[1]
Prakasham, A.P.; Saxena, A.K.; Luqman, S.; Chanda, D.; Kaur, T.; Gupta, A.; Yadav, D.K.; Chanotiya, C.S.; Shanker, K.; Khan, F.; Negi, A.S. Synthesis and anticancer activity of 2-benzylidene indanones through inhibiting tubulin polymerization. Bioorg. Med. Chem., 2012, 20, 3049-3057.
[2]
Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S.K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and anticancer activity of N-substituted 2- arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem., 2015, 95, 492-499.
[3]
Vilanova, C.; Díaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Redondo-Horcajo, M.; Díaz, J.F.; Barasoain, I.; Marco, J.A. Design and synthesis of pironetin analogue/colchicine hybrids and study of their cytotoxic activity and mechanisms of interaction with tubulin. J. Med. Chem., 2014, 57, 10391-10403.
[4]
Qu, S.; Mulamoottil, V.A.; Nayak, A.; Ryu, S.; Hou, X.; Song, J.; Yu, J.; Sahu, P.K.; Zhao, L.X.; Choi, S.; Lee, S.K.; Jeong, L.S. Design, synthesis, and anticancer activity of c8-substituted-4′-thionucleosides as potential hsp 90 inhibitors. Bioorg. Med. Chem., 2016, 24, 3418-3428.
[5]
Xiao, M.; Ahn, S.; Wang, J.; Chen, J.; Miller, D.D.; Dalton, J.T.; Li, W. Discovery of 4aryl-2-benzoyl-imidazoles as tubulin polymerization inhibitor with potent antiproliferative properties. J. Med. Chem., 2013, 56, 3318-3329.
[6]
Buduma, K.; Chinde, S.; Dommati, A.K.; Sharma, P.; Shukla, A.; Satya Srinivas, K.V.N.; Arigari, N.K.; Khan, F.; Tiwari, A.K.; Grover, P.; Jonnala, K.K. Synthesis and evaluation of anticancer and antiobesity activity of 1-ethoxy carbonyl-3,5-bis (3′-indolyl methylene)-4-pyperidone analogues. Bioorg. Med. Chem. Lett., 2016, 26, 1633-1638.
[8]
Baytas, S.N.; Inceler, N.; Yilmaz, A.; Olgac, A.; Menevse, S.; Banoglu, E.; Hamel, E.; Bortolozzi, R.; Viola, G. Synthesis, biological evaluation and molecular docking studies of trans-indole-3-acrylamide derivatives, a new class of tubulin polymerization inhibitors. Bioorg. Med. Chem., 2014, 22, 3096-3104.
[9]
Zhao, L.; Mao, L.; Hong, G.; Yang, X.; Liu, T. Design, synthesis and anticancer activity of matrine–1H-1,2,3-triazole–chalcone conjugates. Bioorg. Med. Chem. Lett., 2015, 25, 2540-2544.
[10]
Romagnoli, R.; Baraldi, P.G.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Brancale, A.; Fu, X.H.; Li, J.; Zhang, S.Z.; Hamel, E.; Bortolozzi, R.; Basso, G.; Viola, G. Synthesis and evaluation of 1,5-disubstituted tetrazoles as rigid analogues of combretastatin A-4 with potent antiproliferative and antitumor activity. J. Med. Chem., 2012, 55, 475-488.
[11]
Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that Interact with the colchicine binding site. Pharm. Res., 2012, 29, 2943-2971.
[12]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best-selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[13]
Baumann, M.; Baxendale, I.R.; Ley, S.V.; Nikbin, N. An overview of the key routes to the best-selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem., 2011, 7, 442-495.
[14]
Gurram, V.; Garlapati, R.; Thulluri, C.; Madala, N.; Kasani, K.S.; Machiraju, P.K.; Doddapalla, R.; Addepally, U.; Gundla, R.; Patro, B.; Pottabathini, N. Design, synthesis, and biological evaluation of quinazoline derivatives as a-glucosidase inhibitors. Med. Chem. Res., 2015, 24, 2227-2237.
[15]
Nara, H.; Sato, K.; Naito, T.; Mototani, H.; Oki, H.; Yamamoto, Y.; Kuno, H.; Santou, T.; Kanzaki, N.; Terauchi, J.; Uchikawa, O.; Kori, M. Discovery of novel, highly potent, and selective quinazoline-2-carboxamide-based matrix metalloproteinase (MMP)-13 inhibitors without a zinc binding group using a structure-based design approach. J. Med. Chem., 2014, 57, 8886-8902.
[16]
Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.; Stamminger, T.; Marschall, M. Novel chemical class of pUL97 protein kinase-specific inhibitors with strong anticytomegaloviral activity. Antimicrob. Agents Chemother., 2004, 48, 4154-4162.
[17]
Roecker, A.J.; Mercer, S.P.; Bergman, J.M.; Gilbert, K.F.; Kuduk, S.D.; Harrell, C.M.; Garson, S.L.; Fox, S.V.; Gotter, A.L.; Tannenbaum, P.L.; Prueksaritanont, T.; Cabalu, T.D.; Cui, D.; Lemaire, W.; Winrow, C.J.; Renger, J.J.; Coleman, P.J. Discovery of diazepane amide DORAs and 2-SORAs enabled by exploration of isosteric quinazoline replacements. Bioorg. Med. Chem. Lett., 2015, 25, 4992-4999.
[18]
Lim, C.J.; Oh, K.S.; Ha, J.D.; Lee, J.H.; Seo, H.W.; Chae, C.H.; Kim, D.G.; Lee, M.J.; Lee, B.H. 4-Substituted quinazoline derivatives as novel EphA2 receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24, 4080-4083.
[19]
Xiao, H.; Li, P.; Hu, D.; Song, B-A. Synthesis and anti-tmv activity of novel β-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg. Med. Chem. Lett., 2014, 24, 3452-3454.
[20]
Hamed, M.M.; Abou-El-Ella, D.A.; Keeton, A.B.; Piazza, G.A.; Abadi, A.H.; Hartmann, R.W.; Engel, M. 6-Aryl and heterocycle quinazoline derivatives as potent egfr inhibitors with improved activity toward gefitinib- sensitive and -resistant tumor cell lines. ChemMedChem, 2013, 8, 1495-1504.
[21]
Schwan, G.; Barbar Asskar, G.; Höfgen, N.; Kubicova, L.; Funke, U.; Egerland, U.; Zahn, M.; Nieber, K.; Scheunemann, M.; Sträter, N.; Brust, P.; Briel, D. Fluorine-containing 6,7-dialkoxybiaryl-based inhibitors for phosphodiesterase 10a: Synthesis and in vitro evaluation of inhibitory potency, selectivity, and metabolism. ChemMedChem, 2014, 9, 1476-1487.
[22]
Kassab, A.E.; Gedawy, E.M.; El-Nassan, H.B. Synthesis of 4-heteroaryl-quinazoline derivatives as potential anti-breast cancer agents. J. Het. Chem, 2017, 54, 624-633.
[23]
Marugan, J.J.; Zheng, W.; Motabar, O.; Southall, N.; Goldin, E.; Westbroek, W.; Stubblefield, B.K.; Sidransky, E.; Aungst, R.A.; Lea, W.A.; Simeonov, A.; Leister, W.; Austin, C.P. Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity. J. Med. Chem., 2011, 54, 1033-1058.
[24]
Yang, Z.; Wang, T.; Wang, F.; Niu, T.; Liu, Z.; Chen, X.; Long, C.; Tang, M.; Cao, D.; Wang, X.; Xiang, W.; Yi, Y.; Ma, L.; You, J.; Chen, L. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer. J. Med. Chem., 2016, 59, 1455-1470.
[25]
Hoegenauer, K.; Soldermann, N.; Stauffer, F.; Furet, P.; Graveleau, N.; Smith, A.B.; Hebach, C.; Hollingworth, G.J.; Lewis, I.; Gutmann, S.; Rummel, G.; Knapp, M.; Wolf, R.M.; Blanz, J.; Feifel, R.; Burkhart, C.; Zécri, F. Discovery and pharmacological characterization of novel quinazoline-based PI3K delta-selective inhibitors. ACS Med. Chem. Lett., 2016, 7, 762-767.
[26]
Zhu, X.; Van Horn, K.S.; Barber, M.; Yang, S.; Wang, M.Z.; Manetsch, R.; Werbovetz, K.A. SAR refinement of antileishmanial N 2, N 4-disubstituted quinazoline-2,4-diamines. Bioorg. Med. Chem., 2015, 23, 5182-5189.
[27]
Cai, J.; Li, L.; Hong, K.H.; Wu, X.; Chen, J.; Wang, P.; Cao, M.; Zong, X.; Ji, M. Discovery of 4-aminoquinazoline-urea derivatives as Aurora kinase inhibitors with antiproliferative activity. Bioorg. Med. Chem., 2014, 22, 5813-5823.
[28]
Newton, R.; Bowler, K.A.; Burns, E.M.; Chapman, P.J.; Fairweather, E.E.; Fritzl, S.J.; Goldberg, K.M.; Hamilton, N.M.; Holt, S.V.; Hopkins, G.V.; Jones, S.D.; Jordan, A.M.; Lyons, A.J.; Nikki March, H.; McDonald, N.Q.; Maguire, L.A.; Mould, D.P.; Purkiss, A.G.; Small, H.F.; Stowell, A.I.; Thomson, G.J.; Waddell, I.D.; Waszkowycz, B.; Watson, A.J.; Ogilvie, D.J. The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity. Eur. J. Med. Chem., 2016, 112, 20-32.
[29]
Ghasemi, M.; Ghadbeighi, S.; Amirhamzeh, A.; Tabatabai, S.A.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and cytotoxic activity of 1,3,5-triaryl pyrazole derivatives. Lett. Drug Des. Discov., 2016, 13, 121-128.
[30]
Ghadbegi, S.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis and anticancer activity of 1,3,5-triaryl-1h-pyrazole. Lett. Drug Des. Discov., 2015, 12, 754-759.
[31]
Miralinaghi, P.; Salimi, M.; Amirhamzeh, A.; Norouzi, M.; Kandelousi, H.M.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and anticancer activity of triaryl-1,2,4-oxadiazole. Med. Chem. Res., 2013, 22, 4253-4262.
[32]
Salehi, M.; Ostad, S.N.; Riazi, G.H.; Assadieskandar, A.; Shavi, T.C.; Shafiee, A.; Amini, M. Synthesis, cytotoxic evaluation, and molecular docking study of 4,5-diaryl-thiazole-2-thione analogs of combretastatin A-4 as microtubule-binding agents. Med. Chem. Res., 2014, 23, 1465-1473.
[33]
Zareian, B.; Ghadbeighi, S.; Amirhamzeh, A.; Ostad, S.N.; Shafiee, A.; Amini, M. Synthesis, molecular docking study, and cytotoxic activity of 3,4-diaryl-5-(4-pyridinyl)-1,2,4-oxadiazole. Med. Chem., 2016, 12, 394-401.
[35]
Saeedian Moghadam, E.; Saravani, F.; Ostad, S.N.; Tavajohi, S.; Pirali Hamedani, M.; Amini, M. Design, synthesis and cytotoxicity evaluation of indibulin analogs. Heterocycl. Commun., 2018, 24, 211-218.
[36]
Zhang, Z.H.; Zhang, X.N.; Mo, L.P.; Li, Y.X.; Ma, F.P. Catalyst-free synthesis of quinazoline derivatives using low melting sugar-urea-salt mixture as a solvent. Green Chem., 2012, 14, 1502-1506.
[37]
Dabiri, M.; Salehi, P.; Bahramnejad, M. Ecofriendly and efficient one-pot procedure for the synthesis of quinazoline derivatives catalyzed by an acidic ionic liquid under aerobic oxidation conditions. Synth. Commun., 2010, 40, 3214.
[38]
Panja, S.K.; Dwivedi, N.; Saha, S.I. 2-Catalyzed three-component protocol for the synthesis of quinazolines. Tetrahedron Lett., 2012, 53, 6167.
[39]
Lin, J.P.; Zhang, F.H.; Long, Y.Q. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org. Lett., 2014, 16, 2822-2825.
[40]
Saad, S.M.; Khan, K.M.; Perveen, S.; Voelter, W.; Taha, M. A new and facile CuCl2_2H2O-catalyzed one-pot three-component synthesis for quinazolines. Monatsh. Chem., 2015, 146, 1877-1880.
[41]
Wiemann, J.; Fischer, L.; Rohmer, M.; Csuk, R. Syntheses of C-ring modified dehydroabietylamides and their cytotoxic activity. Eur. J. Med. Chem., 2018, 156, 861-870.
[42]
O’Boyle, N.M.; Carr, M.; Greene, L.M.; Keely, N.O.; Knox, A.J.; McCabe, T.; Lloyd, D.G.; Zisterer, D.M.; Meegan, M.J. Synthesis, biochemical and molecular modelling studies of antiproliferative azetidinones causing microtubule disruption and mitotic catastrophe. Eur. J. Med. Chem., 2011, 46, 4595-4607.
[43]
Zhang, X.; Kong, Y.; Zhang, J.; Su, M.; Zhou, Y.; Zang, Y.; Li, J.; Chen, Y.; Fang, Y.; Zhang, X.; Lu, W. Design, synthesis and biological evaluation of colchicine derivatives as novel tubulin and histone deacetylase dual inhibitors. Eur. J. Med. Chem., 2015, 95, 127-135.
[44]
Sanner, M.F.; Duncan, B.S.; Carillo, C.J.; Olson, A.J. Integrating computation and visualization for biomolecular analysis: An example using Python and AVS. Pac. Symp. Biocomput., 1999, 4, 401-412.
[45]
Khan, I.; Nisar, M.; Ahmad, M.; Shah, H.; Iqbal, Z.; Saeed, M.; Halimi, S.M.A.; Kaleem, W.A.; Qayum, M.; Aman, A.; Abdullah, S.M. Molecular simulations of taxawallin I inside classical taxol binding site of β-tubulin. Fitoterapia, 2011, 82, 276-281.