Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Polyisoprenylated Cysteinyl Amide Inhibitors Deplete K-Ras and Induce Caspase-dependent Apoptosis in Lung Cancer Cells

Author(s): Augustine T. Nkembo, Felix Amissah, Elizabeth Ntantie, Rosemary A. Poku, Olufisayo O. Salako, Offiong Francis Ikpatt and Nazarius S. Lamango*

Volume 19, Issue 10, 2019

Page: [838 - 851] Pages: 14

DOI: 10.2174/1568009619666190325144636

Price: $65

Abstract

Background: Non-small cell lung cancers (NSCLC) harboring mutation-induced dysregulation of Ras signaling present some of the most difficult-to-manage cases, since directly targeting the constitutively active mutant Ras proteins has not resulted in clinically useful drugs. Therefore, modulating Ras activity for targeted treatment of cancer remains an urgent healthcare need.

Objective: In the current study, we investigated a novel class of compounds, the polyisoprenylated cysteinyl amide inhibitors (PCAIs), for their anticancer molecular mechanisms using the NSCLC cell panel with K-Ras and/or other mutant genes.

Methods: The effect of the PCAIs on intracellular K-Ras levels, cell viability, apoptosis, spheroid and colony formation were determined.

Results: Treatment of the lung cancer cells with the PCAIs, NSL-RD-035, NSL-BA-036, NSL-BA- 040 and NSL-BA-055 resulted in concentration-dependent cell death in both K-Ras mutant (A549, NCI-H460, and NCI-H1573), N-Ras mutant (NCI-H1299) and other (NCI-H661, NCI-H1975, NCIH1563) NSCLC cells. The PCAIs at 1.0 -10 μM induced the degeneration of 3D spheroid cultures, inhibited clonogenic cell growth and induced marked apoptosis via the extrinsic pathway. The most potent of the PCAIs, NSL-BA-055, at 5 μM induced a seven-fold increase in the activity of caspase- 3/7 and a 75% selective depletion of K-Ras protein levels relative to GAPDH in A549 cells that correlated with PCAIs-induced apoptosis. NSL-BA-040 and NSL-BA-055 also induced the phosphorylation of MAP kinase (ERK 1/2).

Conclusion: Taken together, PCAIs may be potentially useful as targeted therapies that suppress NSCLC progression through disruption of Ras-mediated growth signaling.

Keywords: K-Ras, PCAIs, apoptosis, lung cancer, Non-small cell lung cancers (NSCLC), Ras proteins.

« Previous
Graphical Abstract

[1]
Flotho, C.; Kratz, C.; Niemeyer, C.M. Targeting RAS signaling pathways in juvenile myelomonocytic leukemia. Curr. Drug Targets, 2007, 8(6), 715-725.
[2]
Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer, 2007, 7(4), 295-308.
[3]
Ridanpaa, M.; Karjalainen, A.; Anttila, S.; Vainio, H.; Husgafvelpursiainen, K. Genetic alterations in p53 and k-ras in lung-cancer in relation to histopathology of the tumor and smoking history of the patient. Int. J. Oncol., 1994, 5(5), 1109-1117.
[4]
Mills, N.E.; Fishman, C.L.; Scholes, J.; Anderson, S.E.; Rom, W.N.; Jacobson, D.R. Detection of K-ras oncogene mutations in bronchoalveolar lavage fluid for lung cancer diagnosis. J. Natl. Cancer Inst., 87(14), 1056-1060.
[5]
Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; and Fulton, L. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216), 1069-1075.
[6]
Westcott, P.M.; To, M.D. The genetics and biology of KRAS in lung cancer. Chin. J. Cancer, 2013, 32(2), 63-70.
[7]
Mascaux, C.; Iannino, N.; Martin, B.; Paesmans, M.; Berghmans, T.; Dusart, M.; Haller, A.; Lothaire, P.; Meert, A.P.; Noël, S.; Lafitte, J.J. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br. J. Cancer, 2005, 92(1), 131-139.
[8]
Kasahara, K.; Arao, T.; Sakai, K.; Matsumoto, K.; Sakai, A.; Kimura, H.; Sone, T.; Horiike, A.; Nishio, M.; Ohira, T.; Ikeda, N. Impact of serum hepatocyte growth factor on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small cell lung adenocarcinoma. Clin. Cancer Res., 16(18), 4616-4624.
[9]
Ballas, M.S.; Chachoua, A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. OncoTargets Ther., 2011, 4, 43-58.
[10]
Huang, L.; Fu, L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm. Sin. B, 2015, 5(5), 390-401.
[11]
Molina, J.R.; Adjei, A.A. The Ras/Raf/MAPK pathway. J. Thorac. Oncol., 2006, 1(1), 7-9.
[12]
John, T.; Liu, G.; Tsao, M.S. Overview of molecular testing in non-small-cell lung cancer: mutational analysis, gene copy number, protein expression and other biomarkers of EGFR for the prediction of response to tyrosine kinase inhibitors. Oncogene, 2009, 28(Suppl. 1), S14-S23.
[13]
Sebti, S.M. Protein farnesylation: Implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell, 2005, 7(4), 297-300.
[14]
Ghobrial, I.M.; Adjei, A.A. Inhibitors of the ras oncogene as therapeutic targets. Hematol. Oncol. Clin. North Am., 2002, 16(5), 1065-1088.
[15]
Ohkanda, J.; Knowles, D.B.; Blaskovich, M.A.; Sebti, S.M.; Hamilton, A.D. Inhibitors of protein farnesyltransferase as novel anticancer agents. Curr. Top. Med. Chem., 2002, 2(3), 303-323.
[16]
Winter-Vann, A.M.; Casey, P.J. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer, 2005, 5(5), 405-412.
[17]
Gibbs, J.B.; Oliff, A.; Kohl, N.E. Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic. Cell, 1994, 77, 175-178.
[18]
Agrawal, A.G.; Somani, R.R. Farnesyltransferase inhibitor as anticancer agent. Mini Rev. Med. Chem., 2009, 9(6), 638-652.
[19]
Ohkanda, J.; Knowles, D.B.; Blaskovich, M.A.; Sebti, S.M.; Hamilton, A.D. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res., 2015, 21(8), 1819-1827.
[20]
Ma, Y.T.; Gilbert, B.A.; Rando, R.R. Inhibitors of the isoprenylated protein endoprotease. Biochemistry, 1993, 32(9), 2386-2393.
[21]
Ma, Y.T.; Gilbert, B.A.; Rando, R.R. Isoprenylcysteine carboxylmethyltransferase deficiency exacerbates KRAS-driven pancreatic neoplasia via Notch suppression. J. Clin. Invest., 2013, 123(11), 4681-4694.
[22]
Aguilar, B.J.; Nkembo, A.T.; Duverna, R.; Poku, R.A.; Amissah, F.; Ablordeppey, S.Y.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase: A putative biomarker and therapeutic target for pancreatic cancer. Eur. J. Med. Chem., 2014, 81, 323-333.
[23]
Amissah, F.; Duverna, R.; Aguilar, B.J.; Poku, R.A.; Kiros, G.E.; Lamango, N.S. Polyisoprenylated methylated protein methyl esterase overexpression and hyperactivity promotes lung cancer progression. Am. J. Cancer Res., 2014, 4(2), 116-134.
[24]
Nkembo, A.T.; Ntantie, E.; Salako, O.O.; Amissah, F.; Poku, R.A.; Latinwo, L.M.; Lamango, N.S. The antiangiogenic effects of polyisoprenylated cysteinyl amide inhibitors in HUVEC, chick embryo and zebrafish is dependent on the polyisoprenyl moiety. Oncotarget, 2016, 7(42), 68194-68205.
[25]
Nkembo, A.T.; Salako, O.; Poku, R.A.; Amissah, F.; Ntantie, E.; Flores-Rozas, H.; Lamango, N.S. Disruption of actin filaments and suppression of pancreatic cancer cell viability and migration following treatment with polyisoprenylated cysteinyl amides. Am. J. Cancer Res., 6(11), 2532-2546.
[26]
Poku, R.A.; Salako, O.O.; Amissah, F.; Nkembo, A.T.; Ntantie, E.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors induce caspase 3/7- and 8-mediated apoptosis and inhibit migration and invasion of metastatic prostate cancer cells. Am. J. Cancer Res., 2017, 7(7), 1515-1527.
[27]
Friedrich, J.; Ebner, R.; Kunz-Schughart, L.A. Experimental antitumor therapy in 3-D: spheroids-old hat or new challenge? 2007, Int. J. Radiat. Biol., 83(11-12), 849-871.
[28]
Friedrich, J.; Seidel, C.; Ebner, R.; Kunz-Schughart, L.A. Spheroid-based drug screen: Considerations and practical approach. Nat. Protoc., 2009, 4(3), 309-324.
[29]
Ntantie, E.; Fletcher, J.; Amissah, F.; Salako, O.O.; Nkembo, A.T.; Poku, R.A.; Ikpatt, F.O.; Lamango, N.S. Polyisoprenylated cysteinyl amide inhibitors disrupt actin cytoskeleton organization, induce cell rounding and block migration of non-small cell lung cancer. Oncotarget, 2017, 8(19), 31726-31744.
[30]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[31]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[32]
Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 2008, 8(8), 592-603.
[33]
Ebos, J.M.; Lee, C.R.; Kerbel, R.S. Tumor and host-mediated pathways of resistance and disease progression in response to antiangiogenic therapy. Clin. Cancer Res., 2009, 15(16), 5020-5025.
[34]
Azam, F.; Mehta, S.; Harris, A.L. Mechanisms of resistance to antiangiogenesis therapy. Eur. J. Cancer, 2010, 46(8), 1323-1332.
[35]
Wang, C.; Wang, Y.; Tortorella, M.; Ojima, I. Design, synthesis and preclinical study of novel taxoid-based Small Molecule Drug Conjugates (SMDCs) using folate/Dimethyltetrahydrofolate (DMTHF) as tumor targeting module. Abstracts of Papers of the American Chemical Society,. 2017, 253.
[36]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging-Us, 2016, 8(4), 603-619.
[37]
Shapiro, P. Ras-MAP kinase signaling pathways and control of cell proliferation: Relevance to cancer therapy. Crit. Rev. Clin. Lab. Sci., 2002, 39(4-5), 285-330.
[38]
Kranenburg, O.; Gebbink, M.F.; Voest, E.E. Stimulation of angiogenesis by Ras proteins. Biochim. Et Biophys. Acta-Rev. Cance, 2004, 1654(1), 23-37.
[39]
Kris, M.G.; Johnson, B.E.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Aronson, S.L.; Engelman, J.A.; Shyr, Y.; Khuri, F.R.; Rudin, C.M.; Garon, E.B. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC). J. Clin. Oncol., 2011, 29(18), CRA7506-CRA7506.
[40]
Barlesi, F.; Blons, H.; Beau-Faller, M.; Rouquette, I.; Ouafik, L.H.; Mosser, J.; Merlio, J.P.; Bringuier, P.P.; Jonveaux, P.; Le Marechal, C.; Denis, M.G. Biomarkers (BM) France: Results of routine EGFR, HER2, KRAS, BRAF, PI3KCA mutations detection and EML4-ALK gene fusion assessment on the first 10,000 non-small cell lung cancer (NSCLC) patients (pts). J. Clin. Oncol., 2013, 31(15), 8000-8000.
[41]
Berndt, N.; Hamilton, A.D.; Sebti, S.M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer, 2011, 11(11), 775-791.
[42]
Rao, S.; Cunningham, D.; De Gramont, A.; Scheithauer, W.; Smakal, M.; Humblet, Y.; Kourteva, G.; Iveson, T.; Andre, T.; Dostalova, J.; Illes, A. Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J. Clin. Oncol., 2004, 22(19), 3950-3957.
[43]
Van Cutsem, E.; Van De Velde, H.; Karasek, P.; Oettle, H.; Vervenne, W.L.; Szawlowski, A.; Schoffski, P.; Post, S.; Verslype, C.; Neumann, H.; Safran, H. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J. Clin. Oncol., 2004, 22(8), 1430-1438.
[44]
Blumenschein, G.; Ludwig, C.; Thomas, G.; Tan, E.; Fanucchi, M.; Santoro, A.; Crawford, J.; Breton, J.; O’Brien, M.; Khuri, F. A randomized phase III trial comparing ionafarnib/carboplatin/paclitaxel versus carboplatin/paclitaxel (CP) in chemotherapy-naive patients with advanced or metastatic non-small cell lung cancer (NSCLC). Lung Cancer, 2005, 49, S30-S30.
[45]
Fisher, G.H.; Wellen, S.L.; Klimstra, D.; Lenczowski, J.M.; Tichelaar, J.W.; Lizak, M.J.; Whitsett, J.A.; Koretsky, A.; Varmus, H.E. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev., 2001, 15(24), 3249-3262.
[46]
Singh, A.; Greninger, P.; Rhodes, D.; Koopman, L.; Violette, S.; Bardeesy, N.; Settleman, J. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell, 2009, 15(6), 489-500.
[47]
Haklai, R.; Weisz, M.G.; Elad, G.; Paz, A.; Marciano, D.; Egozi, Y.; Ben-Baruch, G.; Kloog, Y. Dislodgment and accelerated degradation of Ras. Neurosci. Lett., 1997, S28-S28.
[48]
Haklai, R.; Weisz, M.G.; Elad, G.; Paz, A.; Marciano, D.; Egozi, Y.; Ben-Baruch, G.; Kloog, Y. Dislodgment and accelerated degradation of Ras. Biochemistry, 1998, 37(5), 1306-1314.
[49]
Pouysségur, J.; and Lenormand, P. ERK1 and ERK2 Map Kinases: Specific Roles or Functional Redundancy? Front. Cell Dev. Biol., 2016, 4, 53.
[50]
Lu, Z.M.; Xu, S.C. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006, 58(11), 621-631.
[51]
Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death is subcellular localization the answer? Cell Cycle, 2009, 8(8), 1168-1175.
[52]
Kim, H.S.; Lim, G.Y.; Hwang, J.; Ryoo, Z.Y.; Huh, T.L.; Lee, S. Induction of apoptosis by obovatol as a novel therapeutic strategy for acute myeloid leukemia. Int. J. Mol. Med., 2014, 34(6), 1675-1680.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy