Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

GDC-0980在小儿白血病中抑制PI3K / mTOR途径:对异常FLT-3活性的影响以及与细胞内信号传导靶标的合作

卷 19, 期 10, 2019

页: [828 - 837] 页: 10

弟呕挨: 10.2174/1568009619666190326120833

价格: $65

摘要

背景:GDC-0980是I类PI3K和mTOR途径的选择性小分子抑制剂,具有有效的抗增殖活性。 目的:我们着手评估GDC-0980在临床前研究中对儿童白血病细胞的疗效。 方法:使用五种不同的小儿白血病细胞体外评估GDC-0980的抗肿瘤活性。 结果:我们的数据显示,GDC-0980显着抑制白血病细胞系KOPN8(IC50,532 nM),SEM(IC50,720 nM),MOLM-13(IC50,346 nM),MV4; 11(IC50, 199 nM)和TIB-202(IC50,848 nM),与正常对照细胞(1.23μM)相比。这种抗增殖活性与细胞凋亡机制的激活有关,其特征在于Bcl-2蛋白磷酸化的减少和PARP裂解的增强。 GDC-0980处理的细胞的蛋白质印迹分析还显示mTOR,Akt和S6的磷酸化水平降低,但ERK1 / 2却没有。值得注意的是,应用GDC-0980后,Molm-13和MV4; 11细胞中的FLT3磷酸化降低。我们进一步检查了从小儿白血病患者分离得到的GDC-0980治疗的原发性白血病细胞的细胞活力。这项研究揭示了GDC-0980对两名ALL患者的潜在治疗作用(分别为IC50、1.23和0.625μM)。 GDC-0980的药物组合分析显示与MEK抑制剂Cobimetinib(MV4-11; 11,CI,0.25,SEM,CI,0.32和TIB-202,CI,0.55)和靶向FLT3抑制剂Crenolanib( MV4-11; 11,CI,0.25,SEM,CI,0.7,和TIB-202,CI,0.42)。 结论:这些发现为初步的概念验证数据和进一步研究小儿白血病患者亚组中GDC-0980的依据提供了依据。

关键词: FLT3,PI3K,mTOR,细胞毒性,ITD,ALL,AML。

图形摘要

[1]
Locatelli, F.; Moretta, F.; Rutella, S. Management of relapsed acute lymphoblastic leukemia in childhood with conventional and innovative approaches. Curr. Opin. Oncol., 2013, 25(6), 707-715.
[2]
Pui, C.H.; Carroll, W.L.; Meshinchi, S.; Arceci, R.J. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J. Clin. Oncol., 2011, 29(5), 551-565.
[3]
Sexauer, A.N.; Tasian, S.K. Targeting FLT3 signaling in childhood acute myeloid leukemia. Front Pediatr., 2017, 5, 248.
[4]
Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P.A.; Reinecke, M.; Ruprecht, B.; Petzoldt, S.; Meng, C.; and Zecha, J. The target landscape of clinical kinase drugs. Science, 2017, 358(6367), 4368.
[5]
Lagunas-Rangel, F.A.; Chavez-Valencia, V. FLT3-ITD and its current role in acute myeloid leukaemia. Med. Oncol., 2017, 34(6), 114.
[6]
Weir, M.C.; Hellwig, S.; Tan, L.; Liu, Y.; Gray, N.S.; Smithgall, T.E. Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS One, 2017, 12(7) e0181178
[7]
Chen, Y.; Pan, Y.; Guo, Y.; Zhao, W.; Ho, W.T.; Wang, J.; Xu, M.; Yang, F.C.; Zhao, Z.J. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig., 2017, 4, 48.
[8]
Smith, A.M.; Dun, M.D.; Lee, E.M.; Harrison, C.; Kahl, R.; Flanagan, H.; Panicker, N.; Mashkani, B.; Don, A.S.; Morris, J.; Toop, H. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors. Oncotarget, 2016, 7(30), 47465-47478.
[9]
Martelli, A.M.; Nyåkern, M.; Tabellini, G.; Bortul, R.; Tazzari, P.L.; Evangelisti, C.; Cocco, L. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia, 2006, 20(6), 911-928.
[10]
Tamburini, J.; Elie, C.; Bardet, V.; Chapuis, N.; Park, S.; Broet, P.; Cornillet-Lefebvre, P.; Lioure, B.; Ugo, V.; Blanchet, O.; Ifrah, N. Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood, 2007, 110(3), 1025-1028.
[11]
Lindblad, O.; Cordero, E.; Puissant, A.; Macaulay, L.; Ramos, A.; Kabir, N.N.; Sun, J.; Vallon-Christersson, J.; Haraldsson, K.; Hemann, M.T.; Borg, Å. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene, 2016, 35(39), 5119-5131.
[12]
Kraszewska, M.D.; Dawidowska, M.; Kosmalska, M.; Sędek, Ł.; Grzeszczak, W.; Kowalczyk, J.R.; Szczepański, T.; Witt, M. Polish Pediatric Leukemia Lymphoma Study Group. BCL11B, FLT3, NOTCH1 and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients. Blood Cells Mol. Dis., 2013, 50(1), 33-38.
[13]
Griffith, M.; Griffith, O.L.; Krysiak, K.; Skidmore, Z.L.; Christopher, M.J.; Klco, J.M.; Ramu, A.; Lamprecht, T.L.; Wagner, A.H.; Campbell, K.M.; Lesurf, R. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Exp. Hematol., 2016, 44(7), 603-613.
[14]
Martelli, A.M.; Evangelisti, C.; Chiarini, F.; McCubrey, J.A. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1(2), 89-103.
[15]
Franke, T.F.; Kaplan, D.R.; Cantley, L.C.; Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science, 1997, 275(5300), 665-668.
[16]
Franke, T.F.; Kaplan, D.R.; Cantley, L.C.; Toker, A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY), 2011, 3(3), 192-222.
[17]
McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Bertrand, F.E.; Ludwig, D.E.; Bäsecke, J.; Libra, M.; Stivala, F.; Milella, M.; Tafuri, A.; Lunghi, P. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia, 2008, 22(4), 708-722.
[18]
Toosi, B.; Zaker, F.; Alikarami, F.; Kazemi, A.; Ardestanii, M.T. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-kappaB activity in B cell precursor-acute lymphoblastic leukemia. Biomed. Pharmacother., 2018, 102, 428-437.
[19]
Iezzi, A.; Caiola, E.; Broggini, M. Activity of pan-class I isoform PI3K/mTOR inhibitor PF-05212384 in combination with crizotinib in ovarian cancer xenografts and PDX. Transl. Oncol., 2016, 9(5), 458-465.
[20]
Sutherlin, D.P. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J. Med. Chem., 2011, 54(21), 7579-7587.
[21]
Wallin, J.J.; Edgar, K.A.; Guan, J.; Berry, M.; Prior, W.W.; Lee, L.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Salphati, L. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol. Cancer Ther., 2011, 10(12), 2426-2436.
[22]
Al-Nasiry, S.; Geusens, N.; Hanssens, M.; Luyten, C.; Pijnenborg, R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod., 2007, 22(5), 1304-1309.
[23]
Zhao, X.M. Prediction of drug combinations by integrating molecular and pharmacological data. PLOS Comput. Biol., 2011, 7(12)e1002323
[24]
Quentmeier, H.; Reinhardt, J.; Zaborski, M.; Drexler, H.G. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia, 2003, 17(1), 120-124.
[25]
Gibson, C.J.; Davids, M.S. BCL-2 Antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin. Cancer Res., 2015, 21(22), 5021-5029.
[26]
Seth, R.; Singh, A. Leukemias in children. Indian J. Pediatr., 2015, 82(9), 817-824.
[27]
Xu, C.; Nikolova, O.; Basom, R.S.; Mitchell, R.M.; Shaw, R.; Moser, R.D.; Park, H.; Gurley, K.E.; Kao, M.C.; Green, C.L.; Schaub, F.X. Functional precision medicine identifies novel druggable targets and therapeutic options in head and neck cancer. 2018, 24(12), 2828-2843.
[28]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176.
[29]
Niu, N.; Wang, L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics, 2015, 16(3), 273-285.
[30]
Wilding, J.L.; Bodmer, W.F. Cancer cell lines for drug discovery and development. Cancer Res., 2014, 74(9), 2377-2384.
[31]
Larrosa-Garcia, M.; Baer, M.R. FLT3 inhibitors in acute myeloid leukemia: Current status and future directions. Mol. Cancer Ther., 2017, 16(6), 991-1001.
[32]
Fischer, M.; Schnetzke, U.; Spies-Weisshart, B.; Walther, M.; Fleischmann, M.; Hilgendorf, I.; Hochhaus, A.; Scholl, S. Impact of FLT3-ITD diversity on response to induction chemotherapy in patients with acute myeloid leukemia. Haematologica, 2017, 102(4), e129-e131.
[33]
Weisberg, E. FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist. Updat., 2009, 12(3), 81-89.
[34]
Chen, W.; Drakos, E.; Grammatikakis, I.; Schlette, E.J.; Li, J.; Leventaki, V.; Staikou-Drakopoulou, E.; Patsouris, E.; Panayiotidis, P.; Medeiros, L.J.; Rassidakis, G.Z. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol. Cancer, 2010, 9, 292.
[35]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64.
[36]
Bhatti, M.; Ippolito, T.; Mavis, C.; Gu, J.; Cairo, M.S.; Lim, M.S.; Hernandez-Ilizaliturri, F.; Barth, M.J. Pre-clinical activity of targeting the PI3K/Akt/mTOR pathway in Burkitt lymphoma. Oncotarget, 2018, 9(31), 21820-21830.
[37]
Powles, T.; Lackner, M.R.; Oudard, S.; Escudier, B.; Ralph, C.; Brown, J.E.; Hawkins, R.E.; Castellano, D.; Rini, B.I.; Staehler, M.D.; Ravaud, A. Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2016, 34(14), 1660-1668.
[38]
Dolly, S.O.; Wagner, A.J.; Bendell, J.C.; Kindler, H.L.; Krug, L.M.; Seiwert, T.Y.; Zauderer, M.G.; Lolkema, M.P.; Apt, D.; Yeh, R.F.; Fredrickson, J.O. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2016, 22(12), 2874-2884.
[39]
O’Reilly, M.S. Targeting multiple biological pathways as a strategy to improve the treatment of cancer. Clin. Cancer Res., 2002, 8(11), 3309-3310.
[40]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[41]
Yardley, D.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int. J. Breast Cancer, 2013. 137414
[42]
Baudy, A.R.; Dogan, T.; Flores-Mercado, J.E.; Hoeflich, K.P.; Su, F.; van Bruggen, N.; Williams, S.P. FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973. EJNMMI Res., 2012, 2(1), 22.
[43]
Hoeflich, K.P.; Merchant, M.; Orr, C.; Chan, J.; Den Otter, D.; Berry, L.; Kasman, I.; Koeppen, H.; Rice, K.; Yang, N.Y.; Engst, S. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res., 2012, 72(1), 210-219.
[44]
Heavey, S.; Cuffe, S.; Finn, S.; Young, V.; Ryan, R.; Nicholson, S.; Leonard, N.; McVeigh, N.; Barr, M.; O’Byrne, K.; Gately, K. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC. Oncotarget, 2016, 7(48), 79526-79543.
[45]
Smith, C.C.; Lasater, E.A.; Lin, K.C.; Wang, Q.; McCreery, M.Q.; Stewart, W.K.; Damon, L.E.; Perl, A.E.; Jeschke, G.R.; Sugita, M.; Carroll, M. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc. Natl. Acad. Sci. USA, 2014, 111(14), 5319-5324.
[46]
Galanis, A.; Ma, H.; Rajkhowa, T.; Ramachandran, A.; Small, D.; Cortes, J.; Levis, M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood, 2014, 123(1), 94-100.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy