[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[2]
Swanton, C.; Govindan, R. Clinical implications of genomic discoveries in lung cancer. N. Engl. J. Med., 2016, 374(19), 1864-1873.
[3]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[4]
Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A.; Investigators, A. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640.
[5]
Tan, W.L.; Jain, A.; Takano, A.; Newell, E.W.; Iyer, N.G.; Lim, W.T.; Tan, E.H.; Zhai, W.; Hillmer, A.M.; Tam, W.L.; Tan, D.S.W. Novel therapeutic targets on the horizon for lung cancer. Lancet Oncol., 2016, 17(8), e347-e362.
[6]
Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.; Chirieac, L.R.; D’Amico, T.A.; DeCamp, M.M.; Dilling, T.J.; Dobelbower, M.; Doebele, R.C.; Govindan, R.; Gubens, M.A.; Hennon, M.; Horn, L.; Komaki, R.; Lackner, R.P.; Lanuti, M.; Leal, T.A.; Leisch, L.J.; Lilenbaum, R.; Lin, J.; Loo, B.W., Jr; Martins, R.; Otterson, G.A.; Reckamp, K.; Riely, G.J.; Schild, S.E.; Shapiro, T.A.; Stevenson, J.; Swanson, S.J.; Tauer, K.; Yang, S.C.; Gregory, K.; Hughes, M. Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw., 2017, 15(4), 504-535.
[7]
Hirsch, F.R.; Suda, K.; Wiens, J.; Bunn, P.A., Jr New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet, 2016, 388(10048), 1012-1024.
[8]
Tomasini, P.; Barlesi, F.; Mascaux, C.; Greillier, L. Pemetrexed for advanced stage nonsquamous non-small cell lung cancer: Latest evidence about its extended use and outcomes. Ther. Adv. Med. Oncol., 2016, 8(3), 198-208.
[9]
Hazarika, M.; White, R.M.; Johnson, J.R.; Pazdur, R. FDA drug approval summaries: Pemetrexed (Alimta). Oncologist, 2004, 9(5), 482-488.
[10]
Gibbs, D.; Jackman, A. Pemetrexed disodium. Nat. Rev. Drug
Discov., 2005. Suppl, S16-17.
[11]
Hanna, N.; Shepherd, F.A.; Fossella, F.V.; Pereira, J.R.; De Marinis, F.; von Pawel, J.; Gatzemeier, U.; Tsao, T.C.; Pless, M.; Muller, T.; Lim, H.L.; Desch, C.; Szondy, K.; Gervais, R. Shaharyar; Manegold, C.; Paul, S.; Paoletti, P.; Einhorn, L.; Bunn, P.A., Jr. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J. Clin. Oncol., 2004, 22(9), 1589-1597.
[12]
Scagliotti, G.V.; Parikh, P.; von Pawel, J.; Biesma, B.; Vansteenkiste, J.; Manegold, C.; Serwatowski, P.; Gatzemeier, U.; Digumarti, R.; Zukin, M.; Lee, J.S.; Mellemgaard, A.; Park, K.; Patil, S.; Rolski, J.; Goksel, T.; de Marinis, F.; Simms, L.; Sugarman, K.P.; Gandara, D. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol., 2008, 26(21), 3543-3551.
[13]
Cohen, M.H.; Justice, R.; Pazdur, R. Approval summary: Pemetrexed in the initial treatment of advanced/metastatic non-small cell lung cancer. Oncologist, 2009, 14(9), 930-935.
[14]
Cohen, M.H.; Cortazar, P.; Justice, R.; Pazdur, R. Approval summary: Pemetrexed maintenance therapy of advanced/metastatic nonsquamous, Non-Small Cell Lung Cancer (NSCLC). Oncologist, 2010, 15(12), 1352-1358.
[15]
Schuette, W.H.; Groschel, A.; Sebastian, M.; Andreas, S.; Muller, T.; Schneller, F.; Guetz, S.; Eschbach, C.; Bohnet, S.; Leschinger, M.I.; Reck, M. A randomized phase II study of pemetrexed in combination with cisplatin or carboplatin as first-line therapy for patients with locally advanced or metastatic non-small-cell lung cancer. Clin. Lung Cancer, 2013, 14(3), 215-223.
[16]
Pujol, J.L.; Paul, S.; Chouaki, N.; Peterson, P.; Moore, P.; Berry, D.A.; Salzberg, M. Survival without common toxicity criteria grade 3/4 toxicity for pemetrexed compared with docetaxel in previously treated patients with advanced Non-Small Cell Lung Cancer (NSCLC): A risk-benefit analysis. J. Thorac. Oncol., 2007, 2(5), 397-401.
[17]
Lee, S.H.; Noh, K.B.; Lee, J.S.; Lee, E.J.; Min, K.H.; Hur, G.Y.; Lee, S.H.; Lee, S.Y.; Kim, J.H.; Lee, S.Y.; Shin, C.; Shim, J.J.; Kim, C.H.; Kang, K.H. In, K.H. Thymidylate synthase and ERCC1 as predictive markers in patients with pulmonary adenocarcinoma treated with pemetrexed and cisplatin. Lung Cancer, 2013, 81(1), 102-108.
[18]
Wang, T.; Chuan, P.C.; Rui, Y.J.; Long, Y.; Hong, C.X.; De, Y.X.; Qiong, H.L.; Li, L.L. Association between TYMS expression and efficacy of pemetrexed-based chemotherapy in advanced non-small cell lung cancer: A meta-analysis. PLoS One, 2013, 8(9), e74284.
[19]
Chamizo, C.; Zazo, S.; Domine, M.; Cristobal, I.; Garcia-Foncillas, J.; Rojo, F.; Madoz-Gurpide, J. Thymidylate synthase expression as a predictive biomarker of pemetrexed sensitivity in advanced non-small cell lung cancer. BMC Pulm. Med., 2015, 15, 132.
[20]
Ozasa, H.; Oguri, T.; Uemura, T.; Miyazaki, M.; Maeno, K.; Sato, S.; Ueda, R. Significance of thymidylate synthase for resistance to pemetrexed in lung cancer. Cancer Sci., 2010, 101(1), 161-166.
[21]
Liu, Y.; Yin, T.J.; Zhou, R.; Zhou, S.; Fan, L.; Zhang, R.G. Expression of thymidylate synthase predicts clinical outcomes of pemetrexed-containing chemotherapy for non-small-cell lung cancer: a systemic review and meta-analysis. Cancer Chemother. Pharmacol., 2013, 72(5), 1125-1132.
[22]
Zhang, D.; Ochi, N.; Takigawa, N.; Tanimoto, Y.; Chen, Y.; Ichihara, E.; Hotta, K.; Tabata, M.; Tanimoto, M.; Kiura, K. Establishment of pemetrexed-resistant non-small cell lung cancer cell lines. Cancer Lett., 2011, 309(2), 228-235.
[23]
Wood, K.; Hensing, T.; Malik, R.; Salgia, R. Prognostic and predictive value in KRAS in non-small-cell lung cancer: A review. JAMA Oncol., 2016, 2(6), 805-812.
[24]
Moran, D.M.; Trusk, P.B.; Pry, K.; Paz, K.; Sidransky, D.; Bacus, S.S. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol. Cancer Ther., 2014, 13(6), 1611-1624.
[25]
Tang, Z.H.; Jiang, X.M.; Guo, X.; Fong, C.M.; Chen, X.; Lu, J.J. Characterization of osimertinib (AZD9291)-resistant non-small cell lung cancer NCI-H1975/OSIR cell line. Oncotarget, 2016, 7(49), 81598-81610.
[26]
Jiang, X.M.; Xu, Y.L.; Huang, M.Y.; Zhang, L.L.; Su, M.X.; Chen, X.; Lu, J.J. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol. Sin., 2017, 38(11), 1512-1520.
[27]
Zhang, L.L.; Xu, Y.L.; Tang, Z.H.; Xu, X.H.; Chen, X.; Li, T.; Ding, C.Y.; Huang, M.Q.; Chen, X.P.; Wang, Y.T.; Yuan, X.F.; Lu, J.J. Effects of alisol B 23-acetate on ovarian cancer cells: G1 phase cell cycle arrest, apoptosis, migration and invasion inhibition. Phytomedicine, 2016, 23(8), 800-809.
[28]
Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell. Physiol., 2000, 182(3), 311-322.
[29]
Munoz-Espin, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol., 2014, 15(7), 482-496.
[30]
Chiu, L.Y.; Hsin, I.L.; Yang, T.Y.; Sung, W.W.; Chi, J.Y.; Chang, J.T.; Ko, J.L.; Sheu, G.T. The ERK-ZEB1 pathway mediates epithelial-mesenchymal transition in pemetrexed resistant lung cancer cells with suppression by vinca alkaloids. Oncogene, 2017, 36(2), 242-253.
[31]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[32]
Horwitz, S.B. Taxol (paclitaxel): Mechanisms of action. Ann. Oncol., 1994, 5(Suppl. 6), S3-S6.
[33]
Cavalcante, S.L.; Monteiro, G. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol., 2014, 741, 8-16.
[34]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[35]
Yang, M.; Fan, W.F.; Pu, X.L.; Liu, F.Y.; Meng, L.J.; Wang, J. Significance of thymidylate synthase expression for resistance to pemetrexed in pulmonary adenocarcinoma. Oncol. Lett., 2014, 7(1), 227-232.
[36]
Del Bufalo, D.; Desideri, M.; De Luca, T.; Di Martile, M.; Gabellini, C.; Monica, V.; Busso, S.; Eramo, A.; De Maria, R.; Milella, M.; Trisciuoglio, D. Histone deacetylase inhibition synergistically enhances pemetrexed cytotoxicity through induction of apoptosis and autophagy in non-small cell lung cancer. Mol. Cancer, 2014, 13, 230.
[37]
Gordon, R.R.; Nelson, P.S. Cellular senescence and cancer chemotherapy resistance. Drug Resist. Updat., 2012, 15(1-2), 123-131.
[38]
Rebbaa, A. Targeting senescence pathways to reverse drug resistance in cancer. Cancer Lett., 2005, 219(1), 1-13.
[39]
Wang, L.; Wang, R.; Pan, Y.; Sun, Y.; Zhang, J.; Chen, H. The pemetrexed-containing treatments in the non-small cell lung cancer is -/low thymidylate synthase expression better than +/high thymidylate synthase expression: A meta-analysis. BMC Cancer, 2014, 14, 205.
[40]
Shimizu, T.; Nakagawa, Y.; Takahashi, N.; Hashimoto, S. Thymidylate synthase gene amplification predicts pemetrexed resistance in patients with advanced non-small cell lung cancer. Clin. Transl. Oncol., 2016, 18(1), 107-112.
[41]
Yoshida, T.; Okamoto, T.; Yano, T.; Takada, K.; Kohno, M.; Suda, K.; Takenoyama, M.; Oda, Y.; Maehara, Y. Molecular factors associated with pemetrexed sensitivity according to histological type in non-small cell lung cancer. Anticancer Res., 2016, 36(12), 6319-6326.
[42]
Racanelli, A.C.; Rothbart, S.B.; Heyer, C.L.; Moran, R.G. Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res., 2009, 69(13), 5467-5474.
[43]
Desmoulin, S.K.; Hou, Z.; Gangjee, A.; Matherly, L.H. The human proton-coupled folate transporter: Biology and therapeutic applications to cancer. Cancer Biol. Ther., 2012, 13(14), 1355-1373.
[44]
Giovannetti, E.; Zucali, P.A.; Assaraf, Y.G.; Funel, N.; Gemelli, M.; Stark, M.; Thunnissen, E.; Hou, Z.; Muller, I.B.; Struys, E.A.; Perrino, M.; Jansen, G.; Matherly, L.H.; Peters, G.J. Role of proton-coupled folate transporter in pemetrexed resistance of mesothelioma: Clinical evidence and new pharmacological tools. Ann. Oncol., 2017, 28(11), 2725-2732.
[45]
Uemura, T.; Oguri, T.; Ozasa, H.; Takakuwa, O.; Miyazaki, M.; Maeno, K.; Sato, S.; Ueda, R. ABCC11/MRP8 confers pemetrexed resistance in lung cancer. Cancer Sci., 2010, 101(11), 2404-2410.
[46]
Wang, D.S.; Patel, A.; Shukla, S.; Zhang, Y.K.; Wang, Y.J.; Kathawala, R.J.; Robey, R.W.; Zhang, L.; Yang, D.H.; Talele, T.T.; Bates, S.E.; Ambudkar, S.V.; Xu, R.H.; Chen, Z.S. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2. Oncotarget, 2014, 5(12), 4529-4542.