[1]
Warren, T.K.; Wells, J.; Panchal, R.G.; Stuthman, K.S.; Garza, N.L.; Van Tongeren, S.A.; Dong, L.; Retterer, C.J.; Eaton, B.P.; Pegoraro, G.; Honnold, S.; Bantia, S.; Kotian, P.; Chen, X.; Taubenheim, B.R.; Welch, L.S.; Minning, D.M.; Babu, Y.S.; Sheridan, W.P.; Bavari, S. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature, 2014, 508, 402-405.
[2]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116, 14379-14455.
[3]
De Clercq, E.; Neyts, J. Antiviral agents acting as DNA or RNA chain terminators. Handb. Exp. Pharmacol., 2009, 189, 53-84.
[4]
Menga, W-D.; Qing, F-L. Fluorinated nucleosides as antiviral and antitumor agents. Curr. Top. Med. Chem., 2006, 6, 1499-1528.
[5]
Shakya, N.; Srivastav, M.C.; Desroches, N.; Agrawal, B.; Kunimoto, D.Y.; Kumar, R. 3′-bromo analogues of pyrimidine nucleosides as a new class of potent inhibitors of mycobacterium tuberculosis. J. Med. Chem., 2010, 53, 4130-4140.
[6]
Srivastav, N.C.; Shakya, N.; Mak, M.; Agraval, B.; Tyrell, D.L.; Kumar, R. Antiviral activity of various 1-(2′-deoxy-β-D-lyxofuranosyl), 1-(2′-fluoro-β-D-xylofuranosyl), 1-(3′-fluoro-β-D-arabino-furanosyl), and 2′-fluoro-2′,3′-didehydro-2′,3′-dideoxyribose pyrimidine nucleoside analogues against duck hepatitis b virus (dhbv) and human hepatitis b virus (hbv) replication. J. Med. Chem., 2010, 53, 7156-7166.
[7]
Gosselin, G.; Bergogne, M.C.; De Rudder, J.; De Clercq, E.; Imbach, J.L. Systematic synthesis and biological evaluation of. alpha.- and. beta.-D-xylofuranosyl nucleosides of the five naturally occurring bases in nucleic acids and related analogs. J. Med. Chem., 1986, 29, 2 203-213.
[8]
Brown, D.M.; Todd, A.; Varadarajan, S. Nucleotides. Part XXXVII. The structure of uridylic acids a and b, and a synthesis of spongouridine (3-β-D-arabinofuranosyluracil). J. Chem. Soc., 1956, 2388-2392.
[9]
Czernecki, S.; Valéry, J.M. An efficient synthesis of 3′-azido-3′-deoxythymidine (AZT). Synthesi., 1991, 3, 239-240.
[10]
Dai, Q.; Frederiksen, J.F.; Anderson, V.E.; Harris, M.E.; Piccirilli, J.A. Efficient synthesis of [2′-18O] uridine and its incorporation into oligonucleotides: a new tool for mechanistic study of nucleotidyl transfer reactions by isotope effect analysis. J. Org. Chem., 2008, 73, 309-311.
[11]
Ikehara, M.; Ogiso, Y. Studies of nucleosides and nucleotides – liv, purine cyclonucleosides – 19. further investigations on the cleavage of the 8,2′-o-anhydro linkage. a new synthesis of 9-β-D-arabinofuranosyladenine. Tetrahedron, 1972, 28, 3695-3704.
[12]
Lin, K.; Chiang, L.; Wu, C.; Chen, S.; Yu, C. Synthesis of 5-radioiodoarabinosyl uridine analog for probing the HSV-1 thymidine kinase gene. J. Chin. Chem. Soc., 2007, 54, 563-568.
[13]
Pierra, C.; Amador, A.; Badaroux, E.; Storer, R.; Gosselin, G. Synthesis of 2′-C-methylcytidine and 2′-C-methyluridine derivatives modified in 3′-position as potential antiviral agents. Collect. Czech. Chem. Commun., 2006, 71, 991-1010.
[14]
Hampton, A.; Nichol, A.W. Nucleotides, V. Purine ribonucleoside 2′,3′-cyclic carbonates. Preparation and use for the synthesis of 5′-monosubstituted nucleosides. Biochemistry, 1966, 5, 2076-2082.
[15]
Dai, Q.; Piccirilli, J.A. Efficient synthesis of 2′,3′-dideoxy-2′-amino-3′-thiouridine. Org. Lett., 2004, 6, 2169-2172.
[16]
Kamaike, K.; Uemura, F.; Yamakage, S.; Nishino, S.; Ishido, Y. Partial protection of carbohydrate derivatives. part 23.1 simple, efficient procedure for the preparation of 3′- and 2′-o-(tetrahydropyran-2-yl) ribonucleoside derivatives involving highly regioselective 2′,5′-di-o-acylation or that followed by acyl migration on silica gel and subsequent o-(tetrahydropyran-2-yl)ation. Nucleosides Nucleotides, 1987, 6, 699-736.
[17]
Hakimelahi, G.H.; Proba, Z.A.; Ogilvie, K.K. Nitrate ion as catalyst for selective silylations of nucleosides. Tetrahedron Lett., 1981, 22, 4775-4778.
[18]
Roy, S.K.; Tang, J-Y. Efficient large scale synthesis of 2′-O-alkyl pyrimidine ribonucleosides. Org. Process Res. Dev., 2000, 4, 170-171.
[19]
Szlenkier, M.; Kamel, K.; Boryski, J. Regioselective mitsunobu reaction of partially protected uridine. Nucleosides Nucleotides Nucleic Acids, 2016, 35, 410-425.
[20]
Codington, J.F.; Fecher, R.; Fox, J.J. Pyrimidine nucleosides. vii. reactions of 2′,3′,5′-trimesyloxyuridine. J. Am. Chem. Soc., 1960, 82, 2794-2803.
[21]
Fecher, R.; Codington, J.F.; Fox, J.J. Pyrimidine nucleosides. ix. facile synthesis of 1-β-d-lyxofuranosyluracil via 2,3′-anhydrolyxosyl intermediates. J. Am. Chem. Soc., 1961, 83, 1889-1895.
[22]
Ogilvie, K.K.; Iwacha, D. Conversion of uridine 2′,3′-carbonates to anhydrouridines. Can. J. Chem., 1969, 47, 495-497.
[23]
Fox, J.J.; Wempen, I. Nucleosides XXVI. A facile synthesis of 2,2′-anhydroarabino pyrimidine nucleosides. Tetrahedron Lett., 1965, 6, 643-646.
[24]
Ruyle, W.V.; Shen, T.Y.; Patchett, A.A. Nucleosides. II. reactions of 5′-trityluridine 2′,3′-o-thionocarbonate. J. Org. Chem., 1965, 30, 4353-4355.
[25]
Doerr, I.L.; Codington, J.F.; Fox, J.J. Nucleosides. XXXV. 1-β-D-Arabinofuranosyl-5-methylcytosine. J. Med. Chem., 1967, 10, 247-248.
[26]
Letters, R.; Michelson, A.M. o-2,3′-cyclouridine. J. Chem. Soc., 1961, 1401.
[27]
Yung, N.C.; Fox, J.J. Nucleosides. X. anhydronucleosides and related compounds derived from 2′,5′-di-o-trityluridine. J. Am. Chem. Soc., 1961, 83, 3060-3066.
[28]
Michelson, A.M.; Todd, A. Deoxyribonucleosides and related compounds 5. cyclotymidines and other thymidine derivatives – the configuration at the glycosidic centre in thymidine. J. Chem. Soc., 1955, 816-822.
[29]
Fox, J.J.; Miller, N.C. Nucleosides. xvi. further studies of anhydronucleosides. J. Org. Chem., 1963, 28, 936-941.
[30]
Miller, N.C.; Fox, J.J. Nucleosides. XXI. Synthesis of some 3′-substituted 2′,3′-dideoxyribonucleosides of thymine and 5-methylcytosine. J. Org. Chem., 1964, 29, 1772-1776.
[31]
Pankiewicz, K.W.; Watanabe, K.A. Nucleosides. cxliv. some reactions of 2′-o-triflyl-2,3′-anhydroxylosyluracil with nucleophilic reagents. synthesis of 2′-chloro-2′,3′-dideoxyuridinene. studies directed toward the synthesis of 2′-deoxy-2′-substituted arabino nucleosides. Chem. Pharm. Bull., 1987, 35, 4498-4502.
[32]
Secrist, III, J.A. A convenient procedure for formation of certain uracil and thymine anhydronucleosides. Carbohydr. Res., 1975, 42, 379-381.
[33]
Hakimelahi, G.H.; Proba, Z.A.; Ogilvie, K.K. New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem., 1982, 60, 1106-1113.
[34]
McGee, D.P.; Vaughn-Settle, A.; Vargeese, C.; Zhai, Y. 2′-amino-2′-deoxyuridine via an intramolecular cyclization of a trichloroacetimidate. J. Org. Chem., 1996, 61, 781-785.
[35]
Kanai, T.; Ichino, M. Some phosphate esters of cyclocytidine and aracytidine. Tetrahedron Lett., 1971, 22, 1965-1968.
[36]
Kanai, T.; Ichino, M.; Hoshi, A.; Kanzawa, F.; Kuretani, K. Pyrimidine nucleosides. 6. Synthesis and anticancer activities of N4-substituted 2,2′-anhydronucleosides. J. Med. Chem., 1974, 17, 1076-1078.
[37]
Meyer, J-P.; Probst, K.C.; Trist, I.M.; McGuigan, C.; Westwell, A.D. A novel radiochemical approach to 1-(2′-deoxy-2′-[18F] fluoro-β-D-arabinofuranosyl)cytosine (18F-FAC). J. Labelled Comp. Radiopharm., 2014, 57, 637-644.
[38]
Nagyvary, J. Arabinonucleotides. II. synthesis of O2,2′-anhydrocytidine 3′-phosphate, a precursor of 1-β-D-arabinosylcytosine. J. Am. Chem. Soc., 1969, 91, 5409-5410.
[39]
Sowa, T.; Tsunoda, K. The convenient synthesis of anhydronucleosides via the 2′,3′-o-sulfinate of pyrimidine nucleosides as the active intermediates. Bull. Chem. Soc. Jpn., 1975, 48, 505-507.
[40]
Kondo, K.; Inoue, I. Studies on biologically active nucleosides and nucleotides. 2. A convenient one-step synthesis of 2,2′-anhydro-1-(3′,5′-di-O-acyl-β-D-arabinofuranosyl)pyrimidines from pyrimidine ribonucleosides. J. Org. Chem., 1977, 42, 2809-2812.
[41]
Shang, P.; Wang, H.; Cheng, C.; Zheng, H.; Zhao, Y. Study on disulfur-backboned nucleic acids: Part 3. Efficient Synthesis of 3′,5′-Dithio-2′-Deoxyuridine and Deoxycytidine. Nucleosides Nucleotides Nucleic Acids, 2008, 27, 1272-1281.
[42]
Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1, 1-28.
[43]
Varasi, M.; Walker, K.A.M.; Maddox, M.L. A revised mechanism for the mitsunobu reaction. J. Org. Chem., 1987, 52, 4235-4238.
[44]
Camp, D.; Hanson, G.R.; Jenkins, I.D. Formation of radicals in the mitsunobu reaction. J. Org. Chem., 1995, 60, 2977-2980.
[45]
But, T.Y.S.; Toy, P.H. The mitsunobu reaction: origin, mechanism, improvements, and applications. Chem. Asian J., 2007, 2, 1340-1355.
[46]
Eisenhuth, R.; Richert, C. Convenient syntheses of 3′-amino-2′,3′-dideoxynucleosides, their 5′-monophosphates, and 3′-aminoterminal oligodeoxynucleotide primers. J. Org. Chem., 2009, 74, 26-37.
[47]
Czernecki, S.; Valéry, J-M. One-step conversion of thymidine into 2,3′-anhydro derivatives. J. Chem. Soc. Chem. Commun., 1990, 11, 801-802.
[48]
Legorburu, U.; Reese, C.B.; Song, Q. Conversion of uridine into 2′-O-(2-methoxyethyl) uridine and 2′-O-(2-methoxyethyl)cytidine. Tetrahedron, 1999, 55, 5635-5640.
[49]
Rahman, A.A-H.; Wada, T.; Saigo, K. Facile methods for the synthesis of 5-formylcytidine. Tetrahedron Lett., 2001, 42, 1061-1063.
[50]
Mizuno, Y.; Sasaki, T. The synthesis of dinucleoside phosphates of natural linkages by the “anhydronucleoside method”. Tetrahedron Lett., 1965, 50, 4579-4584.
[51]
Clark, V.M.; Todd, A.R.; Zussman, J. 655. Nucleotides. Part VIII. cycloNucleoside salts. A novel rearrangement of some toluene-p-sulphonylnucleosides. J. Chem. Soc., 1951, 2952-2958.
[52]
Ikehara, M.; Tada, H. A new type of “cyclonucleoside” derived from 2-chloro-8-mercapto-9-β-D-xylofuranosyladenine. J. Am. Chem. Soc., 1963, 85, 2344-2345.
[53]
Ikehara, M.; Tada, H.; Muneyama, K.; Kaneko, M. Synthesis of purine cyclonucleoside having a 8,2′-o-anhydro linkage. J. Am. Chem. Soc., 1966, 88, 3165-3167.
[54]
Holmes, R.E.; Robins, R.K. Purine nucleosides. vii. direct bromination of adenosine, deoxyadenosine, guanosine, and related purine nucleosides. J. Am. Chem. Soc., 1964, 86, 1242-1244.
[55]
Mizuno, H.; Kitamura, K.; Miyao, A.; Yamagata, Y.; Wakahara, A.; Tomita, K.; Ikehara, M. The structure of 8-thioxoadenosine monohydrate. Acta Crystallogr. B, 1980, 36, 902-905.
[56]
Ikehara, M. Purine 8-cyclonucleosides. Acc. Chem. Res., 1969, 2, 47-53.
[57]
Ikehara, M.; Kaneko, M. Studies of nucleosides and nucleotides – xli, purine cyclonucleosides – 8, selective sulfonylation of 8-bromoadenosine derivatives and an alternate synthesis of 8,2′- and 8,3′-s-cyclonucleosides. Tetrahedron, 1970, 26, 4251-4259.
[58]
Ikehara, M.; Tada, H. Studies of nucleosides and nucleotides. xxxii. purine cyclonucleosides. 3. synthesis of 2′-deoxy- and 3′-deoxyadenosine from adenosine. Chem. Pharm. Bull., 1967, 15, 94-100.
[59]
Ikehara, M.; Kaneko, M. Studies of nucleosides and nucleotides. xliv. purine cyclonucleosides. (2). synthesis of cyclonucleosides having 8,3′-o- and -s-anhydro linkage derived from 2′-deoxyadenosine. Chem. Pharm. Bull., 1970, 18, 2441-2446.
[60]
Ikehara, M.; Tezuka, S. Synthesis of adenine 8,2′-cyclonucleosides using diphenyl carbonate. Tetrahedron Lett., 1972, 13, 1169-1170.
[61]
Ikehara, M.; Maruyama, T. Studies of nucleosides and nucleotides – lxv, purine cyclonucleosides – 26, a versatile method for the synthesis of purine o-cyclo-nucleosides. The first synthesis of 8,2′-anhydro-8-oxy-9-β-D-arabinofuranosylguanine. Tetrahedron, 1975, 31, 1369-1372.
[62]
Wagner, D.; Verheyden, J.P.; Moffatt, J.G. Preparation and synthetic utility of some organotin derivatives of nucleosides. J. Org. Chem., 1974, 39, 24-30.
[63]
Sowa, T.; Tsunoda, K. Novel synthesis of anhydronucleosides via the 2′,3′-o-sulfinate of purine nucleosides as intermediates. Bull. Chem. Soc. Jpn., 1975, 48, 3243-3245.
[64]
Ogilvie, K.K.; Slotin, L.; Westmore, J.B.; Lin, D. Synthesis of 8,2′-thioanhydroguanosine. Can. J. Chem., 1972, 50, 1100-1104.
[65]
Ogilvie, K.K.; Slotin, L.; Westmore, J.B.; Lin, D. A general synthesis of 8,2′-thioanhydropurine nucleosides. Can. J. Chem., 1972, 50, 2249-2253.
[66]
Ogilvie, K.K.; Slotin, L.A.; Lin, D.C.; Westmore, J.B. Synthesis of 8,3′-thioanhydroguanosine. Can. J. Chem., 1972, 50, 3276-3279.
[67]
Ogilvie, K.K.; Slotin, L.A.; Westmore, J.B.; Lin, D.C. Synthesis of 8,2′-cyclopurinenucleosides. J. Het. Chem., 1972, 9, 1179-1180.
[68]
Miah, A.; Reese, C.B.; Song, Q.; Sturdy, Z.; Neidle, S.; Simpson, I.J.; Read, M.; Rayner, E. 2’,3’-anhydrouridine. a useful synthetic intermediate. J.
Chem. Soc. Perkin Trans., I, 1998, 9, 3277-3283.
[69]
Chattopadhyaya, J.B.; Reese, C.B. Interconversion of 8,2′-o-cycloadenosine and 2′,3′-anhydro-8-oxyadenosine. J. Chem. Soc. Chem. Commun., 1976, 21, 860-862.
[70]
Codington, J.F.; Fecher, R.; Fox, J.J. Nucleosides. XIII. Synthesis of 3′-amino-3′-deoxyarabinosyluracil via 2′,3′-epoxylyxosyl nucleosides. J. Org. Chem., 1962, 27, 163-167.
[71]
Webb, T.R.; Mitsuya, H.; Broder, S. 1-(2,3-anhydro-β-D-lyxofuranosyl)cytosine derivatives as potential inhibitors of the human immunodeficiency virus. J. Med. Chem., 1988, 31, 1475-1479.
[72]
Greenberg, S.; Moffatt, J.G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. i. reactions of model diols and of uridine. J. Am. Chem. Soc., 1973, 95, 4016-4025.
[73]
Russell, A.F.; Greenberg, S.; Moffatt, J.G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. II. Reactions of adenosine. J. Am. Chem. Soc., 1973, 95, 4025-4030.
[74]
Robins, M.J.; Hansske, F.; Low, N.H.; Park, J.I. A mild conversion of vicinal diols to alkenes. Efficient transformation of ribonucleosides into 2′-ene and 2′,3′-dideoxynucleosides. Tetrahedron Lett., 1984, 25, 367-370.
[75]
Robins, M.J.; Wilson, J.S.; Madej, D.; Low, N.H.; Hansske, F.; Wnuk, S.F. Nucleic Acid-Related Compounds. 88. Efficient Conversions of Ribonucleosides into Their 2′,3′-Anhydro, 2‘(and 3’)-Deoxy, 2′,3′-Didehydro-2′,3′-dideoxy, and 2′,3′-Dideoxy-nucleoside Analogs. J. Org. Chem., 1995, 60, 7902-7908.
[76]
Mattocks, A.R. Novel reactions of some α-acyloxy acid chlorides. J. Chem. Soc., 1964, 1918-1930.
[77]
Akhrem, A.A.; Zaitseva, G.V.; Kalinitchenko, E.M.; Mikhailopulo, I.A. Modified nucleosides. lx. the interaction of acetylsalicyloyl chloride with adenosine, inosine, uridine, and 5-bromouridine. Russ. J. Bioorganic Chem., 1976, 2, 1325-1337.
[78]
Reichman, U.; Chu, C.K.; Hollenberg, D.H.; Watanabe, K.A.; Fox, J.J. Nucleosides XCIX. 2-Acetoxybenzoyl Chloride, A Reagent for the Direct Synthesis of 2,2′-Anhydro-pyrimidine nucleosides. Synthesis, 1976, 8, 533-534.
[79]
Chu, C.K.; Reichman, U.; Watanabe, K.A.; Fox, J.J. Nucleosides. 107. Synthesis of 5-(β-D-arabinofuranosyl)isocytosine and related C-nucleosides. J. Med. Chem., 1978, 21, 96-100.
[80]
Ogilvie, K.K.; McGee, D.P.; Boisvert, S.M.; Hakimelahi, G.H.; Proba, Z.A. The preparation of protected arabinonucleosides. Can. J. Chem., 1983, 61, 1204-1212.
[81]
Brown, D.M.; Parihar, D.B.; Todd, A.; Varadarajan, S. Deoxynucleosides and related compounds. Part VI. The synthesis of 2-thiouridine and of 3′-deoxyuridine. J. Chem. Soc., 1958, 3028-3035.
[82]
Màrton-Merész, M.; Kuszmann, J.; Pelczer, I.; Pàrkànyi, L.; Koritsànszky, T.; Kàlmàn, A. Synthesis and reactions of 2′,3′-anhydro-1-β-D-ribofuranosyl-uracil derivatives: molecular structures of 3-methyl-2′,3′-anhydrouridine and 3,5-dimethyl-2′,3′:O6,5′-dianhydrouridine. Tetrahedron, 1983, 39, 275-284.
[83]
Fox, J.J. Pyrimidine nucleoside transformations via anhydronucleosides. Pure Appl. Chem., 1969, 18, 233-255.
[84]
Moffat, J.G. Chemical Trasformations of the Sugar Moiety of Nucleosides.In Nucleosides Analogues. Chemistry, Biology, and Medicinal Applications; Walker, R.T.; De Clercq, E., Eds.; Eckstein Plenum Press: New York, 1979, Vol. 26, pp. 71-164.
[85]
Ueda, T. Synthesis and Reaction of Pyrimidine Nucleosides, In:. Chemistry of
Nucleosides and Nucleotides,, 1st ed.; Townsend, L. B.; Plenum Press: New
York and London, 1988, pp 1-112.
[86]
Ross, B.S.; Springer, R.H.; Tortorici, Z.; Dimock, S. A novel and economical synthesis of 2′-o-alkyl-uridines. Nucleosides Nucleotides, 1997, 16, 1641-1643.
[87]
Buchanan, J.G.; Clark, D.R. Studies on the interconversion of 2,3′-anhydro-1-β-D-xylofuranosyluracil and 2,2′-anhydro-1-β-D-arabinofuranosyluracil. Carbohydr. Res., 1979, 68, 331-341.
[88]
Hirata, M. Studies on nucleosides and nucleotides. x. nucleophilic substitution of secondary sulfonyloxy groups of pyrimidine nucleosides. iii. reaction of 2′,3′-di-o-tosyluridine with methanolic ammonia. Chem. Pharm. Bull., 1968, 16, 430-436.
[89]
Brown, D.M.; Todd, A.R.; Varadarajan, S. 165. Nucleotides. Part XL. O2 : 5′-cyclouridine and a synthesis of isocytidine. J. Chem. Soc., 1957, 868-872.
[90]
Staudinger, H.; Meyer, J. über neue organische phosphorverbindungen iii. phosphinmethylenderivate und phosphinimine. Helv. Chim. Acta, 1919, 2, 635-646.
[91]
Tian, W.Q.; Wang, Y.A. Mechanisms of staudinger reactions within density functional theory. J. Org. Chem., 2004, 69, 4299-4308.
[92]
McGee, D.P.; Vaughn-Settle, A. Novel intramolecular introduction of nucleophiles to 2,2′-anhydrouridine. Nucleosides Nucleotides, 1997, 16, 1095-1097.
[93]
Gondela, A.; Tomczyk, M.D.; Przypis, L.; Walczak, K.Z. Versatile synthesis of 2′-amino-2′-deoxyuridine derivatives with a 2′-amino group carrying linkers possessing a reactive terminal functionality. Tetrahedron, 2016, 72, 5626-5632.
[94]
Hirata, M. Studies on nucleosides and nucleotides. ix. nucleophilic substitution of secondary sulfonyloxy groups of pyrimidine nucleosides. ii. reaction of 2,2′-anhydro-1-(3′-o-tosyl-β-D-arabinofuranosyl)uracil with sodium bromide, sodium ethanethiol, and sodium azide. Chem. Pharm. Bull., 1967, 16, 291-295.
[95]
Patel, A.D.; Schrier, W.H.; Nagyvary, J. Synthesis and properties of 2′-deoxy-2′-thiocytidine. J. Org. Chem., 1980, 45, 4830-4834.
[96]
Mengel, R.; Guschlbauer, W. A simple synthesis of 2′‐deoxy‐2′‐fluorocytidine by nucleophilic substitution of 2,2′‐anhydrocytidine with potassium fluoride/crown ether. Angew. Chem. Int. Ed. Engl., 1978, 17, 525-525.
[97]
Kikugawa, K.; Ukita, U. Reaction of hydrogen halides on 2, 3′-anhydro-1-(β-d-xylofuranosyl) uracil. Chem. Pharm. Bull., 1969, 17, 775-784.
[98]
Kikugawa, K.; Ichino, M.; Kusama, T.; Ukita, T. Syntheses of 1-(5′-amino-5′-deoxy-β-d-xylofuranosyl) uracil and its n3-methyl derivative. Chem. Pharm. Bull., 1969, 17, 798-803.
[99]
Kowollik, G.; Gaertner, K.; Langen, P. Nucleosides of fluorocarbohydrates. 13. synthesis of 3′-deoxy-3′-fluorouridine. J. Carbohydr. Nucleos. Nucleot., 1975, 2, 191-195.
[100]
Ikehara, M.; Imura, J. Studies on nucleosides and nucleotides. lxxxvii. purine cyclonucleosides. xlii. synthesis of 2′-deoxy-2′-fluoroguanosine. Chem. Pharm. Bull., 1981, 29, 4 1034-1038.
[101]
Torii, T.; Onishi, T.; Izawa, K.; Maruyama, T. A concise synthesis of 3′-α-fluoro-2′,3′-dideoxyguanosine (fddg) via 3′-α-selective fluorination of 8,2′-thioanhydronucleoside. Tetrahedron Lett., 2006, 47, 6139-6141.
[102]
Ikehara, M.; Maruyama, T.; Miki, H.; Takatsuka, Y. Studies of nucleosides and nucleotides. lxxxv. purine cyclonucleosides. (35). synthesis of purine nucleosides having 2′-azido and 2′-amino functions by cleavage of purine cyclonucleosides. Chem. Pharm. Bull., 1977, 25, 754-760.
[103]
Anderson, J.M.; Percival, E. 175. The ammonolysis of methyl 2: 3-anhydro-D-furanosides. part ii. methyl 2: 3-anhydro-5-o-methyl-α- and -β-D-lyxofuranosides. J. Chem. Soc., 1956, 819-823.
[104]
Sun, J.; Duan, R.; Li, H.; Wu, J. synthesis and anti-hiv activity of triazolo-fused 2′,3′-cyclic nucleoside analogs prepared by an intramolecular huisgen 1,3-dipolar cycloaddition. Helv. Chim. Acta, 2013, 96, 59-68.
[105]
Mete, A.; Hobbs, J.B. Novel nucleoside analogues via direct attack of carbon : nucleophiles on nucleosides containing epoxy-sugars. Tetrahedron Lett., 1985, 26, 97-100.
[106]
Ariza, X.; Garces, J.; Vilarrasa, J. Azide- or fluorine-containing 2′ & 3′-azolyluridines by regioselective opening of 1-(2′,3′-anhydro-β-D-lyxofuranosyl)uracils. Tetrahedron Lett., 1992, 33, 4069-4072.