Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

阿尔茨海默病在黑暗中的异常骶管入侵

卷 16, 期 4, 2019

页: [293 - 301] 页: 9

弟呕挨: 10.2174/1567205016666190311102130

价格: $65

conference banner
摘要

背景:分类为扫视入侵,在阿尔茨海默病(AD)的视觉固定(VF)期间观察到Square-Wave Jerks(SWJs)。然而,这种现象的病理意义仍不清楚。 目的:本研究分析了AD患者在没有VF的情况下睁眼的SWJs的特征。 方法:对15名AD患者和15名健康的年龄和性别匹配对照进行调查和比较。使用和不使用VF的Saccadic侵入被检测为SWJ并使用电子眼震图测量。 结果:对照组和AD组VF之间SWJs频率无显着差异,但在没有VF的情况下,AD组中SWJs显着高于对照组(p <0.01)。在对照组中,与没有VF相比,VF的SWJ频率显着更高。相反,没有VF,AD组的频率显着更高。此外,在AD组的SWJ频率和高阶函数(R> 0.55)之间观察到直接比例关系。 结论:无ADF的SWJs可能在AD中具有病理学意义。在健康个体中,SWJ由VF产生并且在没有VF的情况下被抑制。相反,在AD中,在没有VF的情况下产生SWJ而不是抑制SWJ。这些没有VF的特异性SWJ也似乎与高阶功能障碍相关,反映了AD相关的皮质损伤。这些发现表明,在AD中观察到的没有VF的病理性SWJs来自皮质损伤,并且可能构成高阶功能的重要标志物。

关键词: 阿尔茨海默病,眼球运动,眼跳入侵,方波混蛋,视觉固定,高阶功能,下顶叶小叶,额叶眼。

[1]
Zaccara G, Gangemi PF, Muscas GC, Paganini M, Pallanti S, Parigi A, et al. Smooth-pursuit eye movements: alterations in Alzheimer’s disease. J Neurol Sci 112: 81-9. (1992).
[2]
Fletcher WA, Sharpe JA. Saccadic eye movement dysfunction in Alzheimer’s disease. Ann Neurol 20: 464-71. (1986).
[3]
Shakespeare TJ, Kaski D, Yong KX, Paterson RW, Slattery CF, Ryan NS, et al. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy. Brain 138: 1976-91. (2015).
[4]
Moschos MM, Markopoulos I, Chatziralli I, Rouvas A, Papageorgiou SG, Ladas I, et al. Structural and functional impairment of the retina and optic nerve in Alzheimer’s disease. Curr Alzheimer Res 9: 782-8. (2012).
[5]
Frost S, Kanagasingam Y, Sohrabi H, Bourgeat P, Villemagne V, Rowe CC, et al. Pupil response biomarkers for early detection and monitoring of Alzheimer’s disease. Curr Alzheimer Res 10: 931-9. (2013).
[6]
Shen Y, Liu L, Cheng Y, Feng W, Shi Z, Zhu Y, et al. Retinal nerve fiber layer thickness is associated with episodic memory deficit in mild cognitive impairment patients. Curr Alzheimer Res 11: 259-66. (2014).
[7]
Frost S, Guymer R, Aung KZ, Macaulay SL, Sohrabi HR, Bourgeat P, et al. Alzheimer’s disease and the early signs of age-related macular degeneration. Curr Alzheimer Res 13: 1259-66. (2016).
[8]
Reed BT, Behar-Cohen F, Krantic S. Seeing early signs of Alzheimer’s disease through the lens of the eye. Curr Alzheimer Res 14: 6-17. (2017).
[9]
Shariflou S, Georgevsky D, Mansour H, Rezaeian M, Hosseini N, Gani F, et al. Diagnostic and prognostic potential of retinal biomarkers in early on-set Alzheimer’s disease. Curr Alzheimer Res 14: 1000-7. (2017).
[10]
Ukalovic K, Cao S, Lee S, Tang Q, Beg MF, Sarunic MV, et al. Drusen in the peripheral retina of the Alzheimer’s eye. Curr Alzheimer Res 15: 743-50. (2018).
[11]
Lee CS, Larson EB, Gibbons LE, Lee AY, McCurry SM, Bowen JD, et al. Associations between recent and established ophthalmic conditions and risk of Alzheimer’s disease. Alzheimers Dement 15: 34-41. (2019).
[12]
Hirao K, Ohnishi T, Hirata Y, Yamashita F, Mori T, Moriguchi Y, et al. The prediction of rapid conversion to Alzheimer’s disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage 28: 1014-21. (2005).
[13]
Matsuda H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J Nucl Med 48: 1289-300. (2007).
[14]
Matsuda H, Imabayashi E. Molecular neuroimaging in Alzheimer’s disease. Neuroimaging Clin N Am 22: 57-65. (2012).
[15]
Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol 44: 1175-89. (1980).
[16]
Schiller PH, Sandell JH, Maunsell JH. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol 57: 1033-49. (1987).
[17]
Faugier-Grimaud S, Ventre J. Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280: 1-14. (1989).
[18]
Grüsser OJ, Pause M, Schreiter U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J Physiol 430: 537-57. (1990).
[19]
Grüsser OJ, Pause M, Schreiter U. Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol 430: 559-83. (1990).
[20]
Nakamagoe K, Fujimiya S, Koganezawa T, Kadono K, Shimizu K, Fujizuka N, et al. Vestibular function impairment in Alzheimer’s disease. J Alzheimers Dis 47: 185-96. (2015).
[21]
Schiller PH. The effect of superior colliculus ablation on saccades elicted by cortical stimulation. Brain Res 122: 154-6. (1977).
[22]
Sharpe JA, Herishanu YO, White OB. Cerebral square wave jerks. Neurology 32: 57-62. (1982).
[23]
Rascol O, Sabatini U, Simonetta-Moreau M, Montastruc JL, Rascol A, Clanet M. Square wave jerks in parkinsonian syndromes. J Neurol Neurosurg Psychiatry 54: 599-602. (1991).
[24]
Nakamagoe K, Fujizuka N, Koganezawa T, Shimizu K, Takiguchi S, Horaguchi T, et al. Residual central nervous system damage due to organoarsenic poisoning. Neurotoxicol Teratol 37: 33-8. (2013).
[25]
Leigh RJ, Zee DS. Diagnosis of nystagmus and saccadic intrusion. Chapter 11; Saccadic intrusions and oscillations. The Neurology of Eye Movements. 5th ed. Oxford University Press, Oxford, UK. pp 716-726 (2015).
[26]
Jones A, Friedland RP, Koss B, Stark L, Thompkins-Ober BA. Saccadic intrusions in Alzheimer-type dementia. J Neurol 229: 189-94. (1983).
[27]
Schewe HJ, Uebelhack R, Vohs K. Abnormality in saccadic eye movement in dementia. Eur Psychiatry 14: 52-3. (1999).
[28]
Tokuda S, Obinata G, Palmer E, Chaparro A. Estimation of mental workload using saccadic eye movements in a free-viewing task. Conf Proc IEEE Eng Med Biol Soc 2011: 4523-9. (2011).
[29]
Biswas P, Prabhakar G. Detecting drivers’ cognitive load from saccadic intrusion. Transp Res, Part F Traffic Psychol Behav 54: 63-78. (2018).
[30]
Cockrell JR, Folstein MF. Mini-Mental State Examination (MMSE). Psychopharmacol Bull 24: 689-92. (1988).
[31]
Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a frontal assessment battery at bedside. Neurology 55: 1621-6. (2000).
[32]
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7: 263-9. (2011).
[33]
Abadi RV, Gowen E. Characteristics of saccadic intrusions. Vision Res 44: 2675-90. (2004).
[34]
Kapoula Z, Yang Q, Otero-Millan J, Xiao S, Macknik SL, Lang A, et al. Distinctive features of microsaccades in Alzheimer’s disease and in mild cognitive impairment. Age (Dordr) 36: 535-43. (2014).
[35]
Herishanu YO, Sharpe JA. Normal square wave jerks. Invest Ophthalmol Vis Sci 20: 268-72. (1981).
[36]
Salman MS, Sharpe JA, Eizenman M, Lillakas L, To T, Westall C, et al. Saccadic adaptation in children. J Child Neurol 21: 1025-31. (2006).
[37]
Komatsu H, Suzuki H. Projections from the functional subdivisions of the frontal eye field to the superior colliculus in the monkey. Brain Res 327: 324-7. (1985).
[38]
Lee JH, Byun MS, Sohn BK, Choe YM, Yi D, Han JY, et al. Functional neuroanatomical correlates of the frontal assessment battery performance in Alzheimer disease: a FDG-PET study. J Geriatr Psychiatry Neurol 28: 184-92. (2015).
[39]
Suzuki H, Azuma M. Prefrontal neuronal activity during gazing at a light spot in the monkey. Brain Res 126: 497-508. (1977).
[40]
Suzuki H, Azuma M, Yumiya H. Stimulus and behavioral factors contributing to the activation of monkey prefrontal neurons during gazing. Jpn J Physiol 29: 471-89. (1979).
[41]
Barbas H, Mesulam MM. Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200: 407-31. (1981).
[42]
Ungerleider LG, Desimone R. Cortical connections of visual area MT in the macaque. J Comp Neurol 248: 190-222. (1986).
[43]
Nagahama Y, Nabatame H, Okina T, Yamauchi H, Narita M, Fujimoto N, et al. Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer’s disease. Eur Neurol 50: 1-9. (2003).
[44]
Highstein SM, Baker R. Excitatory termination of abducens internuclear neurons on medial rectus motoneurons: relationship to syndrome of internuclear ophthalmoplegia. J Neurophysiol 41: 1647-61. (1978).
[45]
Hikosaka O, Igusa Y, Nakao S, Shimazu H. Direct inhibitory synaptic linkage of pontomedullary reticular burst neurons with abducens motoneurons in the cat. Exp Brain Res 33: 337-52. (1978).
[46]
Igusa Y, Sasaki S, Shimazu H. Excitatory premotor burst neurons in the cat pontine reticular formation related to the quick phase of vestibular nystagmus. Brain Res 182: 451-6. (1980).
[47]
Sasaki S, Shimazu H. Reticulovestibular organization participating in generation of horizontal fast eye movement. Ann N Y Acad Sci 374: 130-43. (1981).
[48]
Scudder CA, Kaneko CS, Fuchs AF. The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142: 439-62. (2002).
[49]
Yoshida K, McCrea R, Berthoz A, Vidal PP. Morphological and physiological characteristics of inhibitory burst neurons controlling horizontal rapid eye movements in the alert cat. J Neurophysiol 48: 761-84. (1982).
[50]
Yoshida K, Iwamoto Y, Chimoto S, Shimazu H. Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. J Neurophysiol 82: 1198-208. (1999).
[51]
Yoshida K, Iwamoto Y, Chimoto S, Shimazu H. Disynaptic inhibition of omnipause neurons following electrical stimulation of the superior colliculus in alert cats. J Neurophysiol 85: 2639-42. (2001).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy