摘要
抗癌剂在治愈恶性肿瘤患者中起着至关重要的作用。 但是,化学治疗剂与各种不良反应有关,这些不良反应在患者中产生明显的毒性症状。 但是这种疗法会影响恶性细胞和正常细胞,导致抗恶性药物的治疗指数降低,从而不利地影响患者的生活质量。 由于这些不利因素,没有将足够剂量的药物输送给患者,导致治疗延迟或治疗不当。 已经开发出化学保护剂以最小化或减轻与化学治疗剂有关的毒性。 抗癌药的治疗功效没有任何让步,它们为正常组织提供了器官特异性的保护。
关键词: 化学保护剂,细胞保护剂,恶性,化学治疗剂,palifermin,化学疗法。
图形摘要
[1]
List, A.F.; Gerner, E.W. Amifostine: A tonic or toxin to myeloid progenitors. Leuk. Res., 2000, 24, 1009-1011.
[2]
Liu, B.; Ezeogu, L.; Zellmer, L.; Yu, B.; Xu, N.; Joshua Liao, D. Protecting the normal in order to better kill the cancer. Cancer Med., 2015, 4, 1394-1403.
[4]
Jena, G.; Vikram, A.; Tripathi, D.N.; Ramarao, P. Use of chemoprotectants in chemotherapy and radiation therapy: the challenges of selecting an appropriate agent. Integr. Cancer Ther., 2010, 9, 253-258.
[6]
Marx, G.M.; Friedlander, M.L. Drug toxicity prevention and management. CME. J. Gynecol. Oncol., 2010, 18, 29-33.
[7]
Cytoprotective agents. http://www.cancernetwork.com/review-article/clinical-status-and-optimal-use-amifostin e #
sthash.vdQBHjv6.dpuf (Accessed on 29 June, 2018)
[8]
Links, M.; Lewis, C. Chemoprotectants: A review of their clinical pharmacology and therapeutic efficacy. Drugs, 1999, 57, 293-308.
[9]
Calabresi, P.; Chabner, B.A. Chemotherapy of neoplastic diseases, In: ; Hardman, J.G.; Limbird, L.E.; Perry, B.M.; Raymond, W.R., Eds.; Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 9th edition. McGraw-Hill, New Delhi, 1996; pp. 1225-1232.
[10]
Eisenberg, D.M.; Davis, R.B.; Ettner, L.S.; Appel, S.; Wilkey, S.; Van Rompay, M.; Kessler, R.C. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA, 1998, 280, 1569-1575.
[11]
Armstrong, T.S.; Gilbert, M.R. Use of complementary and alternative medical therapy by patients with primary brain tumors. Curr. Neurol. Neurosci. Rep., 2008, 8, 264-268.
[12]
Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; Benz, C.C.; Marks, J.D.; Kirpotin, D.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release, 2010, 141, 13-21.
[13]
Bansal, S.; Kashyap, C.; Aggarwal, G.; Harikumar, S. A comparative
review on vesicular drug delivery system and stability issues. I.J.R.P.C., 2012, 2, 704-713.
[14]
Thompson, A.K.; Mozafari, M.R.; Singh, H. The properties of liposomes produced from milk-fat globule membrane material using different techniques. Le. Lait. Dairy. Sci. Technol, 2007, 87, 349-360.
[15]
Chen, K.F.; Tai, W.T.; Liu, T.H.; Huang, H.P.; Lin, Y.C.; Shiau, C.W.; Li, P.K.; Chen, P.J.; Cheng, A.L. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin. Cancer Res., 2010, 16, 5189-5199.
[16]
Yuhas, J.M. Biological factors affecting the radioprotective efficiency of S-2-[3-aminopropylamino] ethylphosphorothioic acid (WR-2721): LD50(3) doses. Radiat. Res., 1970, 44, 621-628.
[17]
De Souza, C.A.; Santini, G.; Marino, G.; Nati, S.; Congiu, A.M.; Vigorito, A.C.; Damasio, E. Amifostine (WR-2721), a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin’s lymphomas: a phase II study. Braz. J. Med. Biol. Res., 2000, 33, 791-798.
[18]
Shaw, L.M.; Bonner, H.S.; Brown, D.Q. Metabolic pathways of WR-2721 (ethyol, amifostine) in the BALB/c mouse. Drug Metab. Dispos., 1994, 22, 895-902.
[19]
Koukourakis, M.I. Amifostine in clinical oncology: Current use and future applications. Anticancer Drugs, 2002, 13, 181-209.
[20]
Dedieu, S.; Canron, X.; Rezvani, H.R.; Bouchecareilh, M.; Mazurier, F.; Sinisi, R.; Zanda, M.; Moenner, M.; Bikfalvi, A.; North, S. The cytoprotective drug amifostine modifies both expression and activity of the pro-angiogenic factor VEGF-A. BMC Med., 2010, 8, 19.
[21]
Calabro-Jones, P.M.; Fahey, R.C.; Smoluk, G.D.; Ward, J.F. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 47, 23-27.
[22]
Schuchter, L.M.; Luginbuhl, W.E.; Meropol, N.J. The current status of toxicity protectants in cancer therapy. Semin. Oncol., 1992, 19, 742.
[23]
Buntzel, I.; Kuttner, K.; Frohlich, D.; Glatzel, M. Selective cytoprotection with amifostine in concurrent radiochemotherapy for head and neck cancer. Ann. Oncol., 1998, 9, 505-509.
[24]
Koukourakis, M.I. Amifostine: Is there evidence of tumor protection? Semin. Oncol., 2003, 30, 18-30.
[25]
Shaw, L.M.; Glover, D.; Turrisi, A.; Brown, D.Q.; Bonner, H.S.; Norfleet, A.L.; Weiler, C.; Glick, J.H.; Kligerman, M.M. Pharmacokinetics of WR-2721. Pharmacol. Ther., 1988, 39, 195-201.
[26]
Yuhas, J.M.; Spellman, J.M.; Culo, F. The role of WR-2721 in radiotherapy and/or chemotherapy. Cancer Clin. Trials, 1980, 3, 211-216.
[27]
Smoluk, G.D.; Fahey, R.C.; Calabro-Jones, P.M.; Aguilera, J.A.; Ward, J.F. Radioprotection of cells in culture by WR-2721 and derivatives: form of the drug responsible for protection. Cancer Res., 1988, 48, 3641-3647.
[28]
Hunter, N.R.; Guttenberger, R.; Milas, L. Modification ofradiation-induced carcinogenesis in mice by misoni-dazole and WR-2721. Int. J. Radiat. Oncol. Biol. Phys., 1992, 22, 795-798.
[29]
Yuhas, J.M. Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino) - ethylphosphorothioic acid. Cancer Res., 1980b, 40, 1519-1524.
[30]
Millar, J.L.; McElwain, T.J.; Clutterbuck, R.D.; Wist, E.A. Themodification of melphalan toxicity in tumor bearingmice by s-2-(3-aminopropylamino)-ethylphospho-rothioic acid (WR2721). Am. J. Clin. Oncol., 1982, 5, 321-328.
[31]
Milas, L.; Stephens, L.C.; Meyn, R.E. Relation of apoptosis to cancer therapy. In Vivo, 1994, 8, 665-673.
[32]
Li, C.J.; Wang, S.Z.; Wang, S.Y.; Zhang, Y.P. Assessment of the effect of local application of amifostine on acute radiation-induced oral mucositis in guinea pigs. J. Radiat. Res., 2014, 55, 847-854.
[33]
Sodicof, T.M.; Conger, A.D.; Pratt, N.E.; Trepper, P. Radioprotection by WR-2721 against long-term chronic damage to the rat parotid gland. Radiat. Res., 1978a, 76, 172-179.
[34]
Sodicoff, M.; Conger, A.D.; Trepper, P.; Pratt, N.E. Short-term radioprotective effects of WR-2721 on the rat parotid glands. Radiat. Res., 1978b, 75, 317-326.
[36]
Tanaka, Y. Protective effects of WR-2721 against to the local irradiation and its clinical application. J. Radial. Res., 1980, 21, 76-77.
[37]
Takahashi, I.; Nagai, T.; Miyaishi, K.; Maehara, Y.; Niibe, H. Clinical study of the radioprotective effects of amifostine (YM-08310, WR-2721) on chronic radiation injury. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12, 935-938.
[38]
McDonald, S.; Meyerowitz, C.; Smudzin, T.; Rubin, P. Preliminary results of a pilot study using WR-2721 before fractionated irradiation of the head and neck to reduce salivary gland dysfunction. Int. J. Radiat. Oncol. Biol. Phys., 1994, 29, 747-754.
[39]
Kemp, G.; Rose, P.; Lurain, J.; Berman, M.; Manetta, A.; Roullet, B.; Homesley, H.; Belpomme, D.; Glick, J. Amifostine pretreatment for protection against cyclophosphamide-and cisplatin-induced toxicities: Results of a randomized control trial in patients with advanced ovarian cancer. J. Clin. Oncol., 1996, 14, 2101-2112.
[40]
Santini, V.; Gile, F.J. The potential of amifostine: from cytoprotectant to therapeutic agent. Haematologica, 1999, 84, 1035-1042.
[42]
Culy, C.R.; Spencer, C.M. Amifostine: An update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplastic syndrome. Drugs, 2001, 61, 641-684.
[43]
Antonadou, D.; Throuvalas, N.; Petridis, A.; Bolanos, N.; Sagriotis, A.; Synodinou, M. Effect of amifostine on toxicities associated with radiochemotherapy in patients with locally advanced non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2003, 57, 402-408.
[44]
Komaki, R.; Lee, J.S.; Milas, L.; Lee, H.K.; Fossella, F.V.; Herbst, R.S.; Allen, P.K.; Liao, Z.; Stevens, C.W.; Lu, C.; Zinner, R.G.; Papadimitrakopoulou, V.A.; Kies, M.S.; Blumenschein, G.R.; Pisters, K.M.; Glisson, B.S.; Kurie, J.; Kaplan, B.; Garza, V.P.; Mooring, D.; Tucker, S.L.; Cox, J.D. Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small cell lung cancer: Report of a randomized comparative trial. Int. J. Radiat. Oncol. Biol. Phy., 2004, 58, 1369-1377.
[45]
Altayli, E.; Malkoc, E.; Alp, B.F.; Korkmaz, A. Prevention and treatment of cyclophosphamide and ifosfamide-induced hemorrhagic cystitis. J. Mol. Pathophysiol, 2012, 1, 53-62.
[46]
Salman, D.; Swinden, J.; Barton, S.; Peron, J.M.; Nabhani-Gebara, S. Evaluation of the stability profile of anticancer drugs: A review of Ifosfamide and Mesna regimen for the treatment of metastatic soft tissue sarcoma. J. Oncol. Pharm. Pract., 2016, 22, 86-91.
[47]
Khaw, S.L.; Downie, P.A.; Waters, K.D.; Ashley, D.M.; Heath, J.A. Adverse hypersensitivity reactions to mesna as adjunctive therapy for cyclophosphamide. Pediatr. Blood Cancer, 2007, 49, 341-343.
[48]
Hausheer, F.H.; Parker, A.R.; Petluru, P.N.; Jair, K.W.; Chen, S.; Huang, Q.; Chen, X.; Ayala, P.Y.; Shanmugarajah, D.; Kochat, H. Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of human aminopeptidase N. Cancer Chemother. Pharmacol., 2011, 67, 381-391.
[49]
Hausheer, F.H.; Kanter, P.; Cao, S.; Haridas, K.; Seetharamulu, P.; Reddy, D.; Petluru, P.; Zhao, M.; Murali, D.; Saxe, J.D.; Yao, S.; Martinez, N.; Zukowski, A.; Rustum, Y.M. Modulation of platinum-induced toxicities and therapeutic index: mechanistic insightsand first- and second-generation protecting agents. Semin. Oncol., 1998, 25, 584-559.
[50]
Boven, E.; Verschraagen, M.; Hulscher, T.M.; Erkelens, C.A.; Hausheer, F.H.; Pinedo, H.M.; van der Vijgh, W.J. BNP7787, a novelprotector against platinum-related toxicities, does not affect theefficacy of cisplatin or carboplatin in human tumour xenografts. Eur. J. Cancer, 2002, 38, 1148-1156.
[51]
Hausheer, F.H.; Kochat, H.; Parker, A.R.; Ding, D.; Yao, S.; Hamilton, S.E.; Petluru, P.N.; Leverett, B.D.; Bain, S.H.; Saxe, J.D. New approaches to drug discovery and development: a mechanism-based approach to pharmaceutical research and its application to BNP7787, a novel chemoprotective agent. Cancer Chemother. Pharmacol., 2003, 52, S3-S15.
[52]
Ormstad, K.; Uehara, N. Renal transport and disposition of Na-2-mercaptoethane sulfonate disulfide (dimesna) in the rat. FEBS Lett., 1982, 150, 354-358.
[53]
Leeuwenkamp, O.R.; Neijt, J.P.; Van der Vijgh, W.J.; Pinedo, H.M. Reaction kinetics of cisplatin and its monoaquated species with the modulating agents (di)mesna and thiosulphate. Eur. J. Cancer, 1991, 27, 1243-1247.
[54]
Verschraagen, M.; Kedde, M.A.; Hausheer, F.H.; Van der Vijgh, W.J.F. The chemical reactivity of BNP7787 and its metabolite mesna with the cytostatic agent cisplatin: comparison with the nucleophiles thiosulphate, DDTC, glutathione and its disulfide GSSG. Cancer Chemother. Pharmacol., 2003, 51, 499-504.
[55]
Mashiach, E.; Sela, S.; Weinstein, T.; Cohen, H.I.; Shasha, S.M.; Kristal, B. Mesna: a novel renoprotective antioxidant in ischaemic acute renal failure. Nephrol. Dial. Transplant., 2001, 16, 542-551.
[56]
Verschraagen, M.; Boven, E.; Torun, E.; Erkelens, C.A.M.; Hausheer, F.H.; van der Vijgh, W.J.F. Pharmacokinetic behaviour of the chemoprotectants BNP7787 and mesna after an i.v. bolus injection in rats. Br. J. Cancer, 2004, 90, 1654-1659.
[57]
Parker, A.R.; Petluru, P.N.; Nienaber, V.L.; Zhao, M.; Ayala, P.Y.; Badger, J.; Chie-Leon, B.; Sridhar, V.; Logan, C.; Kochat, H.; Hausheer, F.H. Novel covalent modification of human anaplastic lymphoma kinase (ALK) and potentiation of crizotinib-mediated inhibition of ALK activity by BNP7787. OncoTargets Ther., 2015, 8, 375-383.
[58]
Hausheer, F.H.; Shanmugarajah, D.; Leverett, B.D.; Chen, X.; Huang, Q.; Kochat, H.; Petluru, P.N.; Parker, A.R. Mechanistic study of BNP7787-mediated cisplatin nephroprotection: Modulation of gamma-glutamyl transpeptidase. Cancer Chemother. Pharmacol., 2010, 65, 941-951.
[59]
Masuda, N.; Negoro, S.; Hausheer, F.; Nakagawa, K.; Matsui, K.; Kudoh, S.; Takeda, K.; Yamamoto, N.; Yoshimura, N.; Ohashi, Y.; Fukuoka, M. Phase I and pharmacologic study of BNP7787, a novel chemoprotector in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol., 2011, 67, 533-542.
[60]
Finch, P.W.; Mark Cross, L.J.; McAuley, D.F.; Farrell, C.L. Palifermin for the protection and regeneration of epithelial tissues following injury: New findings in basic research and pre-clinical models. J. Cell. Mol. Med., 2013, 17, 1065-1087.
[61]
Beaven, A.W.; Shea, T.C. The effect of palifermin on chemotherapyand radiation therapy-induced mucositis: a review of the current literature. Support. Cancer Ther., 2007, 4, 188-197.
[62]
Farrell, C.L.; Bready, J.V.; Rex, K.L.; Chen, J.N.; DiPalma, C.R.; Whitcomb, K.L.; Yin, S.; Hill, D.C.; Wiemann, B.; Starnes, C.O.; Havill, A.M.; Lu, Z.N.; Aukerman, S.L.; Pierce, G.F.; Thomason, A.; Potten, C.S.; Ulich, T.R.; Lacey, D.L. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res., 1998, 58, 933-939.
[63]
Rubin, C.; Zwang, Y.; Vaisman, N.; Ron, D.; Yarden, Y. Phosphorylation of carboxylterminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J. Biol. Chem., 2005, 280, 9735-9744.
[64]
Cross, L.J.; Okane, C.M.; Mcdowell, C.; Elborn, J.J.; Matthay, M.A.; McAuley, D.F. Keratinocyte growth factor in acute lung injury to reduce pulmonary dysfunction-a randomised placebo-controlled trial (KARE): study protocol. Trials, 2013, 14, 51.
[65]
Rubin, J.S. Recent developments in palifermin basic, pre-clinical and clinical research. J. Cell. Mol. Med., 2013, 17, 1063-1064.
[66]
Steiling, H.; Muhlbauer, M.; Bataille, F.; Scholmerich, J.; Werner, S.; Hellerbrand, C. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. Am. J. Pathol., 2004, 165, 1233-1241.
[67]
Tsai, S.M.; Wang, W.P. Expression and function of fibroblast growth factor (FGF) 7 during liver regeneration. Cell. Physiol. Biochem., 2011, 27, 641-652.
[68]
Peng, C.; Chen, B.; Kao, H.K.; Murphy, G.; Orgill, D.P.; Guo, L. Lack of FGF-7 further delays cutaneous wound healing in diabetic mice. Plast. Reconstr. Surg., 2011, 128, 673e-684e.
[69]
Ulrich, K.; Stern, M.; Goddard, M.E.; Williams, J.; Zhu, J.; Dewar, A.; Painter, H.A.; Jeffery, P.K.; Gill, D.R.; Hyde, S.C.; Geddes, D.M.; Takata, M.; Alton, E.W. Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 288, L1179-L1192.
[70]
Teramoto, H.; Yoneda, A.; Puri, P. Gene expression of fibroblast growth factors 10 and 7 is downregulated in the lung of nitrofen- induced diaphragmatic hernia in rats. J. Pediatr. Surg., 2003, 38, 1021-1024.
[71]
Xue, P.; Wang, X.; Xu, D.; Nan, J.; Ai, J.; Li, X. Expression and purification of biological-active recombinant human keratinocyte growth factor-1 base on baculovirus expression vector system. China. Biotechnol., 2013, 33, 47-53.
[72]
Martins, F.; de Oliveira, M.A.; Wang, Q.; Sonis, S.; Gallottini, M.; George, S.; Treister, N. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol., 2013, 49, 293-298.
[73]
Rubin, J.S.; Osada, H.; Finch, P.W.; Taylor, W.G.; Rudikoff, S.; Aaronson, S.A. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc. Natl. Acad. Sci., 1989, 86, 802-806.
[74]
Raber-Durlacher, J.E.; von Bultzingslowen, I.; Logan, R.M.; Bowen, J.; Al-Azri, A.R.; Everaus, H.; Gerber, E.; Gomez, J.G.; Pettersson, B.G.; Soga, Y.; Spijkervet, F.K.; Tissing, W.J.; Epstein, J.B.; Elad, S.; Lalla, R.V. Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology. Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Support. Care Cancer, 2013, 21, 343-355.
[75]
Danilenko, D.M.; Ring, B.D.; Tarpley, J.E.; Morris, B.; Van, G.Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G.F. Growth factors in porcine full and partial thickness burn repair: Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and Neu differentiation factor. Am. J. Pathol., 1995, 147, 1261-1277.
[76]
Yi, E.S.; Williams, S.T.; Lee, H.; Malicki, D.M.; Chin, E.M.; Yin, S.; Tarpley, J.; Ulich, T.R. Keratinocyte growth factor ameliorates radiation- and bleomycin-induced lung injury and mortality. Am. J. Pathol., 1996, 149, 1963-1970.
[77]
Ulich, T.R.; Whitcomb, L.; Tang, W.; O’Conner Tressel, P.; Tarpley, J.; Yi, E.S.; Lacey, D. Keratinocyte growth factor ameliorates cyclophosphamide-induced ulcerative hemorrhagic cystitis. Cancer Res., 1997, 57, 472-475.
[78]
Meropol, N.J.; Somer, R.A.; Gutheil, J.; Pelley, R.J.; Modiano, M.R.; Rowinsky, E.K.; Rothenberg, M.L.; Redding, S.W.; Serdar, C.M.; Yao, B.; Heard, R.; Rosen, L.S. Randomized phase I trial of recombinant human keratinocyte growth factor plus chemotherapy: Potential role as mucosal protectant. J. Clin. Oncol., 2003, 21, 1452-1458.
[79]
Spielberger, R.T.; Stiff, P.; Emmanouilides, C.; Yanovich, S.; Bensinger, W.; Hedrick, E.; Noga, S.; Ziegler, T.; Keating, A.; Frankel, S.; Gentile, T.; Heard, R.; Yao, B.; Elhardt, D. Efficacy of recombinant human keratinocyte growth factor (rHuKGF) in reducing mucositis in patients with hematologic malignancies undergoing autologous peripheral blood progenitor cell transplantation (auto-PBPCT) after radiation-based conditioning: Results of a phase 2 trial. Am. Soc. Clin. Oncol, 2001, 20, 7a.
[80]
Stiff, P.J.; Emmanouilides, C.; Bensinger, W.I.; Gentile, T.; Blazar, B.; Shea, T.C.; Lu, J.; Isitt, J.; Cesano, A.; Spielberger, R. Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J. Clin. Oncol., 2006, 24, 5186-5193.
[81]
Hensley, M.L.; Hagerty, K.L.; Kewalramani, T.; Green, D.M.; Meropol, N.J.; Wasserman, T.H.; Cohen, G.I.; Emami, B.; Gradishar, W.J.; Mitchell, R.B.; Thigpen, J.T.; Trotti, A.; von Hoff, D.; Schuchter, L.M. American society of clinical oncology 2008 clinical practice guideline update: Use of chemotherapy and radiation therapy protectants. J. Clin. Oncol., 2009, 27, 127-145.
[82]
Brizel, D.M.; Murphy, B.A.; Rosenthal, D.I.; Pandya, K.J.; Glück, S.; Brizel, H.E.; Meredith, R.F.; Berger, D.; Chen, M.G.; Mendenhall, W. Phase II study of palifermin and concurrent chemoradiation in head and neck squamous cell carcinoma. J. Clin. Oncol., 2008, 20, 2489-2496.
[83]
Henke, M.; Alfonsi, M.; Foa, P.; Giralt, J.; Bardet, E.; Cerezo, L.; Salzwimmer, M.; Lizambri, R.; Emmerson, L.; Chen, M.G.; Berger, D. Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy or head and neck cancer: a randomized, placebo-controlled trial. J. Clin. Oncol., 2011, 29, 2815-2820.
[84]
Le, Q.T.; Kim, H.E.; Schneider, C.J.; Murakozy, G.; Skladowski, K.; Reinisch, S.; Chen, Y.; Hickey, M.; Mo, M.; Chen, M.G.; Berger, D.; Lizambri, R.; Henke, M. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J. Clin. Oncol., 2011, 29, 2808-2814.
[85]
Schuette, W.; Krzakowski, M.J.; Massuti, B.; Otterson, G.A.; Lizambri, R.; Wei, H.; Berger, D.P.; Chen, Y. Randomized phase II study of palifermin for reducing dysphagia in patients receiving concurrent chemoradiotherapy for locally advanced unresectable non-small cell lung cancer. J. Thorac. Oncol., 2012, 7, 157-164.
[86]
Vadhan-Raj, S.; Goldberg, J.D.; Perales, M.A.; Berger, D.P.; Brink, M.R.M. Clinical applications of palifermin: amelioration of oral mucositis and other potential indications. J. Cell. Mol. Med., 2013, 17, 1371-1384.
[87]
Abidi, M.H.; Agarwal, R.; Tageja, N.; Ayash, L.; Deol, A.; Al-Kadhimi, Z.; Abrams, J.; Cronin, S.; Ventimiglia, M.; Lum, L.; Ratanatharathorn, V.; Zonder, J.; Uberti, J. A phase I dose-escalation trial of high-dose melphalan with palifermin for cytoprotection followed by autologous stem cell transplantation for patients with multiple myeloma with normal renal function. Biol. Blood Marrow Transplant., 2013, 19, 56-61.
[88]
Lauritano, D.; Petruzzi, M.; Di Stasio, D.; Lucchese, A. Clinical effectiveness of palifermin in prevention and treatment of oral mucositis in children with acute lymphoblastic leukaemia: A case-control study. Int. J. Oral Sci., 2014, 6, 27-30.
[89]
Hasinoff, B.B.; Hellmann, K.; Herman, E.H.; Ferrans, V.J. Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Curr. Med. Chem., 1998, 5, 1-28.
[90]
Alderton, P.M.; Gross, J.; Green, M.D. Comparative study of doxorubicin, mitoxantrone, and epirubicin in combination with ICRF-187 (ADR-529) in a chronic cardiotoxicity animal model. Cancer Res., 1992, 52, 194-201.
[91]
Speyer, J.L.; Green, M.D.; Zelenluch-Jacquotte, A.; Wernz, J.C.; Rey, M.; Sanger, J.; Kramer, E.; Ferrans, V.; Hochster, H.; Meyers, M. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J. Clin. Oncol., 1992, 10, 117-127.
[92]
BuLock, F.A.; Gabriel, H.M.; Oakhill, A.; Martin, R.P. Cardioprotection by ICRF187 against high dose anthracycline toxicity in children with malignant disease. Br. Heart J., 1993, 70, 185-188.
[93]
Wexler, L.H.; Andrich, M.P.; Venzon, D.; Berg, S.L.; Weaver-McClure, L.; Chen, C.C.; Dilsizian, V.; Avila, N.; Jarosinski, P.; Balis, F.M.; Poplack, D.G.; Horowitz, M. 9ikE. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J. Clin. Oncol., 1996, 14, 362-372.
[94]
Schiavetti, A.; Castello, M.A.; Versacci, P.; Varrasso, G.; Padula, A.; Ventriglia, F.; Werner, B.; Colloridi, V. Use of ICRF-187 for prevention of anthracycline cardiotoxicity in children: Preliminary results. Pediatr. Hematol. Oncol., 1997, 14, 213-222.
[95]
van Dalen, E.C.; Caron, H.N.; Dickinson, H.O.; Kremer, L.C. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev., 2011, 6CD003917
[96]
Sepe, D.M.; Ginsberg, J.P.; Balis, F.M. Dexrazoxane as a cardioprotectant in children receiving anthracyclines. Oncologist, 2010, 15, 1220-1226.
[97]
Lipshultz, S.E.; Adams, M.J. Cardiotoxicity after childhood cancer: beginning with the end in mind. J. Clin. Oncol., 2010, 28, 1276-1281.
[98]
Lipshultz, S.E.; Miller, T.M.; Scully, R.E.; Lipsitz, S.R.; Rifai, N.; Silverman, L.B.; Colan, S.D.; Neuberg, D.S.; Dahlberg, S.E.; Henkel, J.M.; Asselin, B.L.; Athale, U.H.; Clavell, L.A.; Laverdiere, C.; Michon, B.; Schorin, M.A.; Sallan, S.E. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J. Clin. Oncol., 2012, 30, 1042-1049.
[99]
Harake, D.; Franco, V.I.; Henkel, J.M.; Miller, T.L.; Lipshultz, S.E. Cardiotoxicity in childhood cancer survivors: Strategies for prevention and management. Future Cardiol., 2012, 8, 10.
[100]
Vavrova, A.; Jansova, H.; Mackova, E.; Machacek, M.; Haskova, P.; Tichotova, L.; Sterba, M.; Simunek, T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PLoS One, 2013, 8e76676
[101]
Ahmadi-Ashtiani, H.R.; Allameh, A.; Rastegar, H.; Mortaz, E.; Saraf, Z. Immunoregulatory effects of glutathione during mesenchymal stem cell differentiation to hepatocyte-like cells. Iran. J. Immunol., 2012, 9, 175-187.
[102]
Ramakrishnan, M.S.; Eswaraiah, A.; Crombet, T.; Piedra, P.; Saurez, G.; Iyer, H.; Arvind, A.S. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs, 2009, 1, 41-48.
[103]
Schumann, J.; Prockl, J.; Kiemer, A.K.; Vollmar, A.M.; Bang, R.; Tiegs, G. Silibinin protects mice from T cell dependent liver injury. J. Hepatol., 2003, 39, 333-340.
[104]
Dehmlow, C.; Erhard, J.; de Groot, H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology, 1996, 23, 749-754.
[105]
Hogan, F.S.; Krishnegowda, N.K.; Mikhailova, M.; Kahlenberg, M.S. Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J. Surg. Res., 2007, 143, 58-65.
[106]
Jiang, C.C.; Lai, F.; Thorne, R.F.; Yang, F.; Liu, H.; Hersey, P.; Zhang, X.D. MEKIndependent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin. Cancer Res., 2011, 17, 721-730.
[107]
Wang, L.; Saito, K.; Toda, M.; Hori, T.; Torii, M.; Ma, N.; Katayama, N.; Shiku, H.; Kuribayashi, K.; Kato, T. UV irradiation after immunization induces type 1 regulatory T cells that suppress Th2-type immune responses via secretion of IL-10. Immunobiology, 2010, 215, 124-132.
[108]
Kauntz, H.; Bousserouel, S.; Bousserouel, S.; Gosse, F.; Raul, F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis, 2011, 16, 1042-1053.
[109]
Roy, S.; Kaur, M.; Agarwal, C.; Tecklenburg, M.; Sclafani, R.A.; Agarwal, R. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol. Cancer Ther., 2007, 6, 2696-2707.
[110]
Khan, A.Q.; Khan, R.; Tahir, M.; Rehman, M.U.; Lateef, A.; Ali, F.; Hamiza, O.O.; Hasan, S.K.; Sultana, S. Silibinin inhibits tumor promotional triggers and tumorigenesis against chemically induced two-stage skin carcinogenesis in Swiss albino mice: possible role of oxidative stress and inflammation. Nutr. Cancer, 2014, 66, 249-258.
[111]
Wernerman, J.; Hammarkvist, F.; Ali, M.R.; Vinnars, E. Glutamine and ornithine-alpha-ketoglutarate but not branched-chain amino acids reduce the loss of muscle glutamine after surgical trauma. Metabolism, 1989, 38, 63-66.
[112]
Parry-Billings, M.; Evans, J.; Calder, P.C.; Newsholme, E.A. Does glutamine contribute to immunosuppression after major burns? Lancet, 1990, 336, 523-555.
[113]
Gaurav, K.; Goel, R.K.; Shukla, M.; Pandey, M. Glutamine: A novel approach to chemotherapy-induced toxicity. Indian J. Med. Paediatr. Oncol., 2012, 33, 13-20.
[114]
Wischmeyer, P.; Jayakar, D.; Williams, U.; Singleton, K.D.; Riehm, J.; Bacha, E.A.; Jeevanandam, V.; Christians, U.; Serkova, N. Single dose of glutamine preserves myocardial tissue metabolism, glutathione content, and enhances myocardial function following ischemia-reperfusion injury. J. Parenter. Enteral. Nutr, 2003, 27, 396-403.
[115]
Deberardinis, R.J.; Sayed, N.; Ditsworth, D.; Thompson, C.B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev., 2008, 18, 54-61.
[116]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458, 762-765.
[117]
Xue, H.; Sufit, A.J.D.; Wischmeyer, P.E. Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. J. Parenter. Enteral. Nutr, 2011, 35, 188-197.
[118]
Wischmeyer, P.E.; Lynch, J.; Liedel, J.; Wolfson, R.; Riehm, J.; Gottlieb, L.; Kahana, M. Glutamine administration reduces gram-negative bacteremia in severely burned patients: A prospective, randomized, double-blind trial versus isonitrogenous control. Crit. Care Med., 2001, 29, 2075-2080.
[119]
Wischmeyer, P.E.; Dhaliwal, R.; McCall, M.; Ziegler, T.R.; Heyland, D.K. Parenteral glutamine supplementation in critical illness: a systematic review. Crit. Care, 2014, 18, R76.
[121]
Weitzel, L.R.; Wischmeyer, P.E. Glutamine in critical illness: the time has come, the time is now. Crit. Care Clin., 2010, 26, 515-525.
[122]
Kratochwill, K.; Boehm, M.; Herzog, R.; Michael, A.; Salzer, L.E.; Lechner, M.; Kuster, L.; Bergmeister, K.; Mayer, A.R.B.; Aufricht, C. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrol. Dial. Transplant., 2012, 27, 937-946.
[123]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013972913
[124]
Díez, J.J.; Iglesias, P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol., 2003, 148, 293-300.
[125]
Hebbard, L.W.; Garlatti, M.L.; Young, L.J.T.; Cardiff, R.D.; Oshima, R.G.; Ranscht, B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res., 2008, 68, 1407-1416.
[126]
Denzel, M.S.; Scimia, M.C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest., 2010, 120, 4342-4352.
[127]
Parker-Duffen, J.L.; Nakamura, K.; Silver, M.; Kikuchi, R.; Tigges, U.; Yoshida, S.; Denzel, M.S.; Ranscht, B.; Walsh, K. T-cadherin is essential for adiponectin-mediated revascularization. J. Biol. Chem., 2013, 288, 24886-24897.
[128]
Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18, 1321.
[129]
Lin, H.; Yu, C.H.; Jen, C.Y.; Cheng, C.F.; Chou, Y.; Chang, C.C.; Juan, S.H. Adiponectin-mediated heme oxygenase-1 induction protects against iron-induced liver injury via a pparα-dependent mechanism. Am. J. Pathol., 2010, 177, 1697-1709.
[130]
Konishi, M.; Haraguchi, G.; Ohigashi, H.; Ishihara, T.; Saito, K.; Nakano, Y.; Isobe, M. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK up-regulation. Cardiovasc. Res., 2011, 89, 309-319.
[131]
Cheng, C.F.; Lian, W.S.; Chen, S.H.; Lai, P.F.; Li, H.F.; Lan, Y.F.; Cheng, W.T.; Lin, H. Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxygenase-1 signaling pathway. J. Cell. Physiol., 2012, 227, 239-249.
[132]
Srivastava, R.A.K.; Pinkosky, S.L.; Filippov, S.; Hanselman, J.C.; Cramer, C.T.; Newton, R.S. AMP-activated protein kinase: An emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J. Lipid Res., 2012, 53, 2490-2514.
[133]
Zhao, H.; Orhan, Y.C.; Zha, X.; Esencan, E.; Chatterton, R.T.; Bulun, S.E. AMP-activated protein kinase and energy balance in breast cancer. Am. J. Transl. Res., 2017, 9, 197-213.
[134]
Ballatori, E.; Roila, F.; Ruggeri, B.; Betti, M.; Sarti, S.; Soru, G.; Cruciani, G.; Di Maio, M.; Andrea, B.; Deuson, R.R. The impact of chemotherapy-induced nausea and vomiting on health-related quality of life. Support. Care Cancer, 2007, 15, 179-185.
[135]
Navari, R.M. Aprepitant: a neurokinin-1 receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting. Expert Rev. Anticancer Ther., 2004, 4, 715-724.
[136]
Aapro, M.; Carides, A.; Rapoport, B.L.; Schmoll, H.J.; Zhang, L.; Warr, D. Aprepitant and fosaprepitant: A 10-year review of efficacy and safety. Oncologist, 2015, 20, 450-458.
[137]
Grunberg, S.M.; Slusher, B.; Rugo, H.S. Emerging treatments in chemotherapy-induced nausea and vomiting. Clin. Adv. Hematol. Oncol., 2013, 11, 1-18.
[138]
Di Maio, M.; Bria, E.; Banna, G.L.; Puglisi, F.; Garassino, M.C.; Lorusso, D.; Perrone, F. Prevention of chemotherapy-induced nausea and vomiting and the role of neurokinin 1 inhibitors: from guidelines to clinical practice in solid tumors. Anticancer Drugs, 2013, 24, 99-111.
[139]
Aapro, M.S.; Schmoll, H.J.; Jahn, F.; Carides, A.D.; Webb, R.T. Review of the efficacy of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in a range of tumor types. Cancer Treat. Rev., 2013, 39, 113-117.
[140]
Langford, P.; Chrisp, P. Fosaprepitant and aprepitant: an update of the evidence for their place in the prevention of chemotherapyinduced nausea and vomiting. Core Evid., 2010, 5, 77-90.
[141]
Rojas, C.; Slusher, B.S. Mechanisms and latest clinical studies of new NK1 receptor antagonists for chemotherapy-induced nausea and vomiting: Rolapitant and NEPA (netupitant/palonosetron). Cancer Treat. Rev., 2015, 41, 904-913.
[142]
Navari, R.M.; Aapro, M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N. Engl. J. Med., 2016, 374, 1356-1367.
[143]
Bosnjak, S.M.; Gralla, R.J.; Schwartzberg, L. Prevention of chemotherapy-induced nausea: the role of neurokinin-1 (NK1) receptor antagonists. Support. Care Cancer, 2017, 25, 1661-1671.
[144]
Sejourne, A.; Noal, S.; Boone, M.; Bihan, C.; Sassier, M.; Andrejak, M.; Chauffert, B. Two cases of fatal encephalopathy related to ifosfamide: an adverse role of aprepitant? Case Rep. Oncol., 2014, 7, 669-672.
[145]
Gomez Raposo, C.; Pinto Marin, A.; Gonzalez Baron, M. Colony-stimulating factors: clinical evidence for treatment and prophylaxis of chemotherapy-induced febrile neutropenia. Clin. Transl. Oncol., 2006, 8, 729-734.
[146]
Mhaskar, R.; Clark, O.A.; Lyman, G.; Engel Ayer Botrel, T.; Morganti Paladini, L.; Djulbegovic, B. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. Cochrane Database Syst. Rev., 2014, 10CD003039
[147]
Sourgens, H.; Lefrere, F. A systematic review of available clinical evidence-filgrastim compared with lenograstim. Int. J. Clin. Pharmacol. Ther., 2011, 49, 510-518.
[148]
Haas, R.; Murea, S. The role of granulocyte colonystimulating factor in mobilization and transplantation of peripheral blood progenitor and stem cells. Cytokines Mol. Ther., 1995, 1, 249-270.
[149]
Waller, E.K. The role of sargramostim (rhGMCSF) as immunotherapy. Oncologist, 1995, 12, 22-26.
[150]
Arellano, M.L.; Langston, A.; Winton, E.; Flowers, C.R.; Waller, E.K. Treatment of relapsed acute leukemia after allogeneic transplantation: a single center experience. Biol. Blood Marrow Transplant., 2007, 13, 116-123.
[151]
Kelsey, P.J.; Oliveira, M.C.; Badoglio, M.; Sharrack, B.; Farge, D.; Snowden, J.A. Haematopoietic stem cell transplantation in autoimmune diseases: From basic science to clinical practice. Curr. Res. Transl. Med., 2016, 64, 71-82.
[152]
Mehta, H.M. Malandra, M.; Corey, S.J. G-CSF and GM-CSF in neutropenia. J. Immunol., 2015, 195, 1341-1349.
[153]
Henk, H.J.; Li, X.; Becker, L.K.; Xu, H.; Gong, Q.; Deeter, R.G.; Barron, R.L. Comparative effectiveness of colony-stimulating factors in febrile neutropenia prophylaxis: how results are affected by research design. J. Comp. Eff. Res., 2015, 4, 37-50.
[154]
Dhayal, S.; Morgan, N.G. Pharmacological characterization of the cytoprotective effects of polyunsaturated fatty acids in insulin-secreting BRIN-BD11 cells. Br. J. Pharmacol., 2011, 162, 1340-1350.
[155]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16, 26087-26124.
[156]
Dhayal, S.; Welters, H.J.; Morgan, N.G. Structural requirements for the cytoprotective actions of mono-unsaturated fatty acids in the pancreatic β-cell line, BRIN-BD11. Br. J. Pharmacol., 2008, 153, 1718-1727.
[157]
Martin, A. Cytoprotective compositions containing pyruvate and antioxidants. WO 1993016690 A1.. Publishing date Sep 2, 1993
[158]
Wilde, M.I.; Faulds, D. Oprelvekin: a review of its pharmacology and therapeutic potential in chemotherapy-induced thrombocytopenia. BioDrugs, 1998, 10, 159-171.
[161]
Berl, T.; Schwertschlag, U. Preclinical pharmacologic basis for clinical use of rhIL11 as an effective platelet-support agent. Oncology (Williston Park), 2000, 14, 12-20.
[162]
Sultani, M.; Stringer, A.M.; Bowen, J.M.; Gibson, R.J. Anti-Inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. Chemother. Res. Pract., 2012. 490804
[163]
Du, X.; Williams, D.A. Interleukin-11: review of molecular, cell biology, and clinical use. Blood, 1997, 89, 3897-3908.
[164]
Jung, Y.; Ahn, H.; Kim, D.S.; Hwang, Y.R.; Ho, S.H.; Kim, J.M.; Kim, S.; Ma, S.; Kim, S. Improvement of biological and pharmacokinetic features of human interleukin-11 by site-directed mutagenesis. Biochem. Biophys. Res. Commun., 2011, 405, 399-404.
[165]
Cantor, S.B.; Elting, L.S.; Hudson, D.V.; Rubenstein, E.B. Pharmacoeconomic analysis of oprelvekin (recombinant human interleukin11) for secondary prophylaxis of thrombocytopenia in solid tumor patients receiving chemotherapy. Cancer, 2003, 97, 3099-3106.
[167]
Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis. Genes Cancer, 2011, 2, 1097-1105.
[168]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9, 669-676.
[169]
Shimizu, T.; Jayawardana, B.; Tetsuka, M.; Miyamoto, A. Differential effect of follicle-stimulating hormone and estradiol on expression of vascular endothelial growth factor (VEGF)120, VEGF164 and their receptors in bovine granulose cells. J. Reprod. Dev., 2007, 53, 105-112.
[170]
Wulff, C.; Wilson, H.; Wiegand, S.J.; Rudge, J.S.; Fraser, H.M. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor trap R1R2. Endocrinology, 2002, 143, 2797-2807.
[171]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219, 983.
[172]
Johnson, K.E.; Wilgus, T.A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care, 2014, 3, 647-661.
[173]
Gora-Kupilas, K.; Josko, J. The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol., 2005, 43, 31-39.
[174]
Beazley-Long, N.; Jing Hua, J.; Jehle, T.; Hulse, R.P.; Dersch, R.; Lehrling, C.; Bevan, H.; Qiu, Y.; Lagreze, W.A.; Wynick, D.; Churchill, A.J.; Kehoe, P.; Harper, S.J.; Bates, D.O.; Lucy, F.; Donaldsonz, L.F. VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am. J. Pathol., 2013, 183, 918-929.
[175]
Ying Dai, Y.; Xu, M.; Wang, Y.; Pasha, Z.; Li, T.; Ashraf, M. HIF-1α induced-VEGF over-expression in bone marrow stem cells protects cardiomyocytes against ischemia. J. Mol. Cell. Cardiol., 2007, 42, 1036-1044.
[176]
de Vries, E.G.E.; Biesnu, B.; Willemse, P.H.; Mulder, N.H.; Stern, A.C.; Aalders, J.G.; Vellenga, E. A double blind placebo-controlled study with granulocyte-macrophage colony-stimulating factor during chemotherapy for ovarian carcinoma. Cancer Res., 1991, 51, 116-122.
[177]
Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.F.; Breitman, M.L.; Schuh, A.C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995, 376, 62-66.
[178]
Forstreuter, F.; Lucius, R.; Mentlein, R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J. Neuroimmunol., 2002, 132, 93-98.
[179]
Henriksen, K.; Karsdal, M.A.; Delaisse, J.M.; Engsig, M.T. RANKL and VEGF induce osteoclast chemotaxis through an ERK1/2 dependent mechanism. J. Biol. Chem., 2003, 278, 48745-48753.
[180]
Greenaway, J.; Connor, K.; Pedersen, H.G.; Coomber, B.L.; Lamarre, J.; Petrik, J. Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 2004, 145, 2896-2905.
[181]
Movahed, A.; Yu, L.; Thandapilly, S.J.; Louis, X.L.; Netticadan, T. Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury. Arch. Biochem. Biophys., 2012, 527, 74-80.
[182]
Xin, Y.; Zhang, S.; Gu, L.; Liu, S.; Gao, H.; You, Z.; Zhou, G.; Wen, L.; Yu, J.; Xuan, Y. Electrocardiographic and biochemical evidence for the cardioprotective effect of antioxidants in acute doxorubicin-induced cardiotoxicity in the beagle dogs. Biol. Pharm. Bull., 2011, 34, 1523-1526.
[183]
Elsherbiny, N.M.; Salama, M.F.; Said, E.; El-Sherbiny, M.; Al-Gayyar, M.M. Crocin protects against doxorubicin-induced myocardial toxicity in rats through down-regulation of inflammatory and apoptic pathways. Chem. Biol. Interact., 2016, 247, 39-48.
[184]
Lamas, D.J.M.; Nicoud, M.B.; Sterle, H.A.; Cremaschi, G.A.; Medina, V.A. Histamine: a potential cytoprotective agent to improve cancer therapy? Cell Death Dis., 2015, 6 e2029
[185]
Asiri, Y.A. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxid. Med. Cell. Longev., 2010, 3, 308-316.
[186]
Rao, M.S. Inhibition of the renin angiotensin aldosterone system: focus on aliskiren. J. Assoc. Physicians, 2010, 58, 102-108.
[187]
Das, A.; Xi, L.; Kukreja, R.C. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. J. Biol. Chem., 2005, 280, 12944-12955.
[188]
Vaiopoulos, A.G.; Marinou, K.; Christodoulides, C.; Koutsilieris, M. The role ofadiponectin in human vascular physiology. Int. J. Cardiol., 2012, 155, 188-193.
[189]
Ueng, S. Rasburicase (Elitek): A novel agent for tumor lysis syndrome. Proc. Bayl. Univ. Med. Cent., 2005, 18, 275-279.
[190]
Allopurinol. http:// www.cancer.ca/ en/ cancerinformation/diagnosis
and treatment/chemotherapy-and-other-drug-therapies/ supportive-
drugs/?region=on#ixzz53ZcNswuT (Accessed on 10 Feb.,
2019)
[191]
Chaveli-Lopez, B.; Bagan-Sebastian, J.V. Treatment of oral mucositis due to chemotherapy. J. Clin. Exp. Dent., 2016, 8, e201-e209.
[192]
Ghassemi-Barghi, N.; Varshosaz, J.; Etebari, M.; Dehkordi, A.J. Role of recombinant human erythropoietin loading chitosan-tripolyphosphate nanoparticles in busulfan-induced genotoxicity: Analysis of DNA fragmentation via comet assay in cultured HepG2 cells. Toxicol. In Vitro, 2016, 36, 46-52.
[193]
Kreidieh, F.Y.; Moukadem, H.A.; El Saghir, N.S. Overview, prevention and management of chemotherapy extravasation. World J. Clin. Oncol., 2016, 7, 87-97.
[194]
Bhattacharya, A. Methylselenocysteine: a promising antiangiogenic agent for overcoming drug delivery barriers in solid malignancies for therapeutic synergy with anticancer drugs. Expert Opin. Drug Deliv., 2011, 8, 749-763.
[195]
Akbulut, S.; Elbe, H.; Eris, C.; Dogan, Z.; Toprak, G.; Otan, E.; Erdemli, E.; Turkoz, Y. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J. Gastroenterol., 2014, 20, 10158-10165.
[196]
Olah, G.; Modis, K.; Gero, D.; Suzuki, K.; Dewitt, D.; Traber, D.L.; Szabo, C. Cytoprotective effect of γ-tocopherol against tumor necrosis factor α induced cell dysfunction in L929 cells. Int. J. Mol. Med., 2011, 28, 711-720.
[197]
Carr, A.C.; Vissers, M.C.; Cook, J.S. The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front. Oncol., 2014, 4, 283.
[198]
Pacini, N.; Borziani, F. Oncostatic-cytoprotective effect of melatonin and other bioactive molecules: A common target in mitochondrial respiration. Int. J. Mol. Sci., 2016, 17, 341.
[199]
Kalaiselvi, P.; Rajashree, K.; Bharathi Priya, L.; Padma, V.V. Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem. Toxicol., 2013, 56, 110-118.
[200]
Yuan, B.; Webster, T.J.; Roy, A.K. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation. Int. J. Nanomedicine, 2016, 11, 1427-1433.
[201]
Trivedi, P.P.; Tripathi, D.N.; Jena, G.B. Hesperetin protects testicular toxicity of doxorubicin in rat: role of NFκB, p38 and caspase-3. Food Chem. Toxicol., 2011, 49, 838-847.
[202]
Basu, A.; Bhattacharjee, A.; Bhattacharya, S. chemoprotectants in cancer chemotherapy: an update. Biomed. Res. J., 2016, 3, 157-181.
[203]
Raman, T.; Ramar, M.; Arumugam, M.; Nabavi, S.M.; Varsha, M.K. Cytoprotective mechanism of action of curcumin against cataract. Pharmacol. Rep., 2016, 68, 561-569.
[204]
Zhang, X.; Gao, S.; Tanaka, M.; Zhang, Z.; Huang, Y.; Mitsui, T.; Kamiyama, M.; Koizumi, S.; Fan, J.; Takeda, M.; Yao, J. Carbenoxolone inhibits TRPV4 channel‐initiated oxidative urothelial injury and ameliorates cyclophosphamide‐induced bladder dysfunction. J. Cell. Mol. Med., 2017, 21, 1791-1802.