasis and atopic dermatitis. Curr. Opin. Investig. Drugs, 2009, 10(11), 1236-1242.
[PMID: 19876791]
[35]
Bieber, T. Atopic dermatitis. Ann. Dermatol., 2010, 22(2), 125-137.
[http://dx.doi.org/10.5021/ad.2010.22.2.125] [PMID: 20548901]
[36]
Eichenfield, L.F.; Tom, W.L.; Berger, T.G.; Krol, A.; Paller, A.S.; Schwarzenberger, K.; Bergman, J.N.; Chamlin, S.L.; Cohen, D.E.; Cooper, K.D.; Cordoro, K.M.; Davis, D.M.; Feldman, S.R.; Hanifin, J.M.; Margolis, D.J.; Silverman, R.A.; Simpson, E.L.; Williams, H.C.; Elmets, C.A.; Block, J.; Harrod, C.G.; Smith Begolka, W.; Sidbury, R. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J. Am. Acad. Dermatol., 2014, 71(1), 116-132.
[http://dx.doi.org/10.1016/j.jaad.2014.03.023] [PMID: 24813302]
[37]
Arkwright, P.D.; Motala, C.; Subramanian, H.; Spergel, J.; Schneider, L.C.; Wollenberg, A. Management of difficult-to-treat atopic dermatitis. J. Allergy Clin. Immunol. Pract., 2013, 1(2), 142-151.
[http://dx.doi.org/10.1016/j.jaip.2012.09.002] [PMID: 24565453]
[38]
Paller, A.S.; Tom, W.L.; Lebwohl, M.G.; Blumenthal, R.L.; Boguniewicz, M.; Call, R.S.; Eichenfield, L.F.; Forsha, D.W.; Rees, W.C.; Simpson, E.L.; Spellman, M.C.; Stein Gold, L.F.; Zaenglein, A.L.; Hughes, M.H.; Zane, L.T.; Hebert, A.A. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J. Am. Acad. Dermatol., 2016, 75(3), 494-503.e6.
[http://dx.doi.org/10.1016/j.jaad.2016.05.046] [PMID: 27417017]
[39]
Carr, W.W. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations. Paediatr. Drugs, 2013, 15(4), 303-310.
[http://dx.doi.org/10.1007/s40272-013-0013-9] [PMID: 23549982]
[40]
Schneider, L.; Tilles, S.; Lio, P.; Boguniewicz, M.; Beck, L.; LeBovidge, J.; Novak, N.; Bernstein, D.; Blessing-Moore, J.; Khan, D.; Lang, D.; Nicklas, R.; Oppenheimer, J.; Portnoy, J.; Randolph, C.; Schuller, D.; Spector, S.; Tilles, S.; Wallace, D. Atopic dermatitis: a practice parameter update 2012. J. Allergy Clin. Immunol.,2013, 131(2), 295-9.e1, 27.
[http://dx.doi.org/10.1016/j.jaci.2012.12.672] [PMID: 23374261]
[41]
Bäumer, W.; Hoppmann, J.; Rundfeldt, C.; Kietzmann, M. Highly selective phosphodiesterase 4 inhibitors for the treatment of allergic skin diseases and psoriasis. Inflamm. Allergy Drug Targets, 2007, 6(1), 17-26.
[http://dx.doi.org/10.2174/187152807780077318] [PMID: 17352685]
[42]
Moustafa, F.; Feldman, S.R. A review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology. Dermatol. Online J., 2014, 20(5), 22608.
[PMID: 24852768]
[44]
Tom, W.L.; Van Syoc, M.; Chanda, S.; Zane, L.T. Pharmacokinetic profile, safety, and tolerability of crisaborole topical ointment, 2% in adolescents with atopic dermatitis: an open-label phase 2a study. Pediatr. Dermatol., 2016, 33(2), 150-159.
[http://dx.doi.org/10.1111/pde.12780] [PMID: 26777394]
[45]
Murrell, D.F.; Gebauer, K.; Spelman, L.; Zane, L.T. Crisaborole topical ointment, 2% in adults with atopic dermatitis: a phase 2A, vehicle-controlled, proof-of-concept study. J. Drugs Dermatol., 2015, 14(10), 1108-1112.
[PMID: 26461821]
[46]
Stein Gold, L.F.; Spelman, L.; Spellman, M.C.; Hughes, M.H.; Zane, L.T. A phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis. J. Drugs Dermatol., 2015, 14(12), 1394-1399.
[PMID: 26659931]
[47]
Mehta, S.C.; Lu, D.R. Targeted drug delivery for boron neutron capture therapy. Pharm. Res., 1996, 13(3), 344-351.
[http://dx.doi.org/10.1023/A:1016076022267] [PMID: 8692724]
[48]
Lu, D.R.; Mehta, S.C.; Chen, W. Selective boron drug delivery to brain tumors for boron neutron capture therapy. Adv. Drug Deliv. Rev., 1997, 26(2-3), 231-247.
[http://dx.doi.org/10.1016/S0169-409X(97)00037-9] [PMID: 10837545]
[49]
Barth, R.F.; Coderre, J.A.; Vicente, M.G.H.; Blue, T.E. Boron neutron capture therapy of cancer: current status and future prospects. Clin. Cancer Res., 2005, 11(11), 3987-4002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0035] [PMID: 15930333]
[50]
Ramadan, M.; Alay, A.E. Boron delivery agents used in boron neutron capture therapy for cancer treatment: An overview. Int. J. Pharm. Res. Biosci., 2015, 4, 14-39.
[51]
Luderer, M.J.; de la Puente, P.; Azab, A.K. Advancements in Tumor Targeting Strategies for Boron Neutron Capture Therapy. Pharm. Res., 2015, 32(9), 2824-2836.
[http://dx.doi.org/10.1007/s11095-015-1718-y] [PMID: 26033767]
[52]
Issa, F.; Kassiou, M.; Rendina, L.M. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Chem. Rev., 2011, 111(9), 5701-5722.
[http://dx.doi.org/10.1021/cr2000866] [PMID: 21718011]
[53]
Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The Chemistry of Neutron Capture Therapy. Chem. Rev., 1998, 98(4), 1515-1562.
[http://dx.doi.org/10.1021/cr941195u] [PMID: 11848941]
[54]
Schmidt, E.; Dooley, N.; Ford, S.J.; Elliott, M.; Halbert, G.W. Physicochemical investigation of the influence of saccharide-based parenteral formulation excipients on L-p-boronphenylalanine solubilisation for boron neutron capture therapy. J. Pharm. Sci., 2012, 101(1), 223-232.
[http://dx.doi.org/10.1002/jps.22761] [PMID: 21918989]
[55]
Wittig, A.; Sauerwein, W.A.; Coderre, J.A. Mechanisms of transport of p-borono-phenylalanine through the cell membrane in vitro. Radiat. Res., 2000, 153(2), 173-180.
[56]
Capuani, S.; Gili, T.; Bozzali, M.; Russo, S.; Porcari, P.; Cametti, C.; Muolo, M.; D’Amore, E.; Maraviglia, B.; Lazzarino, G.; Pastore, F.S. Boronophenylalanine uptake in C6 glioma model is dramatically increased by L-DOPA preloading. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S34-S36.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.017] [PMID: 19375337]
[57]
Wongthai, P.; Hagiwara, K.; Miyoshi, Y.; Wiriyasermkul, P.; Wei, L.; Ohgaki, R.; Kato, I.; Hamase, K.; Nagamori, S.; Kanai, Y. Boronophenylalanine, a boron delivery agent for boron neutron capture therapy, is transported by ATB0,+, LAT1 and LAT2. Cancer Sci., 2015, 106(3), 279-286.
[http://dx.doi.org/10.1111/cas.12602] [PMID: 25580517]
[58]
Bergenheim, A.T.; Capala, J.; Roslin, M.; Henriksson, R. Distribution of BPA and metabolic assessment in glioblastoma patients during BNCT treatment: a microdialysis study. J. Neurooncol., 2005, 71(3), 287-293.
[http://dx.doi.org/10.1007/s11060-004-1724-0] [PMID: 15735919]
[59]
Evangelista, L.; Jori, G.; Martini, D.; Sotti, G. Boron neutron capture therapy and 18F-labelled borophenylalanine positron emission tomography: a critical and clinical overview of the literature. Appl. Radiat. Isot., 2013, 74, 91-101.
[http://dx.doi.org/10.1016/j.apradiso.2013.01.001] [PMID: 23395785]
[60]
Kawabata, S.; Miyatake, S.; Nonoguchi, N.; Hiramatsu, R.; Iida, K.; Miyata, S.; Yokoyama, K.; Doi, A.; Kuroda, Y.; Kuroiwa, T.; Michiue, H.; Kumada, H.; Kirihata, M.; Imahori, Y.; Maruhashi, A.; Sakurai, Y.; Suzuki, M.; Masunaga, S.; Ono, K. Survival benefit from boron neutron capture therapy for the newly diagnosed glioblastoma patients. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S15-S18.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.015] [PMID: 19398348]
[61]
Wittig, A.; Stecher-Rasmussen, F.; Hilger, R.A.; Rassow, J.; Mauri, P.; Sauerwein, W. Sodium mercaptoundecahydro-closo-dodecaborate (BSH), a boron carrier that merits more attention. Appl. Radiat. Isot., 2011, 69(12), 1760-1764.
[http://dx.doi.org/10.1016/j.apradiso.2011.02.046] [PMID: 21420870]
[62]
Rice, S.L.; Roney, C.A.; Daumar, P.; Lewis, J.S. The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin. Nucl. Med., 2011, 41(4), 265-282.
[http://dx.doi.org/10.1053/j.semnuclmed.2011.02.002] [PMID: 21624561]
[63]
Hattori, Y.; Kusaka, S.; Mukumoto, M.; Ishimura, M.; Ohta, Y.; Takenaka, H.; Uehara, K.; Asano, T.; Suzuki, M.; Masunaga, S.; Ono, K.; Tanimori, S.; Kirihata, M. Synthesis and in vitro evaluation of thiododecaborated α, α- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy. Amino Acids, 2014, 46(12), 2715-2720.
[http://dx.doi.org/10.1007/s00726-014-1829-5] [PMID: 25173737]
[64]
Futamura, G.; Kawabata, S.; Nonoguchi, N.; Hiramatsu, R.; Toho, T.; Tanaka, H.; Masunaga, S.I.; Hattori, Y.; Kirihata, M.; Ono, K.; Kuroiwa, T.; Miyatake, S.I. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma. Radiat. Oncol., 2017, 12(1), 26.
[http://dx.doi.org/10.1186/s13014-017-0765-4] [PMID: 28114947]
[65]
Chandra, S.; Barth, R.F.; Haider, S.A.; Yang, W.; Huo, T.; Shaikh, A.L.; Kabalka, G.W. Biodistribution and subcellular localization of an unnatural boron-containing amino acid (cis-ABCPC) by imaging secondary ion mass spectrometry for neutron capture therapy of melanomas and gliomas. PLoS One, 2013, 8(9)e75377
[http://dx.doi.org/10.1371/journal.pone.0075377] [PMID: 24058680]
[66]
Barth, R.F.; Kabalka, G.W.; Yang, W.; Huo, T.; Nakkula, R.J.; Shaikh, A.L.; Haider, S.A.; Chandra, S. Evaluation of unnatural cyclic amino acids as boron delivery agents for treatment of melanomas and gliomas. Appl. Radiat. Isot., 2014, 88, 38-42.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.133] [PMID: 24393770]
[67]
Chandra, S.; Ahmad, T.; Barth, R.F.; Kabalka, G.W. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J. Microsc., 2014, 254(3), 146-156.
[http://dx.doi.org/10.1111/jmi.12126] [PMID: 24684609]
[68]
Khalil, A.; Ishita, K.; Ali, T.; Tjarks, W. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Med. Chem., 2013, 5, 677-692.
[http://dx.doi.org/10.4155/fmc.13.31] [PMID: 23617430]
[69]
Byun, Y.; Thirumamagal, B.T.S.; Yang, W.; Eriksson, S. Preparation and biological evaluation of 10B-enriched 3-[5-2-(2,3-dihydroxyprop-1-yl)-o-carboran-1-ylpentan-1-yl]thymidine (N5-2OH), a new boron delivery agent for boron neutron capture therapy of brain tumors. J. Med. Chem., 2006, 49, 5513-5523.
[http://dx.doi.org/10.1021/jm060413w] [PMID: 16942024]
[70]
Barth, R.F.; Yang, W.; Wu, G.; Swindall, M.; Byun, Y.; Narayanasamy, S.; Tjarks, W.; Tordoff, K.; Moeschberger, M.L.; Eriksson, S.; Binns, P.J.; Riley, K.J. Thymidine kinase 1 as a molecular target for boron neutron capture therapy of brain tumors. Proc. Natl. Acad. Sci. USA, 2008, 105(45), 17493-17497.
[http://dx.doi.org/10.1073/pnas.0809569105] [PMID: 18981415]
[71]
Barth, R.F.; Yang, W.; Nakkula, R.J.; Byun, Y.; Tjarks, W.; Wu, L.C.; Binns, P.J.; Riley, K.J. Evaluation of TK1 targeting carboranyl thymidine analogs as potential delivery agents for neutron capture therapy of brain tumors. Appl. Radiat. Isot., 2015, 106, 251-255.
[http://dx.doi.org/10.1016/j.apradiso.2015.06.031] [PMID: 26282567]
[72]
Agarwal, H.K.; Khalil, A.; Ishita, K.; Yang, W.; Nakkula, R.J.; Wu, L.C.; Ali, T.; Tiwari, R.; Byun, Y.; Barth, R.F.; Tjarks, W. Synthesis and evaluation of thymidine kinase 1-targeting carboranyl pyrimidine nucleoside analogs for boron neutron capture therapy of cancer. Eur. J. Med. Chem., 2015, 100, 197-209.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.042] [PMID: 26087030]
[73]
Gottumukkala, V.; Luguya, R.; Fronczek, F.R.; Vicente, M.G.H. Synthesis and cellular studies of an octa-anionic 5,10,15,20-tetra[3,5-(nido-carboranylmethyl)phenyl]porphyrin (H(2)OCP) for application in BNCT. Bioorg. Med. Chem., 2005, 13(5), 1633-1640.
[http://dx.doi.org/10.1016/j.bmc.2004.12.016] [PMID: 15698781]
[74]
Bhupathiraju, N.V.S.D.K.; Gottumukkala, V.; Hao, E.; Hu, X.; Fronczek, F.R.; Baker, D.B.; Wakamatsu, N.; Vicente, M.G.H. Synthesis and toxicity of cobalt bisdicarbollide-containing porphyrins of high boron content. J. Porphyr. Phthalocyanines, 2011, 15, 973-983.
[http://dx.doi.org/10.1142/S1088424611003902]
[75]
Bhupathiraju, N.V.S.D.K.; Vicente, M.G.H. Synthesis and cellular studies of polyamine conjugates of a mercaptomethyl-carboranylporphyrin. Bioorg. Med. Chem., 2013, 21(2), 485-495.
[http://dx.doi.org/10.1016/j.bmc.2012.11.007] [PMID: 23219853]
[76]
Callahan, D.E.; Forte, T.M.; Afzal, S.M.J.; Deen, D.F.; Kahl, S.B.; Bjornstad, K.A.; Bauer, W.F.; Blakely, E.A. Boronated protoporphyrin (BOPP): localization in lysosomes of the human glioma cell line SF-767 with uptake modulated by lipoprotein levels. Int. J. Radiat. Oncol. Biol. Phys., 1999, 45(3), 761-771.
[http://dx.doi.org/10.1016/S0360-3016(99)00172-8] [PMID: 10524433]
[77]
Ozawa, T.; Afzal, J.; Lamborn, K.R.; Bollen, A.W.; Bauer, W.F.; Koo, M.S.; Kahl, S.B.; Deen, D.F. Toxicity, biodistribution, and convection-enhanced delivery of the boronated porphyrin BOPP in the 9L intracerebral rat glioma model. Int. J. Radiat. Oncol. Biol. Phys., 2005, 63(1), 247-252.
[http://dx.doi.org/10.1016/j.ijrobp.2005.05.030] [PMID: 16111595]
[78]
Jori, G.; Soncin, M.; Friso, E.; Vicente, M.G.; Hao, E.; Miotto, G.; Colautti, P.; Moro, D.; Esposito, J.; Rosi, G.; Nava, E.; Sotti, G.; Fabris, C. A novel boronated-porphyrin as a radio-sensitizing agent for boron neutron capture therapy of tumours: in vitro and in vivo studies. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S321-S324.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.071] [PMID: 19376726]
[79]
Backer, M.V.; Gaynutdinov, T.I.; Patel, V.; Bandyopadhyaya, A.K.; Thirumamagal, B.T.S.; Tjarks, W.; Barth, R.F.; Claffey, K.; Backer, J.M. Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol. Cancer Ther., 2005, 4(9), 1423-1429.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0161] [PMID: 16170035]
[80]
Shirakawa, M.; Yamamto, T.; Nakai, K.; Aburai, K.; Kawatobi, S.; Tsurubuchi, T.; Yamamoto, Y.; Yokoyama, Y.; Okuno, H.; Matsumura, A. Synthesis and evaluation of a novel liposome containing BPA-peptide conjugate for BNCT. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S88-S90.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.101] [PMID: 19446462]
[81]
Schirrmacher, E.; Schirrmacher, R.; Beck, C. Synthesis of a Tyr3-octreotate conjugated closo-carborane. [HC2B10H10]: a potential compound for boron neutron capture therapy. Tetrahedron Lett., 2003, 44, 9143-9145.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.048]
[82]
Kimura, S.; Masunaga, S.; Harada, T.; Kawamura, Y.; Ueda, S.; Okuda, K.; Nagasawa, H. Synthesis and evaluation of cyclic RGD-boron cluster conjugates to develop tumor-selective boron carriers for boron neutron capture therapy. Bioorg. Med. Chem., 2011, 19(5), 1721-1728.
[http://dx.doi.org/10.1016/j.bmc.2011.01.020] [PMID: 21315608]
[83]
Wu, G.; Barth, R.F.; Yang, W.; Chatterjee, M.; Tjarks, W.; Ciesielski, M.J.; Fenstermaker, R.A. Site-specific conjugation of boron-containing dendrimers to anti-EGF receptor monoclonal antibody cetuximab (IMC-C225) and its evaluation as a potential delivery agent for neutron capture therapy. Bioconjug. Chem., 2004, 15(1), 185-194.
[http://dx.doi.org/10.1021/bc0341674] [PMID: 14733599]
[84]
Yang, W.; Barth, R.F.; Wu, G.; Tjarks, W.; Binns, P.; Riley, K. Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl. Radiat. Isot., 2009, 67(7-8)(Suppl.), S328-S331.
[http://dx.doi.org/10.1016/j.apradiso.2009.03.030] [PMID: 19467880]
[85]
Yang, W.; Wu, G.; Barth, R.F.; Swindall, M.R.; Bandyopadhyaya, A.K.; Tjarks, W.; Tordoff, K.; Moeschberger, M.; Sferra, T.J.; Binns, P.J.; Riley, K.J.; Ciesielski, M.J.; Fenstermaker, R.A.; Wikstrand, C.J. Molecular targeting and treatment of composite EGFR and EGFRvIII-positive gliomas using boronated monoclonal antibodies. Clin. Cancer Res., 2008, 14(3), 883-891.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1968] [PMID: 18245552]
[86]
Feng, B.; Tomizawa, K.; Michiue, H.; Miyatake, S.; Han, X.J.; Fujimura, A.; Seno, M.; Kirihata, M.; Matsui, H. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials, 2009, 30(9), 1746-1755.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.010] [PMID: 19121537]
[87]
Sun, T.; Li, Y.; Huang, Y.; Zhang, Z.; Yang, W.; Du, Z.; Zhou, Y. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget, 2016, 7(28), 43095-43108.
[http://dx.doi.org/10.18632/oncotarget.9355] [PMID: 27191269]
[88]
Michiue, H.; Sakurai, Y.; Kondo, N.; Kitamatsu, M.; Bin, F.; Nakajima, K.; Hirota, Y.; Kawabata, S.; Nishiki, T.; Ohmori, I.; Tomizawa, K.; Miyatake, S.; Ono, K.; Matsui, H. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials, 2014, 35(10), 3396-3405.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.055] [PMID: 24452095]
[89]
Iguchi, Y.; Michiue, H.; Kitamatsu, M.; Hayashi, Y.; Takenaka, F.; Nishiki, T.; Matsui, H. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model. Biomaterials, 2015, 56, 10-17.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.061] [PMID: 25934274]
[90]
Wang, J.; Wu, W.; Jiang, X. Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine (Lond.), 2015, 10(7), 1149-1163.
[http://dx.doi.org/10.2217/nnm.14.213] [PMID: 25929571]
[91]
Zhu, Y.; Lin, Y.; Zhu, Y.Z.; Lu, J.; Maguire, J.A. Hosmane. N.S. Boron Drug Delivery via Encapsulated Magnetic. Nanocomposites: A New Approach for BNCT in Cancer Treatment. J. Nanomater., 2010.Article ID 409320
[http://dx.doi.org/10.1155/2010/409320]
[92]
Chertok, B.; Moffat, B.A.; David, A.E.; Yu, F.; Bergemann, C.; Ross, B.D.; Yang, V.C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials, 2008, 29(4), 487-496.
[http://dx.doi.org/10.1016/j.biomaterials.2007.08.050] [PMID: 17964647]
[93]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[94]
Icten, O.; Hosmane, N.S.; Kose, D.A.; Zumreoglu-Karan, B. Fabrication and characterization of magnetite-gadolinium borate nanocomposites. Z. Anorg. Allg. Chem., 2016, 642, 828-832.
[http://dx.doi.org/10.1002/zaac.201600181]
[95]
Issei, T.; Kensuke, N.; Kimiko, M. Hydrophobic boron compound-loaded poly(l-lactide-co-glycolide) nanoparticles for boron neutron capture therapy. Coll. Surf. B Biointerf., 2017, 159, 360-365.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.002]
[96]
Yinghuai, Z.; Peng, A.T.; Carpenter, K.; Maguire, J.A.; Hosmane, N.S.; Takagaki, M. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery. J. Am. Chem. Soc., 2005, 127(27), 9875-9880.
[http://dx.doi.org/10.1021/ja0517116] [PMID: 15998093]
[97]
Lee, C.H.; Bhandari, S.; Tiwari, B.; Yapici, N.; Zhang, D. Yap. Y.K. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications. Molecules, 2016, 21, 922.
[http://dx.doi.org/10.3390/molecules21070922]
[98]
Dash, B.P.; Satapathy, R.; Bode, B.P. ‘Click’ chemistry-mediated phenylene-cored carborane dendrimers. Organometallics, 2012, 31, 2931-2935.
[http://dx.doi.org/10.1021/om201255b]
[99]
Parrott, M.C.; Marchington, E.B.; Valliant, J.F.; Adronov, A. Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc., 2005, 127, 12081-12089.
[http://dx.doi.org/10.1021/ja053730l] [PMID: 16117549]
[100]
Yinghuai, Z.; Hosmane, N.S. Applications and perspectives of boron-enriched nanocomposites in cancer therapy. Future Med. Chem., 2013, 5(6), 705-714. [and references therein]
[http://dx.doi.org/10.4155/fmc.13.47] [PMID: 23617432]
[101]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[102]
Kang, J.H.; Jang, W.Y.; Ko, Y.T. The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging. Pharm. Res., 2017, 34(4), 704-717.
[http://dx.doi.org/10.1007/s11095-017-2097-3] [PMID: 28078484]
[103]
Nakamura, H. Boron lipid-based liposomal boron delivery system for neutron capture therapy: recent development and future perspective. Future Med. Chem., 2013, 5(6), 715-730.
[http://dx.doi.org/10.4155/fmc.13.48] [PMID: 23617433]
[104]
Peter, J.K.; Charles, A.M.; Aslam, A.K. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc. Natl. Acad. Sci. USA, 2013, 110, 6512-6517.
[105]
Issei, T.; Yukiko, I.; Hiromi, U.; Kimiko, M. Detailed biodistribution of liposomes prepared with polyborane instead of cholesterol for BNCT: effects of PEGylation. Colloid Polym. Sci., 2017, 295, 1455-1461.
[http://dx.doi.org/10.1007/s00396-017-4113-x]
[106]
Masunaga, S.I.; Kimura, S.; Harada, T.; Okuda, K.; Sakurai, Y.; Tanaka, H.; Suzuki, M.; Kondo, N.; Maruhashi, A.; Nagasawa, H.; Ono, K. Evaluating the Usefulness of a Novel 10B-Carrier Conjugated With Cyclic RGD Peptide in Boron Neutron Capture Therapy. World J. Oncol., 2012, 3(3), 103-112.
[http://dx.doi.org/10.4021/wjon477w] [PMID: 29147290]
[107]
Kang, W.; Svirskis, D.; Sarojini, V.; McGregor, A.L.; Bevitt, J.; Wu, Z. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget, 2017, 8(22), 36614-36627.
[http://dx.doi.org/10.18632/oncotarget.16625] [PMID: 28402271]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy