Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Piper sarmentosum Roxb。 根提取物通过减弱小胶质细胞释放的β淀粉样蛋白诱导的促炎性细胞因子来提供神经保护作用

卷 16, 期 3, 2019

页: [251 - 260] 页: 10

弟呕挨: 10.2174/1567205016666190228124630

价格: $65

摘要

背景:阿尔茨海默病(AD)是一种多因素神经退行性疾病,最终导致严重的认知障碍。虽然AD的确切病因仍然难以捉摸,但越来越多的证据表明小胶质细胞介导的神经炎症级联反应与AD有关。 Piper sarmentosum Roxb。 (PS)是据报道具有各种生物学特性的药用植物,包括抗炎,抗精神病和抗氧化活性。然而,尽管它们用于治疗炎症介导的疾病,但对PS根的抗炎活性知之甚少。 目的:本研究旨在评估从PS根部获得的提取物的抗炎和神经保护特性,以抵抗β-淀粉样蛋白(Aβ)诱导的与促炎介质产生相关的小胶质细胞毒性。 方法:在用Aβ活化之前,用己烷(RHXN),二氯甲烷(RDCM),乙酸乙酯(REA)和甲醇(RMEOH)提取物处理BV2小胶质细胞。分别通过Griess试剂,ELISA试剂盒和RT-qPCR评估促炎介质的产生和mRNA表达。通过蛋白质印迹试验测定p38αMAPK的磷酸化状态。 BV2条件培养基用于治疗SH-SY5Y成神经细胞瘤细胞,并使用MTT测定评估神经保护作用。 结果:PS根提取物,特别是RMEOH显着减弱Aβ诱导的BV2小胶质细胞中IL-1β,IL-6和TNF-α的产生和mRNA表达。此外,RHXN,REA和RMEOH提取物显着降低一氧化氮(NO)水平,并且NO产生的抑制与提取物的总酚含量相关。进一步的机理研究表明PS根提取物通过调节小胶质细胞中p38αMAPK的磷酸化来减弱细胞因子的产生。重要的是,PS根提取物通过抑制BV2细胞中NO,IL-1β,IL-6和TNF-α的产生或通过保护SHSY5Y细胞免于这些炎症介质而对Aβ诱导的间接神经毒性具有保护作用。 结论:这些发现提供了PS根提取物赋予针对Aβ诱导的小胶质细胞毒性的神经保护作用的证据,所述神经保护作用与促炎介质的产生相关,并且可能是炎症相关神经病症(包括阿尔茨海默病(AD))的潜在治疗剂。

关键词: Piper sarmentosum,阿尔茨海默病,炎症,小胶质细胞,神经保护,细胞因子。

[1]
Zhang F, Jiang L. Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat 11: 243-56. (2015)
[2]
Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82: 756-71. (2014)
[3]
Krause DL, Muller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimers Dis 732806. (2010).
[4]
Mandrekar S, Landreth GE. Microglia and inflammation in Alzheimer’s disease. CN. Neurol Disord Drug Targets 9: 156-67. (2010)
[5]
Minter MR, Taylor JM, Crack PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease. J Neurochem 136: 457-74. (2016)
[6]
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3: 136. (2015)
[7]
Zakaria Z, Patahuddin H, Mohamad A, Israf D, Sulaiman M. In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum. J Ethnopharmacol 128: 42-8. (2010)
[8]
Khan M, Elhussein S, Khan MM, Khan N. Anti-acetylcholinesterase activity of Piper sarmentosum by a continuous immobilised-enzyme assay. APCBEE Procedia 2: 199-204. (2012)
[9]
Hussain K, Hashmi FK, Latif A, Ismail Z, Sadikun A. A review of the literature and latest advances in research of Piper sarmentosum. Pharm Biol 20: 1045-52. (2012)
[10]
Li Q, Qu FL, Gao Y, Jiang YP, Rahman K, Lee KH, et al. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity. J Ethnopharmacol 199: 9-19. (2017)
[11]
Ugusman A, Zakaria Z, Hui CK, Nordin NAMM. Piper sarmentosum increases nitric oxide production in oxidative stress: A study on human umbilical vein endothelial cells. Clinics 65: 709-14. (2010)
[12]
Hafizah A, Zaiton Z, Zulkhairi A, Ilham MA, Anita M, Zaleha A. Piper sarmentosum as an antioxidant on oxidative stress in human umbilical vein endothecial cells induced by hydrogen peroxide. J Zhejiang Univ Sci B 11: 357-65. (2010)
[13]
Stohr JR, Xiao PG, Bauer R. Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro. J Ethnopharmacol 75: 133-9. (2001)
[14]
Sireeratawong S, Vannasiri S, Sritiwong S, Itharat A, Jaijoy K. Anti-inflammatory, anti-nociceptive and antipyretic effects of the ethanol extract from root of Piper sarmentosum Roxb. J Med Assoc Thai 93(Supplement. 7): S1-6. (2010)
[15]
Chromy BA, Nowak RJ, Lambert MP, Viola KI, Chang I, Velasco PT, et al. Self-assembly of Aβ1-42 into globular neurotoxins. Biochemistry 42: 12749-60. (2003)
[16]
Lester GE, Lewers KS, Medina MB, Saftner RA. Comparative analysis of strawberry total phenolics via fast blue vs. folin-ciocalteu assay: Interference by ascorbic acid. J Food Compos Anal 27: 102-7. (2012)
[17]
Kamiloglu S, Pasli A, Ozcelik B, Van Camp J, Capanoglu E. Colout retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) jams and marmalades: effect of processing, storage conditions and in vitro gastrointestinal digestion. J Funct Foods 13: 1-10. (2015)
[18]
Bachstetter AD, Xing B, Almeida LD, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta amyloid (Aβ). J Neuroinflammation 8: 79. (2011)
[19]
Perry VH, James AR, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurol 6: 193-201. (2010)
[20]
Asiimwe N, Yeo SG, Kim MS, Jung JY, Jeong NY. Nitric oxide: Exploring the contextual link with Alzheimer’s Disease. Oxid Med Cell Longev 7205747 (2016)
[http://dx.doi.org/10.1155/2016/7205747]
[21]
Sayre L, Perry G, Smith M. Oxidative stress and neurotoxicity. Chem Res Toxicol 21: 172-88. (2008)
[22]
Olmos G, Llado J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm (2014)
[http://dx.doi.org/10.1155/2014/861231]
[23]
Zheng C, Zhou X, Wang J. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TNF-β and IFN-γ. Transl Neurodegener 5: 7. (2016)
[24]
He FQ, Qiu BY, Li TK, et al. Tetrandrine suppresses amyloid-β-induced inflammatory cytokines by inhibiting NF-κB pathway in murine BV2 microglial cells. Int Immunopharmacol 11: 1220-5. (2011)
[25]
Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev 22: 189-95. (2011)
[26]
Parajuli R, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A. Oligomeric amyloid β induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis 4: e975. (2013)
[27]
Bachstetter AD, Van Eldik LJ. The p38 MAP kinase family as regulators of proinflammatory cytokine production in degenerative diseases of the CNS. Aging Dis 3: 199-211. (2010)
[28]
Lee JK, Kim N. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 22: 1287. (2017)
[29]
Alam JJ. Selective brain-targeted antagonism of p38 MAPKα reduces hippocampal IL-1β levels and improves morris water maze performance in aged rats. J Alzheimers Dis 48: 219-7. (2015)
[30]
Awah FM, Verla AW. Antioxidant activity, nitric oxide scavenging activity and phenolic contents of Ocimum gratissimum leaf extract. J Med Plants Res 24: 2479-87. (2010)
[31]
Boora F, Chirisa E, Mukanganyama S. Evaluation of nitrite radical scavenging properties of selected Zimbabwean plant extracts and their phytoconstituents. J Food Process 918018 (2014)
[http://dx.doi.org/10.1155/2014/918018]
[32]
Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5: 27986-8006. (2015)
[33]
Rukachaisirikul T, Siriwattanakit P, Sukcharoenphol K, Wongvein C, Ruttanaweang P, Wongwattanavuch P, et al. Chemical constituents and bioactivity of Piper sarmentosum. J Ethnopharmacol 93: 173-6. (2004)
[34]
Hussain K, Ismail Z, Sadikum A, Ibrahim P. Standardisation and in vivo antioxidant activity of ethanol extracts of fruit and leaf of Piper sarmentosum. Planta Med 76: 418-25. (2010)
[35]
Tuntiwachwuttikul P, Phansa P, Pootaeng-On Y, Taylor WC. Chemical constituents of the roots of Piper sarmentosum. Chem Pharm Bull 54: 149-51. (2006)
[36]
Aldini R, Micucci M, Cevenini M, Fato R, Bergamini B, Nanni C, et al. Antiinflammatory effect of phytosterols in experimental murine colitis model: Prevention, induction, remission study. Plos One 9: e108112. (2014)
[37]
Ugusman A, Zakaria Z, Hui CK, Nordin NAMM, Zaleha AM. Flavonoids of Piper sarmentosum and its cytoprotective effects against oxidative stress. EXCLI 11: 705-14. (2012)
[38]
Yeo ETY, Wong KWL, See ML, Wong K, Gan SY, Chan WLE. Piper sarmentosum Roxb. confers neuroprotection on beta-amyloid (Aβ)-induced microglia-mediated neuroinflamation and attenuates tau hyperphosphorylation in SH-SY5Y cells. J Ethnopharmacol 217: 187-94. (2018)

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy