Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Tph2基因消融有助于APP / PS1小鼠的老年斑负荷和星形胶质细胞增生

卷 16, 期 3, 2019

页: [219 - 232] 页: 14

弟呕挨: 10.2174/1567205016666190301110110

价格: $65

摘要

背景:淀粉样β蛋白(Aβ)的积累在阿尔茨海默病(AD)病变的发病机制中起着关键作用。最近血清素信号传导的缺乏与转基因小鼠和人类中Aβ水平的增加有关。此外,色氨酸羟化酶-2(Tph2),第二种色氨酸羟化酶同种型,控制脑血清素合成。然而,仍有待确定Tph2缺陷型APP / PS1小鼠是否影响体内Aβ斑块的形成。 方法:采用定量和定性免疫化学方法,以及刚果红染色法评价这些动物的Aβ负荷和星形胶质细胞增生。 结果:我们研究了6-10个月龄的Tph2条件性敲除(Tph2 CKO)AD小鼠对星形胶质细胞和老年斑中皮层和海马的改变。使用刚果红染色并用Aβ抗体免疫染色,我们显示,与野生型(WT)组相比,在8至10个月时Tph2 CKO实验组中斑块负荷或斑块数量显着增加。使用GFAP +星形胶质细胞免疫荧光法,我们发现在10个月时Tph2 CKO中GFAP +星形胶质细胞的密度显着增强。我们显示Aβ斑块共定位的自噬标记物LC3和p62。然而,我们没有观察到GFAP +星形胶质细胞和自噬标记物之间的任何共定位,但检测到βIII-微管蛋白+神经元和自噬标记物之间的共定位。 结论:总的来说,我们的工作在体内提供了Tph2在淀粉样蛋白斑生成中发挥作用的初步证据。

关键词: Tph2,Aβ斑块,APP / PS1,自噬,星形胶质细胞,阿尔茨海默病。

[1]
Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflam 8(1): 150. (2011)
[2]
Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8: 112. (2014)
[3]
Jie Z, O’Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflam 8(1): 1-17. (2011)
[4]
Li L, Liu J, Suo WZ. GRK5 deficiency exaggerates inflammatory changes in TgAPPsw mice. J Neuroinflam 5(1): 24. (2008)
[5]
Abhishek S, Marco BD, Uday K. Innate immunity and neuroinflammation. Mediat Inflam 2013(6): 342931. (2013)
[6]
Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20(15): 5709-14. (2000)
[7]
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4): 388-405. (2015)
[8]
Higgins CE, Gross SS. Chapter 6 - Tetrahydrobiopterin: An Essential Cofactor for Nitric Oxide Synthases and Amino Acid Hydroxylases. In: Nitric Oxide(Second Edition) (Ed: Ignarro LJ) San Diego: Academic Press;. 169-209. (2010)
[9]
Xu C-J, Peng Z, Dai T-L, Niu X-Y, Wang J-L, Jin M-S, et al. Evaluation of blood-brain barrier permeability in tryptophan hydroxylase 2-knockout mice. Exp Ther Med 8(5): 1467-70. (2014)
[10]
Byrne JH, Heidelberger R, Waxham MN. In: From molecules to networks An introduction to cellular and molecular neuroscience With CD-ROM Elsevier Academic Press. (2014)
[11]
Chen GL, Miller GM. Tryptophan hydroxylase-2: an emerging therapeutic target for stress disorders. Biochem Pharmacol 85(9): 1227-33. (2013)
[12]
Gershon MD. Serotonin is a sword and a shield of the bowel: serotonin plays offense and defense. Trans Am Clin Climatolog Assoc 123: 268. (2012)
[13]
Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci 33(19): 8270-5. (2013)
[14]
Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, et al. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc Natl Acad Sci USA 108(36): 14968-73. (2011)
[15]
Gelman DM, Noaín D, Avale ME, Otero V, Low MJ, Rubinstein M. Transgenic mice engineered to target Cre/loxP-mediated DNA recombination into catecholaminergic neurons. Genesis 36(4): 196-02. (2003)
[16]
Song NN, Jia YF, Zhang L, Zhang Q, Huang Y, Liu XZ, et al. Reducing central serotonin in adulthood promotes hippocampal neurogenesis. Sci Rep 6: 20338. (2016)
[17]
Kriegebaum C, Song NN, Gutknecht L, Huang Y, Schmitt A, Reif A, et al. Brain-specific conditional and time-specific inducible Tph2 knockout mice possess normal serotonergic gene expression in the absence of serotonin during adult life. Neurochem Int 57(5): 512-7. (2010)
[18]
Wilcock DM, Gordon MN, Morgan D. Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo red histochemical stain. Nat Protoc 1(3): 1591-5. (2006)
[19]
Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, et al. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp Neurol 239: 28-37. (2013)
[20]
Paxinos G, Paxinos G. Mouse Brain in Stereotaxic Coordinates 3rd edition, compact version Elsevier Ltd Oxford. (2008)
[21]
Qiao J, Wang J, Wang H, Zhang Y, Zhu S, Adilijiang A, et al. Regulation of astrocyte pathology by fluoxetine prevents the deterioration of Alzheimer phenotypes in an APP/PS1 mouse model. Glia 64(2): 240-54. (2016)
[22]
Cheng S, Cao D, Hottman DA, Yuan L, Bergo MO, Li L. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem 288(50): 35952-60. (2013)
[23]
Toledo E, Inestrosa N. Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer’s disease. Mol Psychiat 15(3): 272-85. (2010)
[24]
Lin T, Liu Y, Shi M, Liu X, Li L, Liu Y, et al. Promotive effect of ginsenoside Rd on proliferation of neural stem cells in vivo and in vitro. J Ethnopharmacol 142(3): 754-61. (2012)
[25]
Calhoun ME, Wiederhold K-H, Abramowski D, Phinney AL, Probst A, Sturchler-Pierrat C, et al. Neuron loss in APP transgenic mice. Nature 395(6704): 755-6. (1998)
[26]
Moreno-Gonzalez I, Estrada LD, Sanchez-Mejias E, Soto C. Smoking exacerbates amyloid pathology in a mouse model of Alzheimer’s disease. Nat Comm 4: 1495. (2013)
[27]
Watson RE Jr, Wiegand SJ, Clough RW, Hoffman GE. Use of cryoprotectant to maintain long-term peptide immunoreactivity and tissue morphology. Peptides 7(1): 155-9. (1986)
[28]
Paresce DM, Chung H, Maxfield FR. Slow degradation of aggregates of the Alzheimer’s disease amyloid β-protein by microglial cells. J Biol Chem 272(46): 29390-7. (1997)
[29]
Khurana R, Uversky VN, Nielsen L, Fink AL. Is Congo red an amyloid-specific dye? J Biol Chem 276(25): 22715-21. (2001)
[30]
Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal 2012: 756357. (2012)
[31]
Medeiros R, LaFerla FM. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 239: 133-8. (2013)
[32]
Duffy A, Hölscher C. The incretin analogue D-Ala2GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer’s disease. Neuroscience 228: 294-300. (2013)
[33]
Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, et al. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice. Brain 128(6): 1442-53. (2005)
[34]
Bains M, Heidenreich KA. Live‐cell imaging of autophagy induction and autophagosome‐lysosome fusion in primary cultured neurons. Meth Enzymol 453: 145-58. (2009)
[35]
Pugsley HR. Assessing autophagic flux by measuring LC3, p62, and LAMP1 co-localization using multispectral imaging flow cytometry. J Vis Exp 2017; (125).
[36]
Roßner S, Lange‐Dohna C, Zeitschel U, Perez‐Polo JR. Alzheimer’s disease β‐secretase BACE1 is not a neuron‐specific enzyme. J Neurochem 92(2): 226-34. (2005)
[37]
Zhong Z, Sanchez-Lopez E, Karin M. Autophagy, inflammation, and immunity: A troika governing cancer and its treatment. Cell 166(2): 288-98. (2016)
[38]
Kurz A, Perneczky R. Amyloid clearance as a treatment target against Alzheimer’s disease. J Alzheimers Dis 4(2): 61-73. (2011)
[39]
Citron M. Alzheimer’s disease: Strategies for disease modification. Nat Rev Drug Discov 9(5): 387-98. (2010)
[40]
Tommonaro G, García-Font N, Vitale RM, Pejin B, Iodice C, Canadas S, et al. Avarol derivatives as competitive AChE inhibitors, non hepatotoxic and neuroprotective agents for Alzheimer’s disease. Eur J Med Chem 122: 326-38. (2016)
[41]
Pejin B, Iodice C, Tommonaro G, De Rosa S. Synthesis and biological activities of thio-avarol derivatives. J Nat Prod 71(11): 1850-3. (2008)
[42]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 26(6) (2017)
[43]
Yasuo H, Yasushi T, Masaki I, Atsushi S, Takeshi K, Etsuro M, et al. Type-specific evolution of amyloid plaque and angiopathy in APPsw mice. Neurosci Lett 395(1): 37-41. (2006)
[44]
Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, et al. The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22(5): 1858-67. (2002)
[45]
Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284): 99-102. (1996)
[46]
Garcia-Alloza M, Hirst WD, Chen CPLH, Lasheras B, Francis PT, Ramírez MJ. Differential involvement of 5-HT1B/1D and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer disease. Neuropsychopharmacol 29: 410. (2003)
[47]
Lecoutey C, Hedou D, Freret T, Giannoni P, Gaven F, Since M, et al. Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer’s disease treatment. Proc Nat Acad Sci USA 111(36): E3825. (2014)
[48]
Lezoualc'H F Robert SJ. The serotonin 5-HT4 receptor and the amyloid precursor protein processing. Exp Gerontol 38(1): 159-66. (2003)
[49]
Gutknecht L, Waider J, Kraft S, Kriegebaum C, Holtmann B, Reif A, et al. Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm 115(8): 1127-32. (2008)
[50]
Tajeddinn W, Persson T, Maioli S, Calvo-Garrido J, Parrado-Fernandez C, Yoshitake T, et al. 5-HT1B and other related serotonergic proteins are altered in APPswe mutation. Neurosci Lett 594: 137-43. (2015)
[51]
Cho S, Hu Y. Activation of 5-HT4 receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. Exp Neurol 203(1): 274-8. (2007)
[52]
Nilsson P, Saido TC. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease AÎ2 peptide. Bioessays 36(6): 570-8. (2014)
[53]
Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, et al. Aβ secretion and plaque formation depend on autophagy. Cell Rep (1): 61-9. (2013)
[54]
Nilsson P, Sekiguchi M, Akagi T, Izumi S, Komori T, Hui K, et al. Autophagy-Related Protein 7 Deficiency in Amyloid β (Aβ) precursor protein transgenic mice decreases aβ in the multivesicular bodies and induces aβ accumulation in the golgi. Am J Pathol 185(2): 305-13. (2015)
[55]
Caccamo A, Ferreira E, Branca C, Oddo S. p62 improves AD-like pathology by increasing autophagy. Mol Psychiatry 22(6): 865-73. (2017)
[56]
Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 42(2): 215-30. (2017)
[57]
Carson MJ, Thrash JC, Walter B. The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6(5): 237-45. (2007)
[58]
Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Can Therap 10(9): 1533-41. (2011)
[59]
Alpay N, Tekedereli I, Lopez-Berestein G, Dalby K, Ozpolat B. Serotonin signaling plays a role in regulation of autophagy in breast cancer cells. (2011)
[60]
Ledo JH, Azevedo EP, Beckman D, Ribeiro FC, Santos LE, Razolli DS, et al. Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by alzheimer’s amyloid-î2 oligomers in mice. J Neurosci 36(48): 12106-16. (2016)
[61]
Pomilio C, Pavia P, Gorojod RM, Vinuesa A, Alaimo A, Galvan V, et al. Glial alterations from early to late stages in a model of Alzheimer’s disease: Evidence of autophagy involvement in Aβ internalization. Hippocampus 26(2): 194-210. (2016)
[62]
Natalia A, Dana K, Mihail T, Valentina M, Fatimunnisa Q, Ralph P, et al. Growth retardation and altered autonomic control in mice lacking brain serotonin. Proc Natl Acad Sci USA 106(25): 10332-7. (2009)
[63]
Pratelli M, Pasqualetti M. Serotonergic neurotransmission manipulation for the understanding of brain development and function: learning from Tph2 genetic models Biochimie pii: 50300- 9084(18): 30341-9. (2018)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy