Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

新型强效β-葡萄糖醛酸酶抑制剂的体内预测分析研究进展

卷 19, 期 11, 2019

页: [906 - 918] 页: 13

弟呕挨: 10.2174/1568009619666190320102238

价格: $65

摘要

背景:肠道β-葡萄糖醛酸苷酶在大肠癌发生中具有重要意义。对该酶的特异性抑制有助于防止葡萄糖醛酸苷致癌物的免疫再激活,从而保护肠道免受ROS(活性氧化物种)介导的致癌作用。 目标:基于计算机的进步为使用SwissADME和BOILED-Egg工具顺利进行药物设计和开发过程提供了广泛的研究。 方法:在我们设计的案例研究中,我们使用SwissADME和BOILED-Egg预测性计算工具来评估我们最近在体外评估的新型β-葡糖醛酸苷酶抑制剂的理化,人药代动力学,药物相似性,药物化学性质和膜通透性特征。 结果:在11种筛选的有效抑制剂中,化合物(8)相对于6个分子描述符表现出出色的生物利用度雷达,具有良好的(ADME)吸收,分布,代谢和排泄以及P-糖蛋白,CYP450同工酶和膜通透性特征。基于这些事实观察,可以预测化合物(8)可以有效地达到体内实验清除率,因此,在将来,它可以成为市场上用于治疗与过度表达甲状旁腺激素有关的各种疾病的药物。 β-葡萄糖醛酸苷酶,例如各种类型的癌症,尤其是激素依赖性癌症,例如(乳腺癌,前列腺癌和结肠癌)。此外,其他化合物(1-7和9-11)也显示出良好的预测药代动力学,药物化学,BBB和HIA膜通透性,并进行了轻微的铅优化,从而获得了改善的结果。 结论:因此,基于计算机的研究被认为为合理的药物设计和开发方法提供了鲁棒性,从而避免了在药物开发阶段后期候选药物失败的可能性。这项研究的结果有效地揭示了有效的β-葡萄糖醛酸苷酶抑制剂的可能属性,以进行进一步的实验评估。

关键词: β-葡萄糖醛酸苷酶,结肠直肠癌变,SwissADME,水煮蛋,药代动力学,药物相似性,血脑屏障(BBB),人体肠道吸收(HIA)。

图形摘要

[1]
Ahmad, S.; Hughes, M.A.; Lane, K.T.; Redinbo, M.R.; Yeh, L.A.; Scott, J.E. High throughput assay for discovery of bacterial β-glucuronidase inhibitors. Curr. Chem. Genomics, 2011, 5, 13-20.
[http://dx.doi.org/10.2174/1875397301105010013] [PMID: 21643506]
[2]
Di, Li; Feng, Bo; Theunis, C. Scott Obach A Perspective on the Prediction of Drug Pharmacokinetics and Disposition in Drug Research and Development Drug Metab Dispos, 2013. 41, p. 1975- 1993.
[3]
Hongmao, S.; Henrike, V.; Menghang, X.; Christopher, P. Austin, and ruili huang predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. Chem Inf Model., 2011, 51(10), 2474-2481.
[4]
Yousuf, M.; Shaikh, N.N. Zaheer ul-Haq & M.I Choudhary, Bioinformatics: A rational Combine approach used for in-silico identification and in-vitro evaluation of potent β-Glucuronidase Inhibitors. PLoS One, 2018. (December)
[http://dx.doi.org/10.1371/journal.pone.0200502] [PMID: 30517092]
[5]
Wong, A.W.; He, S.; Grubb, J.H.J.; Sly, W.S.; Withers, S.G. Identification of Glu-540 as the catalytic nucleophile of human beta-glucuronidase using electrospray mass spectrometry. J. Biol. Chem., 1998, 273(51), 34057-34062.
[http://dx.doi.org/10.1074/jbc.273.51.34057] [PMID: 9852062]
[6]
Walaszek, Z.; Szemraj, J.; Narog, M.; Adams, A.K.; Kilgore, J.; Sherman, U.; Hanausek, M. Metabolism, uptake, and excretion of a D-glucaric acid salt and its potential use in cancer prevention. Cancer Detect. Prev., 1997, 21(2), 178-190.
[PMID: 9101079]
[7]
Antoine Daina1, Olivier Michielin1,2,3 & Vincent Zoete1 SwissADME: a free web tool to Evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[8]
Daina, A.; Zoete, V. BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[9]
Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; Wallace, O.; Weir, A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov., 2015, 14(7), 475-486.
[http://dx.doi.org/10.1038/nrd4609] [PMID: 26091267]
[10]
Bansal, T.; Akhtar, N.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov. Today, 2009, 14(21-22), 1067-1074.
[http://dx.doi.org/10.1016/j.drudis.2009.07.010] [PMID: 19647803]
[11]
Aszalos, A. Drug-drug interactions affected by the transporter protein, P-glycoprotein (ABCB1, MDR1) I. Preclinical aspects. Drug Discov. Today, 2007, 12(19-20), 833-837.
[http://dx.doi.org/10.1016/j.drudis.2007.07.022] [PMID: 17933684]
[12]
Di, L. The role of drug metabolizing enzymes in clearance. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 379-393.
[http://dx.doi.org/10.1517/17425255.2014.876006] [PMID: 24392841]
[13]
Hollenberg, P.F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev., 2002, 34(1-2), 17-35.
[http://dx.doi.org/10.1081/DMR-120001387] [PMID: 11996009]
[14]
Huang, S-M.; Strong, J.M.; Zhang, L.; Reynolds, K.S.; Nallani, S.; Temple, R.; Abraham, S.; Habet, S.A.; Baweja, R.K.; Burckart, G.J.; Chung, S.; Colangelo, P.; Frucht, D.; Green, M.D.; Hepp, P.; Karnaukhova, E.; Ko, H.S.; Lee, J.I.; Marroum, P.J.; Norden, J.M.; Qiu, W.; Rahman, A.; Sobel, S.; Stifano, T.; Thummel, K.; Wei, X.X.; Yasuda, S.; Zheng, J.H.; Zhao, H.; Lesko, L.J. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J. Clin. Pharmacol., 2008, 48(6), 662-670.
[http://dx.doi.org/10.1177/0091270007312153] [PMID: 18378963]
[15]
Kirchmair, J.; Göller, A.H.; Lang, D.; Kunze, J.; Testa, B.; Wilson, I.D.; Glen, R.C.; Schneider, G. Predicting drug metabolism: experiment and/or computation? Nat. Rev. Drug Discov., 2015, 14(6), 387-404.
[http://dx.doi.org/10.1038/nrd4581] [PMID: 25907346]
[16]
Veith, H.; Southall, N.; Huang, R.; James, T.; Fayne, D.; Artemenko, N.; Shen, M.; Inglese, J.; Austin, C.P.; Lloyd, D.G.; Auld, D.S. Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat. Biotechnol., 2009, 27(11), 1050-1055.
[http://dx.doi.org/10.1038/nbt.1581] [PMID: 19855396]
[17]
Potts, R.O.; Guy, R.H. Predicting skin permeability. Pharm. Res., 1992, 9(5), 663-669.
[http://dx.doi.org/10.1023/A:1015810312465] [PMID: 1608900]
[18]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[19]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[20]
Egan, W.J.; Merz, K.M., Jr; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem., 2000, 43(21), 3867-3877.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[21]
Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem., 2001, 44(12), 1841-1846.
[http://dx.doi.org/10.1021/jm015507e] [PMID: 11384230]
[22]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[23]
Kubinyi, H. Drug research: myths, hype and reality. Nat. Rev. Drug Discov., 2003, 2(8), 665-668.
[http://dx.doi.org/10.1038/nrd1156] [PMID: 12904816]
[24]
Pliska, V. Testa, B.; van de Waterbeemd, H. In: Lipophilicity in Drug Action and Toxicology 1–6; Wiley-VCH Verlag GmbH. 1996
[http://dx.doi.org/10.1002/9783527614998]
[25]
Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov., 2012, 7(10), 863-875.
[http://dx.doi.org/10.1517/17460441.2012.714363] [PMID: 22992175]
[26]
Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci., 2009, 98(3), 861-893.
[http://dx.doi.org/10.1002/jps.21494] [PMID: 18683876]
[27]
Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of octanol-water partition coefficients by guiding an additive model with knowledge. J. Chem. Inf. Model., 2007, 47(6), 2140-2148.
[http://dx.doi.org/10.1021/ci700257y] [PMID: 17985865]
[28]
Wildman, S.A.; Crippen, G.M. Prediction of physicochemical parameters by atomic contributions. J. Chem. Inf. Model., 1999, 39, 868-873.
[29]
Moriguchi, I.; Shuichi, H.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple method of calculating octanol/water partition coefficient. Chem. Pharm. Bull. (Tokyo), 1992, 40, 127-130.
[http://dx.doi.org/10.1248/cpb.40.127]
[30]
Moriguchi, I.; Shuichi, H.; Nakagome, I.; Hirano, H. Comparison of reliability of log P values for Drugs calculated by several methods. Chem. Pharm. Bull. (Tokyo), 1994, 42, 976-978.
[http://dx.doi.org/10.1248/cpb.42.976]
[31]
Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model., 2012, 52(2), 420-428.
[http://dx.doi.org/10.1021/ci200387c] [PMID: 22196228]
[32]
John, S. Delaney, ESOL: Estimating aqueous solubility directly from molecular structure. J. Chem. Inf. Comput. Sci., 2004, 44, 1000-1005.
[http://dx.doi.org/10.1021/ci034243x]
[33]
Shih, H.P.; Zhang, X.; Aronov, A.M. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat. Rev. Drug Discov., 2018, 17(1), 19-33.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy