Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

2,4-Disubstituted Quinazoline Derivatives Act as Inducers of Tubulin Polymerization: Synthesis and Cytotoxicity

Author(s): Ebrahim S. Moghadam, Maryam H. Tehrani, René Csuk, Lucie Fischer, Mohammad Ali Faramarzi, Arezoo Rashidi, Iraj Javadi and Mohsen Amini*

Volume 19, Issue 8, 2019

Page: [1048 - 1057] Pages: 10

DOI: 10.2174/1871520619666190314125254

Price: $65

Abstract

Background: During last recent years number of anti-tubulin agents were introduced for treatment of diverse kind of cancer. Despite of their potential in treatment of cancer, drug resistance and adverse toxicity such as peripheral neuropathy are some of the negative criteria of anti-tubulin agents.

Methods: Twenty seven quinazoline derivatives were synthesized using a multicomponent reaction. The cytotoxicity of compounds 1-27 was tested in SRB assays employing five different human tumor cell lines. Effect of two of active compounds on tubulin polymerization was also checked using a commercially available assay kit. Molecular modelling studies were also performed using autodock tools software.

Results: SRB assays showed that compounds 2, 9, 16 and 26, being highly cytotoxic with IC50 values ranging between 2.1 and 14.3µM. The possible mode of action of compounds, 2, 9, 16 and 26, and the taxol binding site of the protein tubulin, an important goal for antimitotic drugs, was also studied by molecular docking, which showed reasonable interactions with tubulin active site, followed by investigation of the effects of compounds 9 and 16 on the polymerization of tubulin. The results showed the tested compounds to be highly active as inducers of tubulin polymerization.

Conclusion: Altogether, with respect to obtained results, it is attractive and beneficial to further investigation on quinazoline scaffold as antimitotic agents.

Keywords: Anti-cancer, quinazoline, synthesis, molecular docking, SRB assay, tubulin.

Graphical Abstract

[1]
Prakasham, A.P.; Saxena, A.K.; Luqman, S.; Chanda, D.; Kaur, T.; Gupta, A.; Yadav, D.K.; Chanotiya, C.S.; Shanker, K.; Khan, F.; Negi, A.S. Synthesis and anticancer activity of 2-benzylidene indanones through inhibiting tubulin polymerization. Bioorg. Med. Chem., 2012, 20, 3049-3057.
[2]
Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S.K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and anticancer activity of N-substituted 2- arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem., 2015, 95, 492-499.
[3]
Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Redondo-Horcajo, M.; Díaz, J.F.; Barasoain, I.; Marco, J.A. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J. Med. Chem., 2014, 57, 10391-10403.
[4]
Qu, S.; Mulamoottil, V.A.; Nayak, A.; Ryu, S.; Hou, X.; Song, J.; Yu, J.; Sahu, P.K.; Zhao, L.X.; Choi, S.; Lee, S.K.; Jeong, L.S. Design, synthesis, and anticancer activity of c8-substituted-4′-thionucleosides as potential hsp 90 inhibitors. Bioorg. Med. Chem., 2016, 24, 3418-3428.
[5]
Xiao, M.; Ahn, S.; Wang, J.; Chen, J.; Miller, D.D.; Dalton, J.T.; Li, W. Discovery of 4aryl-2-benzoyl-imidazoles as tubulin polymerization inhibitor with potent antiproliferative properties. J. Med. Chem., 2013, 56, 3318-3329.
[6]
Buduma, K.; Chinde, S.; Dommati, A.K.; Sharma, P.; Shukla, A.; Satya Srinivas, K.V.N.; Arigari, N.K.; Khan, F.; Tiwari, A.K.; Grover, P.; Jonnala, K.K. Synthesis and evaluation of anticancer and antiobesity activity of 1-ethoxy carbonyl-3,5-bis (3′-indolyl methylene)-4-pyperidone analogues. Bioorg. Med. Chem. Lett., 2016, 26, 1633-1638.
[7]
Xie, M.; Lapidus, R.G.; Sadowska, M.; Edelman, M.J.; Hosmane, R.S. Synthesis, anticancer activity, and SAR analyses of compounds containing the 5:7-fused 4,6,8-triaminoimidazo [4,5-e] [1,3]diazepine ring system. Bioorg. Med. Chem., 2016, 24, 2595-25602.
[8]
Baytas, S.N.; Inceler, N.; Yilmaz, A.; Olgac, A.; Menevse, S.; Banoglu, E.; Hamel, E.; Bortolozzi, R.; Viola, G. Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem., 2014, 22, 3096-3104.
[9]
Zhao, L.; Mao, L.; Hong, G.; Yang, X.; Liu, T. Design, synthesis and anticancer activity of matrine–1H-1,2,3-triazole–chalcone conjugates. Bioorg. Med. Chem. Lett., 2015, 25, 2540-2544.
[10]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Brancale, A.; Fu, X.H.; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem., 2012, 55, 475-488.
[11]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that Interact with the colchicine binding site. Pharm. Res., 2012, 29, 2943-2971.
[12]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best-selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[13]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best-selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[14]
Gurram, V.; Garlapati, R.; Thulluri, C.; Madala, N.; Kasani, K.S.; Machiraju, P.K.; Doddapalla, R.; Addepally, U.; Gundla, R.; Patro, B.; Pottabathini, N. Design, synthesis, and biological evaluation of quinazoline derivatives as a-glucosidase inhibitors. Med. Chem. Res., 2015, 24, 2227-2237.
[15]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J. Med. Chem., 2014, 57, 8886-8902.
[16]
Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.; Stamminger, T.; Marschall, M. Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. Antimicrob. Agents Chemother., 2004, 48, 4154-4162.
[17]
Roecker, A.J.; Mercer, S.P.; Bergman, J.M.; Gilbert, K.F.; Kuduk, S.D.; Harrell, C.M.; Garson, S.L.; Fox, S.V.; Gotter, A.L.; Tannenbaum, P.L.; Prueksaritanont, T.; Cabalu, T.D.; Cui, D.; Lemaire, W.; Winrow, C.J.; Renger, J.J.; Coleman, P.J. Discovery of diazepane amide DORAs and 2-SORAs enabled by exploration of isosteric quinazoline replacements. Bioorg. Med. Chem. Lett., 2015, 25, 4992-4999.
[18]
Lim, C.J.; Oh, K.S.; Ha, J.D.; Lee, J.H.; Seo, H.W.; Chae, C.H.; Kim, D.G.; Lee, M.J.; Lee, B.H. 4-Substituted quinazoline derivatives as novel EphA2 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24, 4080-4083.
[19]
Xiao, H.; Li, P.; Hu, D.; Song, B-A. Synthesis and anti-tmv activity of novel β-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg. Med. Chem. Lett., 2014, 24, 3452-3454.
[20]
Hamed, M.M.; Abou-El-Ella, D.A.; Keeton, A.B.; Piazza, G.A.; Abadi, A.H.; Hartmann, R.W.; Engel, M. 6-Aryl and heterocycle quinazoline derivatives as potent egfr inhibitors with improved activity toward gefitinib- sensitive and -resistant tumor cell lines. ChemMedChem, 2013, 8, 1495-1504.
[21]
Schwan, G.; Barbar Asskar, G.; Höfgen, N.; Kubicova, L.; Funke, U.; Egerland, U.; Zahn, M.; Nieber, K.; Scheunemann, M.; Sträter, N.; Brust, P.; Briel, D. Fluorine-containing 6,7-dialkoxybiaryl-based inhibitors for phosphodiesterase 10a: Synthesis and in vitro evaluation of inhibitory potency, selectivity, and metabolism. ChemMedChem, 2014, 9, 1476-1487.
[22]
Kassab, A.E.; Gedawy, E.M.; El-Nassan, H.B. Synthesis of 4-heteroaryl-quinazoline derivatives as potential anti-breast cancer agents. J. Het. Chem, 2017, 54, 624-633.
[23]
Marugan, J.J.; Zheng, W.; Motabar, O.; Southall, N.; Goldin, E.; Westbroek, W.; Stubblefield, B.K.; Sidransky, E.; Aungst, R.A.; Lea, W.A.; Simeonov, A.; Leister, W.; Austin, C.P. Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity. J. Med. Chem., 2011, 54, 1033-1058.
[24]
Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J. Med. Chem., 2016, 59, 1455-1470.
[25]
Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2016, 7, 762-767.
[26]
Zhu, X.; Van Horn, K.S.; Barber, M.; Yang, S.; Wang, M.Z.; Manetsch, R.; Werbovetz, K.A. SAR refinement of antileishmanial N 2, N 4-disubstituted quinazoline-2,4-diamines. Bioorg. Med. Chem., 2015, 23, 5182-5189.
[27]
Cai, J.; Li, L.; Hong, K.H.; Wu, X.; Chen, J.; Wang, P.; Cao, M.; Zong, X.; Ji, M. Discovery of 4-aminoquinazoline-urea derivatives as Aurora kinase inhibitors with antiproliferative activity. Bioorg. Med. Chem., 2014, 22, 5813-5823.
[28]
Newton, R.; Bowler, K.A.; Burns, E.M.; Chapman, P.J.; Fairweather, E.E.; Fritzl, S.J.; Goldberg, K.M.; Hamilton, N.M.; Holt, S.V.; Hopkins, G.V.; Jones, S.D.; Jordan, A.M.; Lyons, A.J.; Nikki March, H.; McDonald, N.Q.; Maguire, L.A.; Mould, D.P.; Purkiss, A.G.; Small, H.F.; Stowell, A.I.; Thomson, G.J.; Waddell, I.D.; Waszkowycz, B.; Watson, A.J.; Ogilvie, D.J. The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. Eur. J. Med. Chem., 2016, 112, 20-32.
[29]
Ghasemi, M.; Ghadbeighi, S.; Amirhamzeh, A.; Tabatabai, S.A.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and cytotoxic activity of 1,3,5-triaryl pyrazole derivatives. Lett. Drug Des. Discov., 2016, 13, 121-128.
[30]
Ghadbegi, S.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis and anticancer activity of 1,3,5-triaryl-1h-pyrazole. Lett. Drug Des. Discov., 2015, 12, 754-759.
[31]
Miralinaghi, P.; Salimi, M.; Amirhamzeh, A.; Norouzi, M.; Kandelousi, H.M.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and anticancer activity of triaryl-1,2,4-oxadiazole. Med. Chem. Res., 2013, 22, 4253-4262.
[32]
Salehi, M.; Ostad, S.N.; Riazi, G.H.; Assadieskandar, A.; Shavi, T.C.; Shafiee, A.; Amini, M. Synthesis, cytotoxic evaluation, and molecular docking study of 4,5-diaryl-thiazole-2-thione analogs of combretastatin A-4 as microtubule-binding agents. Med. Chem. Res., 2014, 23, 1465-1473.
[33]
Zareian, B.; Ghadbeighi, S.; Amirhamzeh, A.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and cytotoxic activity of 3,4-diaryl-5-(4-pyridinyl)-1,2,4-oxadiazole. Med. Chem., 2016, 12, 394-401.
[34]
Saravani, F.; Saeedian Moghadam, E.; Salehabadi, H.; Ostad, S.N.; Pirali Hamedani, M.; Amanlou, M.; Faramarzi, M.; Amini, M. Synthesis, anti-proliferative evaluation, and molecular docking studies of 3-(alkylthio)-5,6-diaryl-1,2,4-triazines as tubulin polymerization inhibitors. Lett. Drug Des. Discov., 2018.
[http://dx.doi.org/10.2174/ 1570180815666180727114216]
[35]
Saeedian Moghadam, E.; Saravani, F.; Ostad, S.N.; Tavajohi, S.; Pirali Hamedani, M.; Amini, M. Design, synthesis and cytotoxicity evaluation of indibulin analogs. Heterocycl. Commun., 2018, 24, 211-218.
[36]
Zhang, Z.H.; Zhang, X.N.; Mo, L.P.; Li, Y.X.; Ma, F.P. Catalyst-free synthesis of quinazoline derivatives using low melting sugar-urea-salt mixture as a solvent. Green Chem., 2012, 14, 1502-1506.
[37]
Dabiri, M.; Salehi, P.; Bahramnejad, M. Ecofriendly and efficient one-pot procedure for the synthesis of quinazoline derivatives catalyzed by an acidic ionic liquid under aerobic oxidation conditions. Synth. Commun., 2010, 40, 3214.
[38]
Panja, S.K.; Dwivedi, N.; Saha, S.I. 2-Catalyzed three-component protocol for the synthesis of quinazolines. Tetrahedron Lett., 2012, 53, 6167.
[39]
Lin, J.P.; Zhang, F.H.; Long, Y.Q. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org. Lett., 2014, 16, 2822-2825.
[40]
Saad, S.M.; Khan, K.M.; Perveen, S.; Voelter, W.; Taha, M. A new and facile CuCl2_2H2O-catalyzed one-pot three-component synthesis for quinazolines. Monatsh. Chem., 2015, 146, 1877-1880.
[41]
Wiemann, J.; Fischer, L.; Rohmer, M.; Csuk, R. Syntheses of C-ring modified dehydroabietylamides and their cytotoxic activity. Eur. J. Med. Chem., 2018, 156, 861-870.
[42]
O’Boyle, N.M.; Carr, M.; Greene, L.M.; Keely, N.O.; Knox, A.J.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis, biochemical and molecular modelling studies of antiproliferative azetidinones causing microtubule disruption and mitotic catastrophe. Eur. J. Med. Chem., 2011, 46, 4595-4607.
[43]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[44]
Sanner, M.F.; Duncan, B.S.; Carillo, C.J.; Olson, A.J. Integrating computation and visualization for biomolecular analysis: An example using Python and AVS. Pac. Symp. Biocomput., 1999, 4, 401-412.
[45]
Khan, I.; Nisar, M.; Ahmad, M.; Shah, H.; Iqbal, Z.; Saeed, M.; Halimi, S.M.A.; Kaleem, W.A.; Qayum, M.; Aman, A.; Abdullah, S.M. Molecular simulations of taxawallin I inside classical taxol binding site of β-tubulin. Fitoterapia, 2011, 82, 276-281.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy