Review Article

耳鸣的褪黑素治疗分子特征:综述

卷 20, 期 11, 2019

页: [1112 - 1128] 页: 17

弟呕挨: 10.2174/1389450120666190319162147

价格: $65

摘要

耳鸣是一种听觉障碍,其特征在于没有外部声学刺激的声音感觉,这是由于过度水平的噪音,耳毒性剂和老化对听觉系统的损害引起的。神经可塑性,氧化/亚硝化应激和细胞凋亡在耳鸣的发病机制中起重要作用。与过度谷氨酸能神经传递相关的神经可塑性的表达导致在一个人的耳朵或头部产生异常声音。此外,响应谷氨酸过量释放的NMDA受体的过度活化和过表达导致初级听觉神经元中的钙超载和随后的细胞毒性。在病理条件下由不同类型的耳蜗细胞内源性地产生活性氧/氮物质,其导致细胞内组分的直接损伤和凋亡细胞死亡。耳蜗毛细胞死亡有助于听觉神经元的进行性传入神经衰弱,从而导致听觉通路的几个部分的异常活动。因此,靶向神经可塑性,氧化/亚硝化应激,细胞凋亡和自噬可以改善耳鸣。褪黑激素是内源性产生的吲哚胺同步昼夜节律和周期性节律。基于实验室研究表明褪黑激素对声损伤和耳毒性药物引起的耳蜗损伤的保护作用,以及报告褪黑激素最小化耳鸣严重程度的临床研究,褪黑素被认为是耳鸣患者的治疗选择。 。在这里,我们描述了褪黑激素对耳鸣的改善作用,重点是神经可塑性,氧化/亚硝化应激,细胞凋亡和自噬。

关键词: 耳鸣,褪黑激素,神经可塑性,氧化应激,自噬,细胞凋亡。

图形摘要

[1]
Wang H, Brozoski TJ, Turner JG, et al. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 2009; 164(2): 747-59.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.026] [PMID: 19699270]
[2]
Vanneste S, Plazier M. der Loo Ev, de Heyning PV, Congedo M, De Ridder D. The neural correlates of tinnitus-related distress. Neuroimage 2010; 52(2): 470-80.
[http://dx.doi.org/10.1016/j.neuroimage.2010.04.029] [PMID: 20417285]
[3]
Axelsson A, Ringdahl A. Tinnitus-a study of its prevalence and characteristics. Br J Audiol 1989; 23(1): 53-62.
[http://dx.doi.org/10.3109/03005368909077819] [PMID: 2784987]
[4]
Lanting CP, de Kleine E, van Dijk P. Neural activity underlying tinnitus generation: Results from PET and fMRI. Hear Res 2009; 255(1-2): 1-13.
[http://dx.doi.org/10.1016/j.heares.2009.06.009] [PMID: 19545617]
[5]
Bartels H, Staal MJ, Albers FW. Tinnitus and neural plasticity of the brain. Otol Neurotol 2007; 28(2): 178-84.
[http://dx.doi.org/10.1097/MAO.0b013e31802b3248] [PMID: 17255884]
[6]
Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: The neuroscience of tinnitus. J Neurosci 2010; 30(45): 14972-9.
[http://dx.doi.org/10.1523/JNEUROSCI.4028-10.2010] [PMID: 21068300]
[7]
Sun W, Lu J, Laundrie E. Neurotransmitter modulation relates with tinnitus signal generation and management. J Otol 2007; 2(2): 63-9.
[http://dx.doi.org/10.1016/S1672-2930(07)50016-4]
[8]
Schaette R, McAlpine D. Tinnitus with a normal audiogram: Physiological evidence for hidden hearing loss and computational model. J Neurosci 2011; 31(38): 13452-7.
[http://dx.doi.org/10.1523/JNEUROSCI.2156-11.2011] [PMID: 21940438]
[9]
Singer W, Zuccotti A, Jaumann M, et al. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: A novel molecular paradigm for understanding tinnitus. Mol Neurobiol 2013; 47(1): 261-79.
[http://dx.doi.org/10.1007/s12035-012-8372-8] [PMID: 23154938]
[10]
Lobarinas E, Salvi R, Ding D. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 2013; 302: 113-20.
[http://dx.doi.org/10.1016/j.heares.2013.03.012] [PMID: 23566980]
[11]
Hesser H, Weise C, Westin VZ, Andersson G. A systematic review and meta-analysis of randomized controlled trials of cognitive-behavioral therapy for tinnitus distress. Clin Psychol Rev 2011; 31(4): 545-53.
[http://dx.doi.org/10.1016/j.cpr.2010.12.006] [PMID: 21237544]
[12]
Hoare DJ, Kowalkowski VL, Kang S, Hall DA. Systematic review and meta-analyses of randomized controlled trials examining tinnitus management. Laryngoscope 2011; 121(7): 1555-64.
[http://dx.doi.org/10.1002/lary.21825] [PMID: 21671234]
[13]
De Ridder D, Vanneste S, Engineer ND, Kilgard MP. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: A case series. Neuromodulation 2014; 17(2): 170-9.
[http://dx.doi.org/10.1111/ner.12127] [PMID: 24255953]
[14]
Mazurek B, Haupt H, Olze H, Szczepek AJ. Stress and tinnitus-from bedside to bench and back. Front Syst Neurosci 2012; 6: 47.
[http://dx.doi.org/10.3389/fnsys.2012.00047] [PMID: 22701404]
[15]
Fornaro M, Martino M. Tinnitus psychopharmacology: A comprehensive review of its pathomechanisms and management. Neuropsychiatr Dis Treat 2010; 6: 209-18.
[http://dx.doi.org/10.2147/NDT.S10361] [PMID: 20628627]
[16]
Ruel J, Chabbert C, Nouvian R, et al. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci 2008; 28(29): 7313-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5335-07.2008] [PMID: 18632935]
[17]
Brozoski TJ, Wisner KW, Odintsov B, Bauer CA. Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model. PLoS One 2013; 8(10)e77674
[http://dx.doi.org/10.1371/journal.pone.0077674] [PMID: 24282480]
[18]
d’Aldin CG, Ruel J, Assié R, Pujol R, Puel J-L. Implication of NMDA type glutamate receptors in neural regeneration and neoformation of synapses after excitotoxic injury in the guinea pig cochlea. Int J Dev Neurosci 1997; 15(4-5): 619-29.
[http://dx.doi.org/10.1016/S0736-5748(96)00116-5] [PMID: 9263038]
[19]
Ruel J, Chen C, Pujol R, Bobbin RP, Puel J-L. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. J Physiol 1999; 518(Pt 3): 667-80.
[http://dx.doi.org/10.1111/j.1469-7793.1999.0667p.x] [PMID: 10420005]
[20]
Hu S-S, Mei L, Chen J-Y, Huang Z-W, Wu H. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus. Eur Arch Otorhinolaryngol 2016; 273(2): 325-32.
[http://dx.doi.org/10.1007/s00405-014-3479-3] [PMID: 25636249]
[21]
Hu S-S, Mei L, Chen J-Y, Huang Z-W, Wu H. Effects of salicylate on the inflammatory genes expression and synaptic ultrastructure in the cochlear nucleus of rats. Inflammation 2014; 37(2): 365-73.
[http://dx.doi.org/10.1007/s10753-013-9748-2] [PMID: 24092407]
[22]
Hu SS, Mei L, Chen JY, Huang ZW, Wu H. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat. Eur J Histochem 2014; 58(1): 2294.
[http://dx.doi.org/10.4081/ejh.2014.2294] [PMID: 24704997]
[23]
Hwang JH, Chen JC, Yang SY, Wang MF, Liu TC, Chan YC. Expression of COX-2 and NMDA receptor genes at the cochlea and midbrain in salicylate-induced tinnitus. Laryngoscope 2011; 121(2): 361-4.
[http://dx.doi.org/10.1002/lary.21283] [PMID: 21271589]
[24]
Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel JL. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 2003; 23(9): 3944-52.
[http://dx.doi.org/10.1523/JNEUROSCI.23-09-03944.2003] [PMID: 12736364]
[25]
Guitton MJ, Pujol R, Puel JL. m-Chlorophenylpiperazine exacerbates perception of salicylate-induced tinnitus in rats. Eur J Neurosci 2005; 22(10): 2675-8.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04436.x] [PMID: 16307611]
[26]
Ralli M, Troiani D, Podda MV, et al. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats. Acta Otorhinolaryngol Ital 2014; 34(3): 198-204.
[PMID: 24882929]
[27]
Guitton MJ, Dudai Y. Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plast 2007; 2007: 80904.
[http://dx.doi.org/10.1155/2007/80904] [PMID: 18301716]
[28]
Bing D, Lee SC, Campanelli D, et al. Cochlear NMDA receptors as a therapeutic target of noise-induced tinnitus. Cell Physiol Biochem 2015; 35(5): 1905-23.
[http://dx.doi.org/10.1159/000374000] [PMID: 25871611]
[29]
van de Heyning P, Muehlmeier G, Cox T, et al. Efficacy and safety of AM-101 in the treatment of acute inner ear tinnitus-a double-blind, randomized, placebo-controlled phase II study. Otol Neurotol 2014; 35(4): 589-97.
[http://dx.doi.org/10.1097/MAO.0000000000000268] [PMID: 24603353]
[30]
Figueiredo RR, Langguth B. Mello de OP, Aparecida de AA. Tinnitus treatment with memantine. Otolaryngol Head Neck Surg 2008; 138(4): 492-6.
[http://dx.doi.org/10.1016/j.otohns.2007.11.027] [PMID: 18359360]
[31]
Suckfüll M, Althaus M, Ellers-Lenz B, et al. A randomized, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of neramexane in patients with moderate to severe subjective tinnitus. BMC Ear Nose Throat Disord 2011; 11(1): 1.
[http://dx.doi.org/10.1186/1472-6815-11-1] [PMID: 21223542]
[32]
Escames G, Macías M, León J, et al. Calcium-dependent effects of melatonin inhibition of glutamatergic response in rat striatum. J Neuroendocrinol 2001; 13(5): 459-66.
[http://dx.doi.org/10.1046/j.1365-2826.2001.00656.x] [PMID: 11328457]
[33]
Choi T-Y, Kwon JE, Durrance ES, Jo SH, Choi SY, Kim KT. Melatonin inhibits voltage-sensitive Ca(2+) channel-mediated neurotransmitter release. Brain Res 2014; 1557: 34-42.
[http://dx.doi.org/10.1016/j.brainres.2014.02.023] [PMID: 24560601]
[34]
Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 2005; 22(9): 2231-7.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04408.x] [PMID: 16262661]
[35]
Fukunaga K, Horikawa K, Shibata S, Takeuchi Y, Miyamoto E. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. J Neurosci Res 2002; 70(6): 799-807.
[http://dx.doi.org/10.1002/jnr.10400] [PMID: 12444602]
[36]
Hosseinzadeh A, Kamrava SK, Joghataei MT, et al. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res 2016; 61(4): 411-25.
[http://dx.doi.org/10.1111/jpi.12362] [PMID: 27555371]
[37]
Collins DR, Davies SN. Melatonin blocks the induction of long-term potentiation in an N-methyl-D-aspartate independent manner. Brain Res 1997; 767(1): 162-5.
[http://dx.doi.org/10.1016/S0006-8993(97)00733-6] [PMID: 9365031]
[38]
Paula-Lima AC, Louzada PR, De Mello FG, Ferreira ST. Neuroprotection against Abeta and glutamate toxicity by melatonin: Are GABA receptors involved? Neurotox Res 2003; 5(5): 323-7.
[http://dx.doi.org/10.1007/BF03033152] [PMID: 14715451]
[39]
Griffen TC, Maffei A. GABAergic synapses: Their plasticity and role in sensory cortex. Front Cell Neurosci 2014; 8: 91.
[PMID: 24723851]
[40]
Mehrzadi S, Sadr S, Hosseinzadeh A, et al. Anticonvulsant activity of the ethanolic extract of Punica granatum L. seed. Neurol Res 2015; 37(6): 470-5.
[http://dx.doi.org/10.1179/1743132814Y.0000000460] [PMID: 25413687]
[41]
Baumann SW, Baur R, Sigel E. Subunit arrangement of γ-aminobutyric acid type A receptors. J Biol Chem 2001; 276(39): 36275-80.
[http://dx.doi.org/10.1074/jbc.M105240200] [PMID: 11466317]
[42]
Ouardouz M, Sastry BR. Change in diazepam sensitivity of GABAA currents after LTP induction in neurons of deep cerebellar nuclei. Neurosci Lett 2006; 393(2-3): 147-9.
[http://dx.doi.org/10.1016/j.neulet.2005.09.050] [PMID: 16226836]
[43]
Lehmann K, Steinecke A, Bolz J. GABA through the ages: Regulation of cortical function and plasticity by inhibitory interneurons. Neural Plast 2012; •••2012892784
[http://dx.doi.org/10.1155/2012/892784] [PMID: 22792496]
[44]
Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T. Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci USA 2011; 108(18): 7601-6.
[http://dx.doi.org/10.1073/pnas.1100223108] [PMID: 21502491]
[45]
Brozoski T, Odintsov B, Bauer C. Gamma-aminobutyric acid and glutamic acid levels in the auditory pathway of rats with chronic tinnitus: A direct determination using high resolution point-resolved proton magnetic resonance spectroscopy (H-MRS). Front Syst Neurosci 2012; 6: 9.
[http://dx.doi.org/10.3389/fnsys.2012.00009] [PMID: 22383901]
[46]
Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK. Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Neuroscience 1999; 93(1): 307-12.
[http://dx.doi.org/10.1016/S0306-4522(99)00121-9] [PMID: 10430494]
[47]
Murashita H, Tabuchi K, Sakai S, Uemaetomari I, Tsuji S, Hara A. The effect of a GABAA agonist muscimol on acoustic injury of the mouse cochlea. Neurosci Lett 2007; 418(1): 18-21.
[http://dx.doi.org/10.1016/j.neulet.2007.02.060] [PMID: 17353094]
[48]
Brozoski TJ, Spires TJD, Bauer CA. Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. J Assoc Res Otolaryngol 2007; 8(1): 105-18.
[http://dx.doi.org/10.1007/s10162-006-0067-2] [PMID: 17221143]
[49]
Bahmad FM Jr, Venosa AR, Oliveira CA. Benzodiazepines and GABAergics in treating severe disabling tinnitus of predominantly cochlear origin. Int Tinnitus J 2006; 12(2): 140-4.
[PMID: 17260879]
[50]
Skerritt JH, Johnston GA. Enhancement of GABA binding by benzodiazepines and related anxiolytics. Eur J Pharmacol 1983; 89(3-4): 193-8.
[http://dx.doi.org/10.1016/0014-2999(83)90494-6] [PMID: 6135616]
[51]
Shulman A, Strashun AM, Goldstein BA. GABAA-benzodiazepine-chloride receptor-targeted therapy for tinnitus control: Preliminary report. Int Tinnitus J 2002; 8(1): 30-6.
[PMID: 14763233]
[52]
Cheng X-P, Sun H, Ye Z-Y, Zhou J-N. Melatonin modulates the GABAergic response in cultured rat hippocampal neurons. J Pharmacol Sci 2012; 119(2): 177-85.
[http://dx.doi.org/10.1254/jphs.11183FP] [PMID: 22673185]
[53]
Niles LP, Pickering DS, Arciszewski MA. Effects of chronic melatonin administration on GABA and diazepam binding in rat brain. J Neural Transm (Vienna) 1987; 70(1-2): 117-24.
[http://dx.doi.org/10.1007/BF01252513] [PMID: 3668517]
[54]
Uberos J, Augustin-Morales MC, Molina Carballo A, Florido J, Narbona E, Muñoz-Hoyos A. Normalization of the sleep-wake pattern and melatonin and 6-sulphatoxy-melatonin levels after a therapeutic trial with melatonin in children with severe epilepsy. J Pineal Res 2011; 50(2): 192-6.
[PMID: 21044144]
[55]
Zhang L, Guo H-L, Zhang H-Q, et al. Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: Role of oxidative stress and balance between GABAergic and glutamatergic transmission. Am J Transl Res 2017; 9(5): 2231-42.
[PMID: 28559974]
[56]
Golombek DA, Martini M, Cardinali DP. Melatonin as an anxiolytic in rats: Time dependence and interaction with the central GABAergic system. Eur J Pharmacol 1993; 237(2-3): 231-6.
[http://dx.doi.org/10.1016/0014-2999(93)90273-K] [PMID: 8103462]
[57]
Hardeland R, Reiter RJ, Poeggeler B, Tan D-X. The significance of the metabolism of the neurohormone melatonin: Antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 1993; 17(3): 347-57.
[http://dx.doi.org/10.1016/S0149-7634(05)80016-8] [PMID: 8272286]
[58]
Gilles A, Ihtijarevic B, Wouters K. Van de HP. Using prophylactic antioxidants to prevent noise-induced hearing damage in young adults: A protocol for a double-blind, randomized controlled trial. Trials 2014; 15(1): 110.
[http://dx.doi.org/10.1186/1745-6215-15-110] [PMID: 24708640]
[59]
Ciorba A, Bianchini C, Pastore A, Mazzoli M. Pathogenesis of tinnitus: Any role for oxidative stress? Int Adv Otol 2013; 9(2): 249-54.
[60]
Poirrier AL, Pincemail J, Van Den Ackerveken P, Lefebvre PP, Malgrange B. Oxidative stress in the cochlea: An update. Curr Med Chem 2010; 17(30): 3591-604.
[http://dx.doi.org/10.2174/092986710792927895] [PMID: 20738243]
[61]
Henderson D, Bielefeld EC, Harris KC, Hu BH. The role of oxidative stress in noise-induced hearing loss. Ear Hear 2006; 27(1): 1-19.
[http://dx.doi.org/10.1097/01.aud.0000191942.36672.f3] [PMID: 16446561]
[62]
Mukherjea D, Whitworth CA, Nandish S, Dunaway GA, Rybak LP, Ramkumar V. Expression of the kidney injury molecule 1 in the rat cochlea and induction by cisplatin. Neuroscience 2006; 139(2): 733-40.
[http://dx.doi.org/10.1016/j.neuroscience.2005.12.044] [PMID: 16464536]
[63]
Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 2004; 279(44): 46065-72.
[http://dx.doi.org/10.1074/jbc.M403046200] [PMID: 15326186]
[64]
Watanabe K, Hess A, Bloch W, Michel O. Expression of inducible nitric oxide synthase (iNOS/NOS II) in the vestibule of guinea pigs after the application of cisplatin. Anticancer Drugs 2000; 11(1): 29-32.
[http://dx.doi.org/10.1097/00001813-200001000-00005] [PMID: 10757560]
[65]
Hong SH, Park SK, Cho Y-S, et al. Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig. Hear Res 2006; 211(1-2): 46-53.
[http://dx.doi.org/10.1016/j.heares.2005.08.009] [PMID: 16289993]
[66]
Watanabe K, Inai S, Hess A, Michel O, Yagi T. Acoustic stimulation promotes the expression of inducible nitric oxide synthase in the vestibule of guinea pigs. Acta Otolaryngol Suppl 2004; (553): 54-7.
[http://dx.doi.org/10.1080/03655230410017670] [PMID: 15277037]
[67]
Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet 2005; 39: 359-407.
[http://dx.doi.org/10.1146/annurev.genet.39.110304.095751] [PMID: 16285865]
[68]
Ewert DL, Lu J, Li W, Du X, Floyd R, Kopke R. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss. Hear Res 2012; 285(1-2): 29-39.
[http://dx.doi.org/10.1016/j.heares.2012.01.013] [PMID: 22326291]
[69]
Honkura Y, Matsuo H, Murakami S, et al. Nrf2 is a key target for prevention of noise-induced hearing loss by reducing oxidative damage of cochlea. Sci Rep 2016; 6: 19329.
[http://dx.doi.org/10.1038/srep19329] [PMID: 26776972]
[70]
Fetoni AR, Ralli M, Sergi B, Parrilla C, Troiani D, Paludetti G. Protective effects of N-acetylcysteine on noise-induced hearing loss in guinea pigs. Acta Otorhinolaryngol Ital 2009; 29(2): 70-5.
[PMID: 20111615]
[71]
Attias J, Weisz G, Almog S, et al. Oral magnesium intake reduces permanent hearing loss induced by noise exposure. Am J Otolaryngol 1994; 15(1): 26-32.
[http://dx.doi.org/10.1016/0196-0709(94)90036-1] [PMID: 8135325]
[72]
Savastano M, Brescia G, Marioni G. Antioxidant therapy in idiopathic tinnitus: Preliminary outcomes. Arch Med Res 2007; 38(4): 456-9.
[http://dx.doi.org/10.1016/j.arcmed.2006.12.004] [PMID: 17416295]
[73]
Jahanban-Esfahlan R, Mehrzadi S, Reiter RJ, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: Involvement of circadian clock genes. Br J Pharmacol 2018; 175(16): 3230-8.
[http://dx.doi.org/10.1111/bph.13898] [PMID: 28585236]
[74]
Majidinia M, Sadeghpour A, Mehrzadi S, Reiter RJ, Khatami N, Yousefi B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J Pineal Res 2017; 63(1)
[http://dx.doi.org/10.1111/jpi.12416] [PMID: 28439991]
[75]
Reiter RJ, Tan D-X, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S. Medical implications of melatonin: Receptor-mediated and receptor-independent actions. Adv Med Sci 2007; 52: 11-28.
[PMID: 18217386]
[76]
Mehrzadi S, Kamrava SK, Dormanesh B, et al. Melatonin synergistically enhances protective effect of atorvastatin against gentamicin-induced nephrotoxicity in rat kidney. Can J Physiol Pharmacol 2016; 94(3): 265-71.
[http://dx.doi.org/10.1139/cjpp-2015-0277] [PMID: 26762621]
[77]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[78]
Goudarzi M, Khodayar MJ, Hosseini Tabatabaei SMT, Ghaznavi H, Fatemi I, Mehrzadi S. Pretreatment with melatonin protects against cyclophosphamide-induced oxidative stress and renal damage in mice. Fundam Clin Pharmacol 2017; 31(6): 625-35.
[http://dx.doi.org/10.1111/fcp.12303] [PMID: 28692163]
[79]
Mehrzadi S, Safa M, Kamrava SK, Darabi R, Hayat P, Motevalian M. Protective mechanisms of melatonin against hydrogen-peroxide-induced toxicity in human bone-marrow-derived mesenchymal stem cells. Can J Physiol Pharmacol 2016; (999): 1-14.
[PMID: 28177678]
[80]
Ghaznavi H, Mehrzadi S, Dormanesh B, et al. Comparison of the protective effects of melatonin and silymarin against gentamicin-induced nephrotoxicity in rats. J Evid Based Complementary Altern Med 2016; 21(4): NP49-55.
[http://dx.doi.org/10.1177/2156587215621672] [PMID: 26703224]
[81]
Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R. Interactions of melatonin and its metabolites with the ABTS cation radical: Extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J Pineal Res 2006; 41(4): 374-81.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00379.x] [PMID: 17014695]
[82]
Reiter RJ, Tan D-X, Galano A. Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 2014; 5: 377.
[http://dx.doi.org/10.3389/fphys.2014.00377] [PMID: 25339906]
[83]
Winiarska K, Dzik JM, Labudda M, et al. Melatonin nephroprotective action in Zucker diabetic fatty rats involves its inhibitory effect on NADPH oxidase. J Pineal Res 2016; 60(1): 109-17.
[http://dx.doi.org/10.1111/jpi.12296] [PMID: 26514550]
[84]
Zhou J, Zhang S, Zhao X, Wei T. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-β1-42. J Pineal Res 2008; 45(2): 157-65.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00570.x] [PMID: 18298462]
[85]
Chen Y-C, Sheen J-M, Tain Y-L, et al. Alterations in NADPH oxidase expression and blood-brain barrier in bile duct ligation-treated young rats: Effects of melatonin. Neurochem Int 2012; 60(8): 751-8.
[http://dx.doi.org/10.1016/j.neuint.2012.03.021] [PMID: 22710394]
[86]
Nakao T, Morita H, Maemura K, et al. Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidative properties. J Pineal Res 2013; 55(3): 287-93.
[http://dx.doi.org/10.1111/jpi.12071] [PMID: 23815626]
[87]
Hung MW, Kravtsov GM, Lau CF, Poon AMS, Tipoe GL, Fung ML. Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J Pineal Res 2013; 55(3): 247-56.
[http://dx.doi.org/10.1111/jpi.12067] [PMID: 23869411]
[88]
Yeung HM, Hung MW, Lau CF, Fung ML. Cardioprotective effects of melatonin against myocardial injuries induced by chronic intermittent hypoxia in rats. J Pineal Res 2015; 58(1): 12-25.
[http://dx.doi.org/10.1111/jpi.12190] [PMID: 25369321]
[89]
Suofu Y, Li W, Jean-Alphonse FG, et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci USA 2017; 114(38): E7997-8006.
[http://dx.doi.org/10.1073/pnas.1705768114] [PMID: 28874589]
[90]
Lopez-Gonzalez MA, Guerrero JM, Delgado F. Presence of the pineal hormone melatonin in rat cochlea: Its variations with lighting conditions. Neurosci Lett 1997; 238(1-2): 81-3.
[http://dx.doi.org/10.1016/S0304-3940(97)00844-6] [PMID: 9464660]
[91]
Biesalski HK, Welker HA, Thalmann R, Vollrath L. Melatonin and other serotonin derivatives in the guinea pig membranous cochlea. Neurosci Lett 1988; 91(1): 41-6.
[http://dx.doi.org/10.1016/0304-3940(88)90246-7] [PMID: 2459636]
[92]
Karlidağ T, Yalçin S, Oztürk A, et al. The role of free oxygen radicals in noise induced hearing loss: Effects of melatonin and methylprednisolone. Auris Nasus Larynx 2002; 29(2): 147-52.
[http://dx.doi.org/10.1016/S0385-8146(01)00137-7] [PMID: 11893449]
[93]
Lopez-Gonzalez MA, Guerrero JM, Rojas F, Delgado F. Ototoxicity caused by cisplatin is ameliorated by melatonin and other antioxidants. J Pineal Res 2000; 28(2): 73-80.
[http://dx.doi.org/10.1034/j.1600-079X.2001.280202.x] [PMID: 10709968]
[94]
Ye LF, Tao ZZ, Hua QQ, et al. Protective effect of melatonin against gentamicin ototoxicity. J Laryngol Otol 2009; 123(6): 598-602.
[http://dx.doi.org/10.1017/S002221510800385X] [PMID: 18957160]
[95]
Huang M, Sun X, Cao X, Hu Q, Zhao M, Yu Y. The protective effect of melatonin on auditory cortex toxicity induced by cis-platinum Zhongguo ying yong sheng li xue za zhi= Zhongguo yingyong shenglixue zazhi= Chinese journal of applied physiology 2009; 25(4): 539-42
[96]
Pyykkö I, Zou J, Kentala E, Stephens D. Tinnitus treatment: Are drugs effective? Audiol Med 2008; 6(1): 25-39.
[http://dx.doi.org/10.1080/16513860801948186]
[97]
Knipper M, Van Dijk P, Nunes I, Rüttiger L, Zimmermann U. Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 2013; 111: 17-33.
[http://dx.doi.org/10.1016/j.pneurobio.2013.08.002] [PMID: 24012803]
[98]
Tabuchi K, Nishimura B, Nakamagoe M, Hayashi K, Nakayama M, Hara A. Ototoxicity: Mechanisms of cochlear impairment and its prevention. Curr Med Chem 2011; 18(31): 4866-71.
[http://dx.doi.org/10.2174/092986711797535254] [PMID: 21919841]
[99]
Lahne M, Gale JE. Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 2008; 28(19): 4918-28.
[http://dx.doi.org/10.1523/JNEUROSCI.4914-07.2008] [PMID: 18463245]
[100]
Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U. Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 2002; 163(1-2): 71-81.
[http://dx.doi.org/10.1016/S0378-5955(01)00380-X] [PMID: 11788201]
[101]
Nakamagoe M, Tabuchi K, Uemaetomari I, Nishimura B, Hara A. Estradiol protects the cochlea against gentamicin ototoxicity through inhibition of the JNK pathway. Hear Res 2010; 261(1-2): 67-74.
[http://dx.doi.org/10.1016/j.heares.2010.01.004] [PMID: 20074632]
[102]
Wei X, Zhao L, Liu J, Dodel RC, Farlow MR, Du Y. Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 2005; 131(2): 513-21.
[http://dx.doi.org/10.1016/j.neuroscience.2004.11.014] [PMID: 15708492]
[103]
Jamesdaniel S, Hu B, Kermany MH, et al. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear. J Proteomics 2011; 75(2): 410-24.
[http://dx.doi.org/10.1016/j.jprot.2011.08.007] [PMID: 21871588]
[104]
Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, Pae H-O. Mitogen-activated protein kinases and reactive oxygen species: How can ROS activate MAPK pathways? J Signal Transduct 2011; •••2011792639
[http://dx.doi.org/10.1155/2011/792639] [PMID: 21637379]
[105]
Cagnol S, Chambard JC. ERK and cell death: Mechanisms of ERK-induced cell death-apoptosis, autophagy and senescence. FEBS J 2010; 277(1): 2-21.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07366.x] [PMID: 19843174]
[106]
Monje P, Hernández-Losa J, Lyons RJ, Castellone MD, Gutkind JS. Regulation of the transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase PIN1. J Biol Chem 2005; 280(42): 35081-4.
[http://dx.doi.org/10.1074/jbc.C500353200] [PMID: 16123044]
[107]
Breitwieser W, Lyons S, Flenniken AM, et al. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev 2007; 21(16): 2069-82.
[http://dx.doi.org/10.1101/gad.430207] [PMID: 17699753]
[108]
Cazanave SC, Mott JL, Elmi NA, et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 2009; 284(39): 26591-602.
[http://dx.doi.org/10.1074/jbc.M109.022491] [PMID: 19638343]
[109]
Sha S-H, Chen F-Q, Schacht J. Activation of cell death pathways in the inner ear of the aging CBA/J mouse. Hear Res 2009; 254(1-2): 92-9.
[http://dx.doi.org/10.1016/j.heares.2009.04.019] [PMID: 19422898]
[110]
Wang J, Ladrech S, Pujol R, Brabet P, Van De Water TR, Puel J-L. Caspase inhibitors, but not c-Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 2004; 64(24): 9217-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1581] [PMID: 15604295]
[111]
Ron D, Hubbard SR. How IRE1 reacts to ER stress. Cell 2008; 132(1): 24-6.
[http://dx.doi.org/10.1016/j.cell.2007.12.017] [PMID: 18191217]
[112]
Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 2001; 276(36): 33869-74.
[http://dx.doi.org/10.1074/jbc.M102225200] [PMID: 11448953]
[113]
Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 2002; 277(15): 13045-52.
[http://dx.doi.org/10.1074/jbc.M110636200] [PMID: 11821395]
[114]
Fung TS, Liao Y, Liu DX. The endoplasmic reticulum stress sensor IRE1α protects cells from apoptosis induced by the coronavirus infectious bronchitis virus. J Virol 2014; 88(21): 12752-64.
[http://dx.doi.org/10.1128/JVI.02138-14] [PMID: 25142592]
[115]
Liao Y, Fung TS, Huang M, Fang SG, Zhong Y, Liu DX. Upregulation of CHOP/GADD153 during coronavirus infectious bronchitis virus infection modulates apoptosis by restricting activation of the extracellular signal-regulated kinase pathway. J Virol 2013; 87(14): 8124-34.
[http://dx.doi.org/10.1128/JVI.00626-13] [PMID: 23678184]
[116]
Hu J, Li B, Apisa L, et al. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice. Cell Death Dis 2016; 7(11)e2485
[http://dx.doi.org/10.1038/cddis.2016.386] [PMID: 27882946]
[117]
Kalinec GM, Thein P, Parsa A, et al. Acetaminophen and NAPQI are toxic to auditory cells via oxidative and endoplasmic reticulum stress-dependent pathways. Hear Res 2014; 313: 26-37.
[http://dx.doi.org/10.1016/j.heares.2014.04.007] [PMID: 24793116]
[118]
Van Rossom S, Op de Beeck K, Hristovska V, Winderickx J, Van Camp G. The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways. Front Cell Neurosci 2015; 9: 231.
[http://dx.doi.org/10.3389/fncel.2015.00231] [PMID: 26236191]
[119]
Xue Q, Li C, Chen J, Guo H, Li D, Wu X. The Protective effect of the endoplasmic reticulum stress-related factors BiP/GRP78 and CHOP/Gadd153 on noise-induced hearing loss in guinea pigs. Noise Health 2016; 18(84): 247-55.
[http://dx.doi.org/10.4103/1463-1741.192481] [PMID: 27762253]
[120]
Xue F, Shi C, Chen Q, et al. Melatonin mediates protective effects against kainic acid-induced neuronal death through safeguarding ER stress and mitochondrial disturbance. Front Mol Neurosci 2017; 10: 49.
[http://dx.doi.org/10.3389/fnmol.2017.00049] [PMID: 28293167]
[121]
Andrabi SA, Sayeed I, Siemen D, Wolf G, Horn TF. Direct inhibition of the mitochondrial permeability transition pore: A possible mechanism responsible for anti-apoptotic effects of melatonin. FASEB J 2004; 18(7): 869-71.
[http://dx.doi.org/10.1096/fj.03-1031fje] [PMID: 15033929]
[122]
Radogna F, Cristofanon S, Paternoster L, et al. Melatonin antagonizes the intrinsic pathway of apoptosis via mitochondrial targeting of Bcl-2. J Pineal Res 2008; 44(3): 316-25.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00532.x] [PMID: 18339127]
[123]
Radogna F, Paternoster L, Albertini MC, et al. Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. J Pineal Res 2007; 43(2): 154-62.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00455.x] [PMID: 17645693]
[124]
Fang J, Yan Y, Teng X, et al. Melatonin prevents senescence of canine adipose-derived mesenchymal stem cells through activating NRF2 and inhibiting ER stress. Aging (Albany NY) 2018; 10(10): 2954-72.
[http://dx.doi.org/10.18632/aging.101602] [PMID: 30362962]
[125]
Lin AM, Fang SF, Chao PL, Yang CH. Melatonin attenuates arsenite-induced apoptosis in rat brain: Involvement of mitochondrial and endoplasmic reticulum pathways and aggregation of α-synuclein. J Pineal Res 2007; 43(2): 163-71.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00456.x] [PMID: 17645694]
[126]
Ji YL, Wang H, Meng C, et al. Melatonin alleviates cadmium-induced cellular stress and germ cell apoptosis in testes. J Pineal Res 2012; 52(1): 71-9.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00921.x] [PMID: 21793897]
[127]
Sharma S, Sarkar J, Haldar C, Sinha S. Melatonin reverses fas, E2F-1 and endoplasmic reticulum stress mediated apoptosis and dysregulation of autophagy induced by the herbicide atrazine in murine splenocytes. PLoS One 2014; 9(9)e108602
[http://dx.doi.org/10.1371/journal.pone.0108602] [PMID: 25259610]
[128]
Si Choi. Melatonin reduces endoplasmic reticulum stress and corneal dystrophy‐associated TGFBI p through activation of endoplasmic reticulum‐associated protein degradation. J Pineal Res 2017; 63(3)e12426
[http://dx.doi.org/10.1111/jpi.12426]
[129]
Wang H, Li L, Zhao M, et al. Melatonin alleviates lipopolysaccharide-induced placental cellular stress response in mice. J Pineal Res 2011; 50(4): 418-26.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00860.x] [PMID: 21355878]
[130]
Das A, McDowell M, Pava MJ, et al. The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-α toxicity involves membrane melatonin receptors. J Pineal Res 2010; 48(2): 157-69.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00739.x] [PMID: 20082663]
[131]
Bas E, Martinez-Soriano F, Láinez JM, Marco J. An experimental comparative study of dexamethasone, melatonin and tacrolimus in noise-induced hearing loss. Acta Otolaryngol 2009; 129(4): 385-9.
[http://dx.doi.org/10.1080/00016480802566279] [PMID: 19051071]
[132]
Jung S, Bahk CW, Suh M-W, Jung J-Y. Melatonin Prevents Noise Induced Hearing Threshold Shift and Hair Cell Loss in Rat 2005.
[133]
Reiter RJ, Tan DX, Korkmaz A, Fuentes-Broto L. Drug-mediated ototoxicity and tinnitus: Alleviation with melatonin. J Physiol Pharmacol 2011; 62(2): 151-7.
[PMID: 21673362]
[134]
Lopez-Gonzalez MA, Guerrero JM, Torronteras R, Osuna C, Delgado F. Ototoxicity caused by aminoglycosides is ameliorated by melatonin without interfering with the antibiotic capacity of the drugs. J Pineal Res 2000; 28(1): 26-33.
[http://dx.doi.org/10.1034/j.1600-079x.2000.280104.x] [PMID: 10626598]
[135]
Oh KH, Rah YC, Hwang KH, et al. Melatonin mitigates neomycin-induced hair cell injury in zebrafish. Drug Chem Toxicol 2017; 40(4): 390-6.
[http://dx.doi.org/10.1080/01480545.2016.1244679] [PMID: 27855522]
[136]
Kim J-B, Jung JY, Ahn J-C, Rhee CK, Hwang H-J. Antioxidant and anti-apoptotic effect of melatonin on the vestibular hair cells of rat utricles. Clin Exp Otorhinolaryngol 2009; 2(1): 6-12.
[http://dx.doi.org/10.3342/ceo.2009.2.1.6] [PMID: 19434285]
[137]
Bas E, Van De Water TR, Gupta C, et al. Efficacy of three drugs for protecting against gentamicin-induced hair cell and hearing losses. Br J Pharmacol 2012; 166(6): 1888-904.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01890.x] [PMID: 22320124]
[138]
Demir MG, Altıntoprak N, Aydın S, Kösemihal E, Başak K. Effect of Transtympanic Injection of Melatonin on Cisplatin-Induced Ototoxicity. J Int Adv Otol 2015; 11(3): 202-6.
[http://dx.doi.org/10.5152/iao.2015.1094] [PMID: 26915150]
[139]
Yang H, Pang J, Xiong H, et al. The protective effect of autophagy on ischemia/reperfusion-induced hearing loss: Implications for sudden hearing loss. Neuroreport 2017; 28(17): 1157-63.
[http://dx.doi.org/10.1097/WNR.0000000000000897] [PMID: 28953095]
[140]
Yang D-J, Zhu L, Ren J, Ma R-J, Zhu H, Xu J. Dysfunction of autophagy as the pathological mechanism of motor neuron disease based on a patient-specific disease model. Neurosci Bull 2015; 31(4): 445-51.
[http://dx.doi.org/10.1007/s12264-015-1541-9] [PMID: 26219222]
[141]
Fujimoto C, Iwasaki S, Urata S, et al. Autophagy is essential for hearing in mice. Cell Death Dis 2017; 8(5)e2780
[http://dx.doi.org/10.1038/cddis.2017.194] [PMID: 28492547]
[142]
Yuan H, Wang X, Hill K, Chen J, Lemasters J, Yang S-M, et al. Autophagy attenuates noise-induced hearing loss by reducing oxidative stress Antioxidants & redox signaling 2015; 22(15): 1308- 24.
[http://dx.doi.org/10.1089/ars.2014.6004]]
[143]
Hayashi K, Dan K, Goto F, et al. The autophagy pathway maintained signaling crosstalk with the Keap1-Nrf2 system through p62 in auditory cells under oxidative stress. Cell Signal 2015; 27(2): 382-93.
[http://dx.doi.org/10.1016/j.cellsig.2014.11.024] [PMID: 25435427]
[144]
Dehdashtian E, Mehrzadi S, Yousefi B, et al. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci 2018; 193: 20-33.
[http://dx.doi.org/10.1016/j.lfs.2017.12.001] [PMID: 29203148]
[145]
Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[146]
Noda NN, Inagaki F. Mechanisms of autophagy. Annu Rev Biophys 2015; 44: 101-22.
[http://dx.doi.org/10.1146/annurev-biophys-060414-034248] [PMID: 25747593]
[147]
Bento CF, Renna M, Ghislat G, et al. Mammalian autophagy: How does it work? Annu Rev Biochem 2016; 85: 685-713.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014556] [PMID: 26865532]
[148]
Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 2014; 16(6): 495-501.
[http://dx.doi.org/10.1038/ncb2979] [PMID: 24875736]
[149]
Mehrpour M, Esclatine A, Beau I, Codogno P. Overview of macroautophagy regulation in mammalian cells. Cell Res 2010; 20(7): 748-62.
[http://dx.doi.org/10.1038/cr.2010.82] [PMID: 20548331]
[150]
Tsuchihashi NA, Hayashi K, Dan K, et al. Autophagy through 4EBP1 and AMPK regulates oxidative stress-induced premature senescence in auditory cells. Oncotarget 2015; 6(6): 3644-55.
[http://dx.doi.org/10.18632/oncotarget.2874] [PMID: 25682865]
[151]
Föller M, Jaumann M, Dettling J, et al. AMP-activated protein kinase in BK-channel regulation and protection against hearing loss following acoustic overstimulation. FASEB J 2012; 26(10): 4243-53.
[http://dx.doi.org/10.1096/fj.12-208132] [PMID: 22767231]
[152]
Menardo J, Tang Y, Ladrech S, Lenoir M, Casas F, Michel C, et al. Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse Cochlea. Antioxidants Redox Signaling 2012; 16(3): 263-74.
[http://dx.doi.org/10.1089/ars.2011.4037]
[153]
Youn CK, Kim J, Park J-H, Do NY, Cho SI. Role of autophagy in cisplatin-induced ototoxicity. Int J Pediatr Otorhinolaryngol 2015; 79(11): 1814-9.
[http://dx.doi.org/10.1016/j.ijporl.2015.08.012] [PMID: 26307546]
[154]
Kim YJ, Tian C, Kim J, et al. Autophagic flux, a possible mechanism for delayed gentamicin-induced ototoxicity. Sci Rep 2017; 7: 41356.
[http://dx.doi.org/10.1038/srep41356] [PMID: 28145495]
[155]
Coto-Montes A, Boga JA, Rosales-Corral S, Fuentes-Broto L, Tan D-X, Reiter RJ. Role of melatonin in the regulation of autophagy and mitophagy: A review. Mol Cell Endocrinol 2012; 361(1-2): 12-23.
[http://dx.doi.org/10.1016/j.mce.2012.04.009] [PMID: 22575351]
[156]
Areti A, Komirishetty P, Akuthota M, Malik RA, Kumar A. Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J Pineal Res 2017; 62(3)
[http://dx.doi.org/10.1111/jpi.12393] [PMID: 28118492]
[157]
Choi SI, Kim KS, Oh JY, Jin JY, Lee GH, Kim EK. Melatonin induces autophagy via an mTOR-dependent pathway and enhances clearance of mutant-TGFBIp. J Pineal Res 2013; 54(4): 361-72.
[http://dx.doi.org/10.1111/jpi.12039] [PMID: 23363291]
[158]
Lin C, Chao H, Li Z, et al. Melatonin attenuates traumatic brain injury-induced inflammation: A possible role for mitophagy. J Pineal Res 2016; 61(2): 177-86.
[http://dx.doi.org/10.1111/jpi.12337] [PMID: 27117839]
[159]
Cao S, Shrestha S, Li J, et al. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 2017; 7(1): 2417.
[http://dx.doi.org/10.1038/s41598-017-02679-z] [PMID: 28546552]
[160]
Chen J, Wang L, Wu C, et al. Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res 2014; 56(1): 12-9.
[http://dx.doi.org/10.1111/jpi.12086] [PMID: 24033352]
[161]
Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Melatonin-induced autophagy protects against human prion protein-mediated neurotoxicity. J Pineal Res 2012; 53(2): 138-46.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00980.x] [PMID: 22335252]
[162]
Ding K, Xu J, Wang H, Zhang L, Wu Y, Li T. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem Int 2015; 91: 46-54.
[http://dx.doi.org/10.1016/j.neuint.2015.10.008] [PMID: 26527380]
[163]
Rui BB, Chen H, Jang L, et al. Melatonin upregulates the activity of AMPK and attenuates lipid accumulation in alcohol-induced rats. Alcohol 2016; 51(1): 11-9.
[http://dx.doi.org/10.1093/alcalc/agv126] [PMID: 26564773]
[164]
Zaouali MA, Boncompagni E, Reiter RJ, et al. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: A role for melatonin and trimetazidine cocktail. J Pineal Res 2013; 55(1): 65-78.
[http://dx.doi.org/10.1111/jpi.12051] [PMID: 23551302]
[165]
Lasisi AO, Fehintola FA, Lasisi TJ. The role of plasma melatonin and vitamins C and B12 in the development of idiopathic tinnitus in the elderly. Ghana Med J 2012; 46(3): 152-7.
[PMID: 23661829]
[166]
Rosenberg SI, Silverstein H, Rowan PT, Olds MJ. Effect of melatonin on tinnitus. Laryngoscope 1998; 108(3): 305-10.
[http://dx.doi.org/10.1097/00005537-199803000-00001] [PMID: 9504599]
[167]
Megwalu UC, Finnell JE, Piccirillo JF. The effects of melatonin on tinnitus and sleep. Otolaryngol Head Neck Surg 2006; 134(2): 210-3.
[http://dx.doi.org/10.1016/j.otohns.2005.10.007] [PMID: 16455366]
[168]
Lopez-Gonzalez MA, Santiago AM, Esteban-Ortega F. Sulpiride and melatonin decrease tinnitus perception modulating the auditolimbic dopaminergic pathway. J Otolaryngol 2007; 36(4): 213-9.
[http://dx.doi.org/10.2310/7070.2007.0018] [PMID: 17942035]
[169]
Neri G, De Stefano A, Baffa C, et al. Treatment of central and sensorineural tinnitus with orally administered Melatonin and Sulodexide: Personal experience from a randomized controlled study. Acta Otorhinolaryngol Ital 2009; 29(2): 86-91.
[PMID: 20111618]
[170]
Hurtuk A, Dome C, Holloman CH, et al. Melatonin: Can it stop the ringing? Ann Otol Rhinol Laryngol 2011; 120(7): 433-40.
[http://dx.doi.org/10.1177/000348941112000703] [PMID: 21859051]
[171]
Koybasi S, Boztas MH, Bicer YO, Serin E, Suslu AE, Funda YO, et al. The effect of melatonin on tinnitus with respect to sleep and depression: A Randomized Clinical Trial 2012; 8(2): 201-8.
[172]
Albu S, Chirtes F. Intratympanic dexamethasone plus melatonin versus melatonin only in the treatment of unilateral acute idiopathic tinnitus. Am J Otolaryngol 2014; 35(5): 617-22.
[http://dx.doi.org/10.1016/j.amjoto.2014.06.009] [PMID: 25066140]
[173]
Liu R, Zhi X, Zhong Q. ATG14 controls SNARE-mediated autophagosome fusion with a lysosome. Autophagy 2015; 11(5): 847-9.
[http://dx.doi.org/10.1080/15548627.2015.1037549] [PMID: 25945523]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy