[1]
Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2009, 13(11), 1320-1330. [PMID: 19861002].
[2]
WHO. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 Global Report on Surveillance and response; World Health Organization: Geneva, Switzerland, 2010.
[4]
WHO. Totally Drug-Resistant TB.A WHO consultation on the diagnostic definition and treatment options; World Health Organization: Geneva, Switzerland, 2012.
[5]
Ginsberg, A.M. Drugs in development for tuberculosis. Drugs, 2010, 70(17), 2201-2214. [http://dx.doi.org/10.2165/11538170-000000000-00000]. [PMID: 21080738].
[6]
Villemagne, B.; Crauste, C.; Flipo, M.; Baulard, A.R.; Déprez, B.; Willand, N. Tuberculosis: The drug development pipeline at a glance. Eur. J. Med. Chem., 2012, 51(0), 1-16. [http://dx.doi.org/ 10.1016/j.ejmech.2012.02.033]. [PMID: 22421275].
[9]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.; Neefs, J.M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227. [http://dx.doi.org/ 10.1126/science.1106753]. [PMID: 15591164].
[10]
Pasca, M.R.; Degiacomi, G.; Ribeiro, A.L.D.J.L.; Zara, F.; De Mori, P.; Heym, B.; Mirrione, M.; Brerra, R.; Pagani, L.; Pucillo, L.; Troupioti, P.; Makarov, V.; Cole, S.T.; Riccardi, G. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are uniformly susceptible to benzothiazinones. Antimicrob. Agents Chemother., 2010, 54(4), 1616-1618. [http://dx.doi.org/10.1128/ AAC.01676-09]. [PMID: 20086151].
[11]
Makarov, V.; Cole, S.T.; Moellmann, U. New Benzothiazinone derivatives and their use as antibacterial agents. Germany, WO2007134625A1,, 2007.
[13]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804. [http://dx.doi.org/10.1126/science.1171583]. [PMID: 19299584].
[14]
Trefzer, C.; Rengifo-Gonzalez, M.; Hinner, M.J.; Schneider, P.; Makarov, V.; Cole, S.T.; Johnsson, K. Benzothiazinones: Prodrugs that covalently modify the decaprenylphosphoryl-β-D-ribose 2′-epimerase DprE1 of Mycobacterium tuberculosis. J. Am. Chem. Soc., 2010, 132(39), 13663-13665. [http://dx.doi.org/10.1021/ ja106357w]. [PMID: 20828197].
[15]
Manina, G.; Pasca, M.R.; Buroni, S.; De Rossi, E.; Riccardi, G. Decaprenylphosphoryl-β-D-ribose 2′-epimerase from Mycobacterium tuberculosis is a magic drug target. Curr. Med. Chem., 2010, 17(27), 3099-3108. [http://dx.doi.org/10.2174/09298671079 1959693]. [PMID: 20629622].
[16]
Neres, J.; Pojer, F.; Molteni, E.; Chiarelli, L.R.; Dhar, N.; Boy-Röttger, S.; Buroni, S.; Fullam, E.; Degiacomi, G.; Lucarelli, A.P.; Read, R.J.; Zanoni, G.; Edmondson, D.E.; De Rossi, E.; Pasca, M.R.; McKinney, J.D.; Dyson, P.J.; Riccardi, G.; Mattevi, A.; Cole, S.T.; Binda, C. Structural basis for benzothiazinone-mediated killing of Mycobacterium tuberculosis. Sci. Transl. Med., 2012, 4(150)150ra121 [http://dx.doi.org/10.1126/scitranslmed.3004395]. [PMID: 22956199].
[17]
Foo, C.S.; Lechartier, B.; Kolly, G.S.; Boy-Röttger, S.; Neres, J.; Rybniker, J.; Lupien, A.; Sala, C.; Piton, J.; Cole, S.T. Characterization of DprE1-mediated benzothiazinone resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2016, 60(11), 6451-6459. [http://dx.doi.org/10.1128/AAC.01523-16]. [PMID: 27527085].
[18]
Trefzer, C.; Rengifo-Gonzalez, M.; Hinner, M.J.; Schneider, P.; Makarov, V.; Cole, S.T.; Johnsson, K. Benzothiazinones: Prodrugs that covalently modify the decaprenylphosphoryl-β-D-ribose 2′-epimerase DprE1 of Mycobacterium tuberculosis. J. Am. Chem. Soc., 2010, 132(39), 13663-13665. [http://dx.doi.org/10.1021/ ja106357w]. [PMID: 20828197].
[19]
Trefzer, C.; Škovierová, H.; Buroni, S.; Bobovská, A.; Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M.R.; Makarov, V.; Cole, S.T.; Riccardi, G.; Mikušová, K.; Johnsson, K. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-β-D-ribofu-ranose 2′-oxidase DprE1. J. Am. Chem. Soc., 2012, 134(2), 912-915. [http://dx.doi.org/10.1021/ja211042r]. [PMID: 22188377].
[20]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354-11359. [http://dx.doi.org/10.1073/pnas.1205735109]. [PMID: 22733761].
[21]
Batt, S.M.; Jabeen, T.; Bhowruth, V.; Quill, L.; Lund, P.A.; Eggeling, L.; Alderwick, L.J.; Fütterer, K.; Besra, G.S. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl. Acad. Sci. USA, 2012, 109(28), 11354-11359. [http://dx.doi.org/10.1073/pnas.1205735109]. [PMID: 22733761].
[22]
Grover, S.; Alderwick, L.J.; Mishra, A.K.; Krumbach, K.; Marienhagen, J.; Eggeling, L.; Bhatt, A.; Besra, G.S. Benzothiazinones mediate killing of Corynebacterineae by blocking decaprenyl phosphate recycling involved in cell wall biosynthesis. J. Biol. Chem., 2014, 289(9), 6177-6187. [http://dx.doi.org/10.1074/ jbc.M113. 522623]. [PMID: 24446451].
[23]
Piton, J.; Foo, C.S.; Cole, S.T. Structural studies of Mycobacterium tuberculosis DprE1 interacting with its inhibitors. Drug Discov. Today, 2017, 22(3), 526-533. [http://dx.doi.org/10.1016/ j.drudis.2016.09.014]. [PMID: 27666194].
[24]
Kloss, F.; Krchnak, V.; Krchnakova, A.; Schieferdecker, S.; Dreisbach, J.; Krone, V.; Möllmann, U.; Hoelscher, M.; Miller, M.J. In Vivo dearomatization of the potent antituberculosis agent BTZ043 via meisenheimer complex formation. Angew. Chem. Int. Ed. Engl., 2017, 56(8), 2187-2191. [http://dx.doi.org/10.1002/ anie.201609-737]. [PMID: 28097740].
[25]
Rudolph, A.I. Antitubercular Benzothiazinones: Synthesis, activity, properties and SAR; Martin-Luther University, Halle-Wittenberg, 2014.
[26]
Shanshan, L.; Hailong, H.; Ning, Z.; Limin, H.; Jiayuan, L. Review about the synthesis of 1,3-benzothiazinone derivatives. Youji Huaxue, 2016, 36(9), 2024-2038. [http://dx.doi.org/10.6023/ cjoc201603034].
[27]
Karoli, T.; Becker, B.; Zuegg, J.; Möllmann, U.; Ramu, S.; Huang, J.X.; Cooper, M.A. Identification of antitubercular benzothiazinone compounds by ligand-based design. J. Med. Chem., 2012, 55(17), 7940-7944. [http://dx.doi.org/10.1021/jm3008882]. [PMID: 22916795].
[28]
Tiwari, R.; Möllmann, U.; Cho, S.; Franzblau, S.G.; Miller, P.A.; Miller, M.J. Design and syntheses of anti-tuberculosis agents inspired by BTZ043 using a scaffold simplification strategy. ACS Med. Chem. Lett., 2014, 5(5), 587-591. [http://dx.doi.org/10.1021/ ml500039g]. [PMID: 24900885].
[29]
Tiwari, R.; Miller, P.A.; Cho, S.; Franzblau, S.G.; Miller, M.J.; Miller, M.J. Syntheses and antituberculosis activity of 1,3-Benzothiazinone sulfoxide and sulfone derived from BTZ043. ACS Med. Chem. Lett., 2014, 6(2), 128-133. [http://dx.doi.org/ 10.1021/ml5003458]. [PMID: 25699139].
[30]
Tiwari, R.; Miller, P.A.; Chiarelli, L.R.; Mori, G.; Šarkan, M.; Centárová, I.; Cho, S.; Mikušová, K.; Franzblau, S.G.; Oliver, A.G.; Miller, M.J. Design, syntheses, and anti-tb activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med. Chem. Lett., 2016, 7(3), 266-270. [http://dx.doi.org/10.1021/acsmedchemlett.5b00424]. [PMID: 26985313].
[31]
Tiwari, R.; Möllmann, U.; Cho, S.; Franzblau, S.G.; Miller, P.A.; Miller, M.J. Design and syntheses of anti-tuberculosis agents inspired by BTZ043 using a scaffold simplification strategy. ACS Med. Chem. Lett., 2014, 5(5), 587-591. [http://dx.doi.org/ 10.1021/ml500039g]. [PMID: 24900885].
[32]
Peng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.; Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.; Xiao, K.J.; Yu, L.T. Synthesis and antitubercular evaluation of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one derivatives. Bioorg. Med. Chem. Lett., 2015, 25(7), 1373-1376. [http://dx.doi.org/ 10.1016/j.bmcl.2015.02.061]. [PMID: 25754492].
[33]
Chandran, M.; Renuka, J.; Sridevi, J.P.; Pedgaonkar, G.S.; Asmitha, V.; Yogeeswari, P.; Sriram, D. Benzothiazinone-piperazine derivatives as efficient Mycobacterium tuberculosis DNA gyrase inhibitors. Int. J. Mycobacteriol., 2015, 4(2), 104-115. [http://dx.doi.org/10.1016/j.ijmyco.2015.02.002]. [PMID: 26972878].
[34]
Lv, K.; You, X.; Wang, B.; Wei, Z.; Chai, Y.; Wang, B.; Wang, A.; Huang, G.; Liu, M.; Lu, Y. Identification of better pharmacokinetic benzothiazinone derivatives as new antitubercular agents. ACS Med. Chem. Lett., 2017, 8(6), 636-641. [http://dx.doi.org/ 10.1021/acsmedchemlett.7b00106]. [PMID: 28626525].
[35]
Zhang, R.; Lv, K.; Wang, B.; Li, L.; Wang, B.; Liu, M.; Guo, H.; Wang, A.; Lu, Y. Design, synthesis and antitubercular evaluation of benzothiazinones containing an oximido or amino nitrogen heterocycle moiety. RSC Advances, 2017, 7, 1480-1483. [http://dx.doi.org/10.1039/C6RA25712G].
[36]
Lv, K.; Tao, Z.; Liu, Q.; Yang, L.; Wang, B.; Wu, S.; Wang, A.; Huang, M.; Liu, M.; Lu, Y. Design, synthesis and antitubercular evaluation of benzothiazinones containing a piperidine moiety. Eur. J. Med. Chem., 2018, 151, 1-8. [http://dx.doi.org/10.1016/ j.ejmech.2018.03.060]. [PMID: 29601990].
[37]
Lu, X.; Gao, C.; Shi, Y.; Xin, T.; Rong, J.; Liu, K.; Peng, C.; Wang, N.; Lei, Q.; Zhang, Y.; Yu, L.; Wei, Y. Identification of a new series of benzothiazinone derivatives with excellent antitubercular activity and improved pharmacokinetic profiles. RSC Advances, 2018, 8, 11163-11176. [http://dx.doi.org/10.1039/ C8RA00720A].
[38]
Piton, J.; Vocat, A.; Lupien, A.; Foo, C.S.; Riabova, O.; Makarov, V.; Cole, S.T. Structure-based drug design and characterization of sulfonyl-piperazinebenzothiazinone inhibitors of DprE1 from Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2018, 62(10), e00681-e18. [http://dx.doi.org/10.1128/AAC.00681-18]. [PMID: 30012754].
[39]
Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol. Med., 2014, 6(3), 372-383. [http://dx.doi.org/ 10.1002/emmm. 201303575]. [PMID: 24500695].
[40]
Lechartier, B.; Hartkoorn, R.C.; Cole, S.T. In vitro combination studies of benzothiazinone lead compound BTZ043 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(11), 5790-5793. [http://dx.doi.org/10.1128/AAC.01476-12]. [PMID: 22926573].
[41]
Lechartier, B.; Cole, S.T. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(8), 4457-4463. [http://dx.doi.org/10.1128/AAC.00395-15]. [PMID: 25987624].