Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects

Author(s): Fatemeh Khatami, Mohammad R. Mohajeri-Tehrani and Seyed M. Tavangar*

Volume 19, Issue 6, 2019

Page: [719 - 731] Pages: 13

DOI: 10.2174/1871530319666190228102212

Price: $65

Abstract

Background: Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention.

Material and Methods: Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication.

Results: SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction.

Conclusion: Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.

Keywords: Type 2 diabetes mellitus, pharmacogenomics, personalized medicine, genotype, single nucleotide polymorphism, epigenetic.

Graphical Abstract

[1]
Gordon, J. W.; Dolinsky, V. W.; Mughal, W.; Gordon, G. R.; McGavock, J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth Biochemistry and cell biology = Biochimie et biologie cellulaire,, 2015, 93, 452-65.
[2]
Inzucchi, S.E.; Sherwin, R.S. Type 2 diabetes mellitus. Cecil Medicine, 24th ed; Saunders Elsevier: Philadelphia, Pa, 2011.
[3]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14.
[http://dx.doi.org/10.1016/j.diabres.2009.10.007] [PMID: 19896746]
[4]
Federation, I.D. IDF diabetes atlas; International Diabetes Federation: Brussels, 2013.
[5]
Insulin, W.G.; Resistance, I. Clin. Biochem. Rev., 2005, 26, 19-39.
[PMID: 16278749]
[6]
Sotoudehmanesh, R.; Sotoudeh, M.; Ali-Asgari, A.; Abedi-Ardakani, B.; Tavangar, S-M.; Khakinejad, A.; Sadeghi, Z.; Malekzadeh, R. Silent liver diseases in autopsies from forensic medicine of Tehran. Arch. Iran Med., 2006, 9(4), 324-328.
[PMID: 17061603]
[7]
Ji, L.; Gao, Z.; Shi, B.; Bian, R.; Yin, F.; Pang, W.; Gao, H.; Cui, N. Safety and Efficacy of High Versus Standard Starting Doses of Insulin Glargine in Overweight and Obese Chinese Individuals with Type 2 Diabetes Mellitus Inadequately Controlled on Oral Antidiabetic Medications (Beyond VII): Study Protocol for a Randomized Controlled Trial. Adv. Ther., 2018, 35(6), 864-874.
[http://dx.doi.org/10.1007/s12325-018-0717-x] [PMID: 29873004]
[8]
Schwab, M.; Schaeffeler, E. Pharmacogenomics: a key compo-nent of personalized therapy; Publishe, 2012.
[9]
Meyer, U.A.; Zanger, U.M.; Schwab, M. Omics and drug response. Annu. Rev. Pharmacol. Toxicol., 2013, 53, 475-502.
[http://dx.doi.org/10.1146/annurev-pharmtox-010510-100502] [PMID: 23140244]
[10]
Sansone, G.; Segni, G. [Instability of blood glutathione in favism; utilization of a selective test and introduction of the genetic problem]. Boll. Soc. Ital. Biol. Sper., 1957, 33(7), 1057-1060.
[PMID: 13510424]
[11]
Evans, D.A.P. N-acetyltransferase. Pharmacol. Ther., 1989, 42(2), 157-234.
[http://dx.doi.org/10.1016/0163-7258(89)90036-3] [PMID: 2664821]
[12]
Meigs, J.B.; Cupples, L.A.; Wilson, P.W. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes, 2000, 49(12), 2201-2207.
[http://dx.doi.org/10.2337/diabetes.49.12.2201] [PMID: 11118026]
[13]
Poulsen, P.; Kyvik, K.O.; Vaag, A.; Beck-Nielsen, H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia, 1999, 42(2), 139-145.
[http://dx.doi.org/10.1007/s001250051131] [PMID: 10064092]
[14]
Tillil, H.; Köbberling, J. Age-corrected empirical genetic risk estimates for first-degree relatives of IDDM patients. Diabetes, 1987, 36(1), 93-99.
[http://dx.doi.org/10.2337/diab.36.1.93] [PMID: 3792666]
[15]
Ali, O. Genetics of type 2 diabetes. World J. Diabetes, 2013, 4(4), 114-123.
[http://dx.doi.org/10.4239/wjd.v4.i4.114] [PMID: 23961321]
[16]
Gaulton, K.J.; Willer, C.J.; Li, Y.; Scott, L.J.; Conneely, K.N.; Jackson, A.U.; Duren, W.L.; Chines, P.S.; Narisu, N.; Bonnycastle, L.L.; Luo, J.; Tong, M.; Sprau, A.G.; Pugh, E.W.; Doheny, K.F.; Valle, T.T.; Abecasis, G.R.; Tuomilehto, J.; Bergman, R.N.; Collins, F.S.; Boehnke, M.; Mohlke, K.L. Comprehensive association study of type 2 diabetes and related quantitative traits with 222 candidate genes. Diabetes, 2008, 57(11), 3136-3144.
[http://dx.doi.org/10.2337/db07-1731] [PMID: 18678618]
[17]
GeneCards. Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CAPN10 (Accessed May 10, 2018)
[18]
Hanis, C.L.; Boerwinkle, E.; Chakraborty, R.; Ellsworth, D.L.; Concannon, P.; Stirling, B.; Morrison, V.A.; Wapelhorst, B.; Spielman, R.S.; Gogolin-Ewens, K.J.; Shepard, J.M.; Williams, S.R.; Risch, N.; Hinds, D.; Iwasaki, N.; Ogata, M.; Omori, Y.; Petzold, C.; Rietzch, H.; Schröder, H.E.; Schulze, J.; Cox, N.J.; Menzel, S.; Boriraj, V.V.; Chen, X.; Lim, L.R.; Lindner, T.; Mereu, L.E.; Wang, Y.Q.; Xiang, K.; Yamagata, K.; Yang, Y.; Bell, G.I. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat. Genet., 1996, 13(2), 161-166.
[http://dx.doi.org/10.1038/ng0696-161] [PMID: 8640221]
[19]
Horikawa, Y.; Oda, N.; Cox, N.J.; Li, X.; Orho-Melander, M.; Hara, M.; Hinokio, Y.; Lindner, T.H.; Mashima, H.; Schwarz, P.E.; del Bosque-Plata, L.; Horikawa, Y.; Oda, Y.; Yoshiuchi, I.; Colilla, S.; Polonsky, K.S.; Wei, S.; Concannon, P.; Iwasaki, N.; Schulze, J.; Baier, L.J.; Bogardus, C.; Groop, L.; Boerwinkle, E.; Hanis, C.L.; Bell, G.I. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet., 2000, 26(2), 163-175.
[http://dx.doi.org/10.1038/79876] [PMID: 11017071]
[20]
Song, Y.; Niu, T.; Manson, J.E.; Kwiatkowski, D.J.; Liu, S. Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. Am. J. Hum. Genet., 2004, 74(2), 208-222.
[http://dx.doi.org/10.1086/381400] [PMID: 14730479]
[21]
Sáez, M.E.; Gonzalez-Sanchez, J.L.; Ramírez-Lorca, R. Mar-tínez- Larrad M. T.; Zabena C.; Gonzalez A.; Moron F. J.; Ruiz A.; Serrano- Ríos M The CAPN10 gene is associated with in-sulin resistance phenotypes in the Spanish population PLoS One, 2008, 3e2953.
[http://dx.doi.org/10.1371/journal.pone.0002953] [PMID: 18698425]
[22]
Bodhini, D.; Radha, V.; Ghosh, S.; Sanapala, K.R.; Majumder, P.P.; Rao, M.R.S.; Mohan, V. Association of calpain 10 gene polymorphisms with type 2 diabetes mellitus in Southern Indians. Metabolism, 2011, 60(5), 681-688.
[PMID: 20667559]
[23]
Ezzidi, I.; Mtiraoui, N.; Nemr, R.; Kacem, M.; Al-Khateeb, G.M.; Mahjoub, T.; Almawi, W.Y. Variants within the calpain-10 gene and relationships with type 2 diabetes (T2DM) and T2DM-related traits among Tunisian Arabs. Diabetes Metab., 2010, 36(5), 357-362.
[http://dx.doi.org/10.1016/j.diabet.2010.03.005] [PMID: 20570542]
[24]
Zhou, X.; Wang, Y.; Zhang, Y.; Gao, P.; Zhu, D. Association of CAPN10 gene with insulin sensitivity, glucose tolerance and renal function in essential hypertensive patients. Clin. Chim. Acta, 2010, 411(15-16), 1126-1131.
[http://dx.doi.org/10.1016/j.cca.2010.04.012] [PMID: 20406624]
[25]
Cauchi, S.; Froguel, P. TCF7L2 genetic defect and type 2 diabetes. Curr. Diab. Rep., 2008, 8(2), 149-155.
[http://dx.doi.org/10.1007/s11892-008-0026-x] [PMID: 18445358]
[26]
Duggirala, R.; Blangero, J.; Almasy, L.; Dyer, T.D.; Williams, K.L.; Leach, R.J.; O’Connell, P.; Stern, M.P. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am. J. Hum. Genet., 1999, 64(4), 1127-1140.
[http://dx.doi.org/10.1086/302316] [PMID: 10090898]
[27]
Grant, S.F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; Styrkarsdottir, U.; Magnusson, K.P.; Walters, G.B.; Palsdottir, E.; Jonsdottir, T.; Gudmundsdottir, T.; Gylfason, A.; Saemundsdottir, J.; Wilensky, R.L.; Reilly, M.P.; Rader, D.J.; Bagger, Y.; Christiansen, C.; Gudnason, V.; Sigurdsson, G.; Thorsteinsdottir, U.; Gulcher, J.R.; Kong, A.; Stefansson, K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet., 2006, 38(3), 320-323.
[http://dx.doi.org/10.1038/ng1732] [PMID: 16415884]
[28]
Tong, Y.; Lin, Y.; Zhang, Y.; Yang, J.; Zhang, Y.; Liu, H.; Zhang, B. Association between TCF7L2 gene polymorphisms and susceptibility to type 2 diabetes mellitus: a large Human Genome Epidemiology (HuGE) review and meta-analysis. BMC Med. Genet., 2009, 10, 15.
[http://dx.doi.org/10.1186/1471-2350-10-15] [PMID: 19228405]
[29]
Auboeuf, D.; Rieusset, J.; Fajas, L.; Vallier, P.; Frering, V.; Riou, J.P.; Staels, B.; Auwerx, J.; Laville, M.; Vidal, H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes, 1997, 46(8), 1319-1327.
[http://dx.doi.org/10.2337/diab.46.8.1319] [PMID: 9231657]
[30]
Bermúdez, V.; Finol, F.; Parra, N.; Parra, M.; Pérez, A.; Peñaranda, L.; Vílchez, D.; Rojas, J.; Arráiz, N.; Velasco, M. PPAR-gamma agonists and their role in type 2 diabetes mellitus management. Am. J. Ther., 2010, 17(3), 274-283.
[http://dx.doi.org/10.1097/MJT.0b013e3181c08081] [PMID: 20216208]
[31]
Nolan, J.J.; Ludvik, B.; Beerdsen, P.; Joyce, M.; Olefsky, J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N. Engl. J. Med., 1994, 331(18), 1188-1193.
[http://dx.doi.org/10.1056/NEJM199411033311803] [PMID: 7935656]
[32]
Cavaghan, M.K.; Ehrmann, D.A.; Byrne, M.M.; Polonsky, K.S. Treatment with the oral antidiabetic agent troglitazone improves beta cell responses to glucose in subjects with impaired glucose tolerance. J. Clin. Invest., 1997, 100(3), 530-537.
[http://dx.doi.org/10.1172/JCI119562] [PMID: 9239399]
[33]
Sreenan, S.; Sturis, J.; Pugh, W.; Burant, C.F.; Polonsky, K.S. Prevention of hyperglycemia in the Zucker diabetic fatty rat by treatment with metformin or troglitazone. Am. J. Physiol., 1996, 271(4 Pt 1), E742-E747.
[PMID: 8897863]
[34]
Ruchat, S-M.; Weisnagel, S.J.; Vohl, M.C.; Rankinen, T.; Bouchard, C.; Pérusse, L. Evidence for interaction between PPARG Pro12Ala and PPARGC1A Gly482Ser polymorphisms in determining type 2 diabetes intermediate phenotypes in overweight subjects. Exp. Clin. Endocrinol. Diabetes, 2009, 117(9), 455-459.
[http://dx.doi.org/10.1055/s-0029-1216352] [PMID: 19536736]
[35]
Ringel, J.; Engeli, S.; Distler, A.; Sharma, A.M. Pro12Ala missense mutation of the peroxisome proliferator activated receptor γ and diabetes mellitus. Biochem. Biophys. Res. Commun., 1999, 254(2), 450-453.
[http://dx.doi.org/10.1006/bbrc.1998.9962] [PMID: 9918859]
[36]
Clement, K.; Hercberg, S.; Passinge, B.; Galan, P.; Varroud-Vial, M.; Shuldiner, A.R.; Beamer, B.A.; Charpentier, G.; Guy-Grand, B.; Froguel, P.; Vaisse, C. The Pro115Gln and Pro12Ala PPAR gamma gene mutations in obesity and type 2 diabetes. Int. J. Obes. Relat. Metab. Disord., 2000, 24(3), 391-393.
[http://dx.doi.org/10.1038/sj.ijo.0801191] [PMID: 10757637]
[37]
White, M.F. Insulin signaling in health and disease. Science, 2003, 302(5651), 1710-1711.
[http://dx.doi.org/10.1126/science.1092952] [PMID: 14657487]
[38]
Dong, X.; Park, S.; Lin, X.; Copps, K.; Yi, X.; White, M.F. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J. Clin. Invest., 2006, 116(1), 101-114.
[http://dx.doi.org/10.1172/JCI25735] [PMID: 16374520]
[39]
Long, Y.C.; Cheng, Z.; Copps, K.D.; White, M.F. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol. Cell. Biol., 2011, 31(3), 430-441.
[http://dx.doi.org/10.1128/MCB.00983-10] [PMID: 21135130]
[40]
Clausen, J.O.; Hansen, T.; Bjørbaek, C.; Echwald, S.M.; Urhammer, S.A.; Rasmussen, S.; Andersen, C.B.; Hansen, L.; Almind, K.; Winther, K. Insulin resistance: interactions between obesity and a common variant of insulin receptor substrate-1. Lancet, 1995, 346(8972), 397-402.
[http://dx.doi.org/10.1016/S0140-6736(95)92779-4] [PMID: 7623569]
[41]
Le Fur, S.; Le Stunff, C.; Bougnères, P. Increased insulin resistance in obese children who have both 972 IRS-1 and 1057 IRS-2 polymorphisms. Diabetes, 2002, 51(Suppl. 3), S304-S307.
[http://dx.doi.org/10.2337/diabetes.51.2007.S304] [PMID: 12475767]
[42]
Haghvirdizadeh, P.; Mohamed, Z.; Abdullah, N. A.; Haghvird-izadeh, P.; Haerian, M. S.; Haerian, B. S. KCNJ11: genetic pol-ymorphisms and risk of diabetes mellitus., 2015.
[43]
Dupont, J.; Pereira, C.; Medeira, A.; Duarte, R.; Ellard, S.; Sampaio, L. Permanent neonatal diabetes mellitus due to KCNJ11 mutation in a Portuguese family: transition from insulin to oral sulfonylureas. J. Pediatr. Endocrinol. Metab., 2012, 25(3-4), 367-370.
[http://dx.doi.org/10.1515/jpem-2011-0191] [PMID: 22768671]
[44]
Hani, E.H.; Boutin, P.; Durand, E.; Inoue, H.; Permutt, M.A.; Velho, G.; Froguel, P. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia, 1998, 41(12), 1511-1515.
[http://dx.doi.org/10.1007/s001250051098] [PMID: 9867219]
[45]
Gloyn, A.L.; Weedon, M.N.; Owen, K.R.; Turner, M.J.; Knight, B.A.; Hitman, G.; Walker, M.; Levy, J.C.; Sampson, M.; Halford, S.; McCarthy, M.I.; Hattersley, A.T.; Frayling, T.M. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes, 2003, 52(2), 568-572.
[http://dx.doi.org/10.2337/diabetes.52.2.568] [PMID: 12540637]
[46]
Nielsen, E-M.D.; Hansen, L.; Carstensen, B.; Echwald, S.M.; Drivsholm, T.; Glümer, C.; Thorsteinsson, B.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes, 2003, 52(2), 573-577.
[http://dx.doi.org/10.2337/diabetes.52.2.573] [PMID: 12540638]
[47]
Florez, J.C.; Burtt, N.; de Bakker, P.I.; Almgren, P.; Tuomi, T.; Holmkvist, J.; Gaudet, D.; Hudson, T.J.; Schaffner, S.F.; Daly, M.J.; Hirschhorn, J.N.; Groop, L.; Altshuler, D. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes, 2004, 53(5), 1360-1368.
[http://dx.doi.org/10.2337/diabetes.53.5.1360] [PMID: 15111507]
[48]
Sandhu, M.S.; Weedon, M.N.; Fawcett, K.A.; Wasson, J.; Debenham, S.L.; Daly, A.; Lango, H.; Frayling, T.M.; Neumann, R.J.; Sherva, R.; Blech, I.; Pharoah, P.D.; Palmer, C.N.; Kimber, C.; Tavendale, R.; Morris, A.D.; McCarthy, M.I.; Walker, M.; Hitman, G.; Glaser, B.; Permutt, M.A.; Hattersley, A.T.; Wareham, N.J.; Barroso, I. Common variants in WFS1 confer risk of type 2 diabetes. Nat. Genet., 2007, 39(8), 951-953.
[http://dx.doi.org/10.1038/ng2067] [PMID: 17603484]
[49]
Franks, P.W.; Rolandsson, O.; Debenham, S.L.; Fawcett, K.A.; Payne, F.; Dina, C.; Froguel, P.; Mohlke, K.L.; Willer, C.; Olsson, T.; Wareham, N.J.; Hallmans, G.; Barroso, I.; Sandhu, M.S. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia, 2008, 51(3), 458-463.
[http://dx.doi.org/10.1007/s00125-007-0887-6] [PMID: 18040659]
[50]
Costa, R.H.; Kalinichenko, V.V.; Holterman, A.X.L.; Wang, X. Transcription factors in liver development, differentiation, and regeneration. Hepatology, 2003, 38(6), 1331-1347.
[http://dx.doi.org/10.1053/jhep.2003.09034] [PMID: 14647040]
[51]
Harries, L.W.; Brown, J.E.; Gloyn, A.L. Species-specific differences in the expression of the HNF1A, HNF1B and HNF4A genes. PLoS One, 2009, 4(11)e7855
[http://dx.doi.org/10.1371/journal.pone.0007855] [PMID: 19924231]
[52]
Shih, D.Q.; Bussen, M.; Sehayek, E.; Ananthanarayanan, M.; Shneider, B.L.; Suchy, F.J.; Shefer, S.; Bollileni, J.S.; Gonzalez, F.J.; Breslow, J.L.; Stoffel, M. Hepatocyte nuclear factor-1α is an essential regulator of bile acid and plasma cholesterol metabolism. Nat. Genet., 2001, 27(4), 375-382.
[http://dx.doi.org/10.1038/86871] [PMID: 11279518]
[53]
Furuta, H.; Furuta, M.; Sanke, T.; Ekawa, K.; Hanabusa, T.; Nishi, M.; Sasaki, H.; Nanjo, K. Nonsense and missense mutations in the human hepatocyte nuclear factor-1 β gene (TCF2) and their relation to type 2 diabetes in Japanese. J. Clin. Endocrinol. Metab., 2002, 87(8), 3859-3863.
[PMID: 12161522]
[54]
Muller, Y.L.; Infante, A.M.; Hanson, R.L.; Love-Gregory, L.; Knowler, W.; Bogardus, C.; Baier, L.J. Variants in hepatocyte nuclear factor 4α are modestly associated with type 2 diabetes in Pima Indians. Diabetes, 2005, 54(10), 3035-3039.
[http://dx.doi.org/10.2337/diabetes.54.10.3035] [PMID: 16186411]
[55]
Zhu, Q.; Yamagata, K.; Miura, A.; Shihara, N.; Horikawa, Y.; Takeda, J.; Miyagawa, J.; Matsuzawa, Y. T130I mutation in HNF-4α gene is a loss-of-function mutation in hepatocytes and is associated with late-onset Type 2 diabetes mellitus in Japanese subjects. Diabetologia, 2003, 46(4), 567-573.
[http://dx.doi.org/10.1007/s00125-003-1067-y] [PMID: 12669197]
[56]
Flannick, J.; Florez, J.C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet., 2016, 17(9), 535-549.
[http://dx.doi.org/10.1038/nrg.2016.56] [PMID: 27402621]
[57]
Risch, N.; Merikangas, K. The future of genetic studies of complex human diseases. Science, 1996, 273(5281), 1516-1517.
[http://dx.doi.org/10.1126/science.273.5281.1516] [PMID: 8801636]
[58]
Reich, D.E.; Lander, E.S. On the allelic spectrum of human disease. Trends Genet., 2001, 17(9), 502-510.
[http://dx.doi.org/10.1016/S0168-9525(01)02410-6] [PMID: 11525833]
[59]
Nature, A. haplotype map of the human genome-report from the International HapMap Consortium. Nature, 2005, 437, 1299-1320.
[http://dx.doi.org/10.1038/nature04226]
[60]
Scott, R.A.; Scott, L.J.; Mägi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; Jackson, A.U.; Ferreira, T.; Lee, Y.; Ma, C.; Steinthorsdottir, V.; Thorleifsson, G.; Qi, L.; Van Zuydam, N.R.; Mahajan, A.; Chen, H.; Almgren, P.; Voight, B.F.; Grallert, H.; Müller-Nurasyid, M.; Ried, J.S.; Rayner, N.W.; Robertson, N.; Karssen, L.C.; van Leeuwen, E.M.; Willems, S.M.; Fuchsberger, C.; Kwan, P.; Teslovich, T.M.; Chanda, P.; Li, M.; Lu, Y.; Dina, C.; Thuillier, D.; Yengo, L.; Jiang, L.; Sparso, T.; Kestler, H.A.; Chheda, H.; Eisele, L.; Gustafsson, S.; Frånberg, M.; Strawbridge, R.J.; Benediktsson, R.; Hreidarsson, A.B.; Kong, A.; Sigurðsson, G.; Kerrison, N.D.; Luan, J.; Liang, L.; Meitinger, T.; Roden, M.; Thorand, B.; Esko, T.; Mihailov, E.; Fox, C.; Liu, C-T.; Rybin, D.; Isomaa, B.; Lyssenko, V.; Tuomi, T.; Couper, D.J.; Pankow, J.S.; Grarup, N.; Have, C.T.; Jørgensen, M.E.; Jørgensen, T.; Linneberg, A.; Cornelis, M.C.; van Dam, R.M.; Hunter, D.J.; Kraft, P.; Sun, Q.; Edkins, S.; Owen, K.R.; Perry, J.R.B.; Wood, A.R.; Zeggini, E.; Tajes-Fernandes, J.; Abecasis, G.R.; Bonnycastle, L.L.; Chines, P.S.; Stringham, H.M.; Koistinen, H.A.; Kinnunen, L.; Sennblad, B.; Mühleisen, T.W.; Nöthen, M.M.; Pechlivanis, S.; Baldassarre, D.; Gertow, K.; Humphries, S.E.; Tremoli, E.; Klopp, N.; Meyer, J.; Steinbach, G.; Wennauer, R.; Eriksson, J.G.; Mӓnnistö, S.; Peltonen, L.; Tikkanen, E.; Charpentier, G.; Eury, E.; Lobbens, S.; Gigante, B.; Leander, K.; McLeod, O.; Bottinger, E.P.; Gottesman, O.; Ruderfer, D.; Blüher, M.; Kovacs, P.; Tonjes, A.; Maruthur, N.M.; Scapoli, C.; Erbel, R.; Jöckel, K-H.; Moebus, S.; de Faire, U.; Hamsten, A.; Stumvoll, M.; Deloukas, P.; Donnelly, P.J.; Frayling, T.M.; Hattersley, A.T.; Ripatti, S.; Salomaa, V.; Pedersen, N.L.; Boehm, B.O.; Bergman, R.N.; Collins, F.S.; Mohlke, K.L.; Tuomilehto, J.; Hansen, T.; Pedersen, O.; Barroso, I.; Lannfelt, L.; Ingelsson, E.; Lind, L.; Lindgren, C.M.; Cauchi, S.; Froguel, P.; Loos, R.J.F.; Balkau, B.; Boeing, H.; Franks, P.W.; Barricarte Gurrea, A.; Palli, D.; van der Schouw, Y.T.; Altshuler, D.; Groop, L.C.; Langenberg, C.; Wareham, N.J.; Sijbrands, E.; van Duijn, C.M.; Florez, J.C.; Meigs, J.B.; Boerwinkle, E.; Gieger, C.; Strauch, K.; Metspalu, A.; Morris, A.D.; Palmer, C.N.A.; Hu, F.B.; Thorsteinsdottir, U.; Stefansson, K.; Dupuis, J.; Morris, A.P.; Boehnke, M.; McCarthy, M.I.; Prokopenko, I. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66(11), 2888-2902.
[http://dx.doi.org/10.2337/db16-1253] [PMID: 28566273]
[61]
Frau, F.; Crowther, D.; Ruetten, H.; Allebrandt, K.V. Type-2 diabetes-associated variants with cross-trait relevance: Post-GWAs strategies for biological function interpretation. Mol. Genet. Metab., 2017, 121(1), 43-50.
[http://dx.doi.org/10.1016/j.ymgme.2017.03.004] [PMID: 28385534]
[62]
Sanghera, D.K.; Blackett, P.R. Type 2 diabetes genetics: beyond GWAS. J. Diabetes Metab., 2012, 3(198), 3.
[PMID: 23243555]
[63]
Rutter, G.A. Modeling Type 2 Diabetes GWAS Candidate Gene Function in hESCs. Cell Stem Cell, 2016, 19(3), 281-282.
[http://dx.doi.org/10.1016/j.stem.2016.08.010] [PMID: 27588741]
[64]
Meyre, D. Give GWAS a Chance. Diabetes, 2017, 66(11), 2741-2742.
[http://dx.doi.org/10.2337/dbi17-0026] [PMID: 29061660]
[65]
Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 years of GWAS discovery: biolo-gy, function, and translation. Am. J. Hum. Genet., 2017, 101(1), 5-22.
[http://dx.doi.org/10.1016/j.ajhg.2017.06.005] [PMID: 28686856]
[66]
Karaderi, T.; Drong, A.W.; Lindgren, C.M. Insights into the genetic susceptibility to type 2 diabetes from genome-wide association studies of obesity-related traits. Curr. Diab. Rep., 2015, 15(10), 83.
[http://dx.doi.org/10.1007/s11892-015-0648-8] [PMID: 26363598]
[67]
Hirschhorn, J.N. Genomewide association studies--illuminating biologic pathways. N. Engl. J. Med., 2009, 360(17), 1699-1701.
[http://dx.doi.org/10.1056/NEJMp0808934] [PMID: 19369661]
[68]
Thanabalasingham, G.; Shah, N.; Vaxillaire, M.; Hansen, T.; Tuomi, T.; Gašperíková, D.; Szopa, M.; Tjora, E.; James, T.J.; Kokko, P.; Loiseleur, F.; Andersson, E.; Gaget, S.; Isomaa, B.; Nowak, N.; Raeder, H.; Stanik, J.; Njolstad, P.R.; Malecki, M.T.; Klimes, I.; Groop, L.; Pedersen, O.; Froguel, P.; McCarthy, M.I.; Gloyn, A.L.; Owen, K.R. A large multi-centre European study validates high-sensitivity C-reactive protein (hsCRP) as a clinical biomarker for the diagnosis of diabetes subtypes. Diabetologia, 2011, 54(11), 2801-2810.
[http://dx.doi.org/10.1007/s00125-011-2261-y] [PMID: 21814873]
[69]
Scott, R.A.; Scott, L.J.; Mägi, R.; Marullo, L.; Gaulton, K.J.; Kaakinen, M.; Pervjakova, N.; Pers, T.H.; Johnson, A.D.; Eicher, J.D.; Jackson, A.U.; Ferreira, T.; Lee, Y.; Ma, C.; Steinthorsdottir, V.; Thorleifsson, G.; Qi, L.; Van Zuydam, N.R.; Mahajan, A.; Chen, H.; Almgren, P.; Voight, B.F.; Grallert, H.; Müller-Nurasyid, M.; Ried, J.S.; Rayner, N.W.; Robertson, N.; Karssen, L.C.; van Leeuwen, E.M.; Willems, S.M.; Fuchsberger, C.; Kwan, P.; Teslovich, T.M.; Chanda, P.; Li, M.; Lu, Y.; Dina, C.; Thuillier, D.; Yengo, L.; Jiang, L.; Sparso, T.; Kestler, H.A.; Chheda, H.; Eisele, L.; Gustafsson, S.; Frånberg, M.; Strawbridge, R.J.; Benediktsson, R.; Hreidarsson, A.B.; Kong, A.; Sigurðsson, G.; Kerrison, N.D.; Luan, J.; Liang, L.; Meitinger, T.; Roden, M.; Thorand, B.; Esko, T.; Mihailov, E.; Fox, C.; Liu, C.T.; Rybin, D.; Isomaa, B.; Lyssenko, V.; Tuomi, T.; Couper, D.J.; Pankow, J.S.; Grarup, N.; Have, C.T.; Jørgensen, M.E.; Jørgensen, T.; Linneberg, A.; Cornelis, M.C.; van Dam, R.M.; Hunter, D.J.; Kraft, P.; Sun, Q.; Edkins, S.; Owen, K.R.; Perry, J.R.B.; Wood, A.R.; Zeggini, E.; Tajes-Fernandes, J.; Abecasis, G.R.; Bonnycastle, L.L.; Chines, P.S.; Stringham, H.M.; Koistinen, H.A.; Kinnunen, L.; Sennblad, B.; Mühleisen, T.W.; Nöthen, M.M.; Pechlivanis, S.; Baldassarre, D.; Gertow, K.; Humphries, S.E.; Tremoli, E.; Klopp, N.; Meyer, J.; Steinbach, G.; Wennauer, R.; Eriksson, J.G.; Mӓnnistö, S.; Peltonen, L.; Tikkanen, E.; Charpentier, G.; Eury, E.; Lobbens, S.; Gigante, B.; Leander, K.; McLeod, O.; Bottinger, E.P.; Gottesman, O.; Ruderfer, D.; Blüher, M.; Kovacs, P.; Tonjes, A.; Maruthur, N.M.; Scapoli, C.; Erbel, R.; Jöckel, K.H.; Moebus, S.; de Faire, U.; Hamsten, A.; Stumvoll, M.; Deloukas, P.; Donnelly, P.J.; Frayling, T.M.; Hattersley, A.T.; Ripatti, S.; Salomaa, V.; Pedersen, N.L.; Boehm, B.O.; Bergman, R.N.; Collins, F.S.; Mohlke, K.L.; Tuomilehto, J.; Hansen, T.; Pedersen, O.; Barroso, I.; Lannfelt, L.; Ingelsson, E.; Lind, L.; Lindgren, C.M.; Cauchi, S.; Froguel, P.; Loos, R.J.F.; Balkau, B.; Boeing, H.; Franks, P.W.; Barricarte Gurrea, A.; Palli, D.; van der Schouw, Y.T.; Altshuler, D.; Groop, L.C.; Langenberg, C.; Wareham, N.J.; Sijbrands, E.; van Duijn, C.M.; Florez, J.C.; Meigs, J.B.; Boerwinkle, E.; Gieger, C.; Strauch, K.; Metspalu, A.; Morris, A.D.; Palmer, C.N.A.; Hu, F.B.; Thorsteinsdottir, U.; Stefansson, K.; Dupuis, J.; Morris, A.P.; Boehnke, M.; McCarthy, M.I.; Prokopenko, I. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes, 2017, 66(11), 2888-2902.
[http://dx.doi.org/10.2337/db16-1253] [PMID: 28566273]
[70]
Voight, B.F.; Kang, H.M.; Ding, J.; Palmer, C.D.; Sidore, C.; Chines, P.S.; Burtt, N.P.; Fuchsberger, C.; Li, Y.; Erdmann, J. Correction: the metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropo-metric traits. PLoS Genet., 2013, 9
[http://dx.doi.org/10.1371/annotation/0b4e9c8b-35c5-4dbd-b95b-0640250fbc87]
[71]
Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S.; Kanoni, S.; Rasmussen-Torvik, L.J.; Yengo, L.; Lecoeur, C.; Shungin, D.; Sanna, S.; Sidore, C.; Johnson, P.C.; Jukema, J.W.; Johnson, T.; Mahajan, A.; Verweij, N.; Thorleifsson, G.; Hottenga, J.J.; Shah, S.; Smith, A.V.; Sennblad, B.; Gieger, C.; Salo, P.; Perola, M.; Timpson, N.J.; Evans, D.M.; Pourcain, B.S.; Wu, Y.; Andrews, J.S.; Hui, J.; Bielak, L.F.; Zhao, W.; Horikoshi, M.; Navarro, P.; Isaacs, A.; O’Connell, J.R.; Stirrups, K.; Vitart, V.; Hayward, C.; Esko, T.; Mihailov, E.; Fraser, R.M.; Fall, T.; Voight, B.F.; Raychaudhuri, S.; Chen, H.; Lindgren, C.M.; Morris, A.P.; Rayner, N.W.; Robertson, N.; Rybin, D.; Liu, C.T.; Beckmann, J.S.; Willems, S.M.; Chines, P.S.; Jackson, A.U.; Kang, H.M.; Stringham, H.M.; Song, K.; Tanaka, T.; Peden, J.F.; Goel, A.; Hicks, A.A.; An, P.; Müller-Nurasyid, M.; Franco-Cereceda, A.; Folkersen, L.; Marullo, L.; Jansen, H.; Oldehinkel, A.J.; Bruinenberg, M.; Pankow, J.S.; North, K.E.; Forouhi, N.G.; Loos, R.J.; Edkins, S.; Varga, T.V.; Hallmans, G.; Oksa, H.; Antonella, M.; Nagaraja, R.; Trompet, S.; Ford, I.; Bakker, S.J.; Kong, A.; Kumari, M.; Gigante, B.; Herder, C.; Munroe, P.B.; Caulfield, M.; Antti, J.; Mangino, M.; Small, K.; Miljkovic, I.; Liu, Y.; Atalay, M.; Kiess, W.; James, A.L.; Rivadeneira, F.; Uitterlinden, A.G.; Palmer, C.N.; Doney, A.S.; Willemsen, G.; Smit, J.H.; Campbell, S.; Polasek, O.; Bonnycastle, L.L.; Hercberg, S.; Dimitriou, M.; Bolton, J.L.; Fowkes, G.R.; Kovacs, P.; Lindström, J.; Zemunik, T.; Bandinelli, S.; Wild, S.H.; Basart, H.V.; Rathmann, W.; Grallert, H.; Maerz, W.; Kleber, M.E.; Boehm, B.O.; Peters, A.; Pramstaller, P.P.; Province, M.A.; Borecki, I.B.; Hastie, N.D.; Rudan, I.; Campbell, H.; Watkins, H.; Farrall, M.; Stumvoll, M.; Ferrucci, L.; Waterworth, D.M.; Bergman, R.N.; Collins, F.S.; Tuomilehto, J.; Watanabe, R.M.; de Geus, E.J.; Penninx, B.W.; Hofman, A.; Oostra, B.A.; Psaty, B.M.; Vollenweider, P.; Wilson, J.F.; Wright, A.F.; Hovingh, G.K.; Metspalu, A.; Uusitupa, M.; Magnusson, P.K.; Kyvik, K.O.; Kaprio, J.; Price, J.F.; Dedoussis, G.V.; Deloukas, P.; Meneton, P.; Lind, L.; Boehnke, M.; Shuldiner, A.R.; van Duijn, C.M.; Morris, A.D.; Toenjes, A.; Peyser, P.A.; Beilby, J.P.; Körner, A.; Kuusisto, J.; Laakso, M.; Bornstein, S.R.; Schwarz, P.E.; Lakka, T.A.; Rauramaa, R.; Adair, L.S.; Smith, G.D.; Spector, T.D.; Illig, T.; de Faire, U.; Hamsten, A.; Gudnason, V.; Kivimaki, M.; Hingorani, A.; Keinanen-Kiukaanniemi, S.M.; Saaristo, T.E.; Boomsma, D.I.; Stefansson, K.; van der Harst, P.; Dupuis, J.; Pedersen, N.L.; Sattar, N.; Harris, T.B.; Cucca, F.; Ripatti, S.; Salomaa, V.; Mohlke, K.L.; Balkau, B.; Froguel, P.; Pouta, A.; Jarvelin, M.R.; Wareham, N.J.; Bouatia-Naji, N.; McCarthy, M.I.; Franks, P.W.; Meigs, J.B.; Teslovich, T.M.; Florez, J.C.; Langenberg, C.; Ingelsson, E.; Prokopenko, I.; Barroso, I. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet., 2012, 44(9), 991-1005.
[http://dx.doi.org/10.1038/ng.2385] [PMID: 22885924]
[72]
Franks, P.W.; Pearson, E.; Florez, J.C. Gene-environment and gene-treatment interactions in type 2 diabetes: progress, pitfalls, and prospects. Diabetes Care, 2013, 36(5), 1413-1421.
[http://dx.doi.org/10.2337/dc12-2211] [PMID: 23613601]
[73]
Li, B.; Tan, Y.; Sun, W.; Fu, Y.; Miao, L.; Cai, L. The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy. Toxicol. Mech. Methods, 2013, 23(1), 27-33.
[http://dx.doi.org/10.3109/15376516.2012.735277] [PMID: 23039870]
[74]
Parvizi, M.R.; Parviz, M.; Tavangar, S.M.; Soltani, N.; Kadkhodaee, M.; Seifi, B.; Azizi, Y.; Keshavarz, M. Protective effect of magnesium on renal function in STZ-induced diabetic rats. J. Diabetes Metab. Disord., 2014, 13(1), 84.
[http://dx.doi.org/10.1186/s40200-014-0084-3] [PMID: 25197628]
[75]
Jahanabadi, S.; Hadian, M.R.; Shamsaee, J.; Tavangar, S.M.; Abdollahi, A.; Dehpour, A.; Mehr, S.E. The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats. Iran. J. Basic Med. Sci., 2016, 19(4), 394-401.
[PMID: 27279983]
[76]
Sirtori, C.R.; Franceschini, G.; Galli-Kienle, M.; Cighetti, G.; Galli, G.; Bondioli, A.; Conti, F. Disposition of metformin (N,N-dimethylbiguanide) in man. Clin. Pharmacol. Ther., 1978, 24(6), 683-693.
[http://dx.doi.org/10.1002/cpt1978246683] [PMID: 710026]
[77]
Hundal, R.S.; Inzucchi, S.E. Metformin: new understandings, new uses. Drugs, 2003, 63(18), 1879-1894.
[http://dx.doi.org/10.2165/00003495-200363180-00001] [PMID: 12930161]
[78]
Maruthur, N.M.; Tseng, E.; Hutfless, S.; Wilson, L.M.; Suarez-Cuervo, C.; Berger, Z.; Chu, Y.; Iyoha, E.; Segal, J.B.; Bolen, S. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med., 2016, 164(11), 740-751.
[http://dx.doi.org/10.7326/M15-2650] [PMID: 27088241]
[79]
Fischer, J.; Ganellin, C.R.; Ganesan, A.; Proudfoot, J. Analogue-based drug discovery; Wiley-VCH, 2010.
[http://dx.doi.org/10.1002/9783527630035]
[80]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[81]
Hasanvand, A.; Amini-Khoei, H.; Hadian, M.R.; Abdollahi, A.; Tavangar, S.M.; Dehpour, A.R.; Semiei, E.; Mehr, S.E. Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology, 2016, 24(5), 207-219.
[http://dx.doi.org/10.1007/s10787-016-0275-2] [PMID: 27506528]
[82]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H.C. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes, 2009, 58(3), 745-749.
[http://dx.doi.org/10.2337/db08-1028] [PMID: 19228809]
[83]
Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; Brett, C.M.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest., 2007, 117(5), 1422-1431.
[http://dx.doi.org/10.1172/JCI30558] [PMID: 17476361]
[84]
Hundal, R.S.; Krssak, M.; Dufour, S.; Laurent, D.; Lebon, V.; Chandramouli, V.; Inzucchi, S.E.; Schumann, W.C.; Petersen, K.F.; Landau, B.R.; Shulman, G.I. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 2000, 49(12), 2063-2069.
[http://dx.doi.org/10.2337/diabetes.49.12.2063] [PMID: 11118008]
[85]
Kimura, N.; Okuda, M.; Inui, K. Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm. Res., 2005, 22(2), 255-259.
[http://dx.doi.org/10.1007/s11095-004-1193-3] [PMID: 15783073]
[86]
Kimura, N.; Masuda, S.; Tanihara, Y.; Ueo, H.; Okuda, M.; Katsura, T.; Inui, K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet., 2005, 20(5), 379-386.
[http://dx.doi.org/10.2133/dmpk.20.379] [PMID: 16272756]
[87]
Song, I.S.; Shin, H.J.; Shim, E.J.; Jung, I.S.; Kim, W.Y.; Shon, J.H.; Shin, J.G. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther., 2008, 84(5), 559-562.
[http://dx.doi.org/10.1038/clpt.2008.61] [PMID: 18401339]
[88]
Wang, Z-J.; Yin, O.Q.; Tomlinson, B.; Chow, M.S. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics, 2008, 18(7), 637-645.
[http://dx.doi.org/10.1097/FPC.0b013e328302cd41] [PMID: 18551044]
[89]
Otsuka, M.; Matsumoto, T.; Morimoto, R.; Arioka, S.; Omote, H.; Moriyama, Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA, 2005, 102(50), 17923-17928.
[http://dx.doi.org/10.1073/pnas.0506483102] [PMID: 16330770]
[90]
Terada, T.; Inui, K. Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem. Pharmacol., 2008, 75(9), 1689-1696.
[http://dx.doi.org/10.1016/j.bcp.2007.12.008] [PMID: 18262170]
[91]
Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H(+)-organic cation antiporters. Biochem. Pharmacol., 2007, 74(2), 359-371.
[http://dx.doi.org/10.1016/j.bcp.2007.04.010] [PMID: 17509534]
[92]
Semiz, S.; Dujic, T.; Causevic, A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem. Med. (Zagreb), 2013, 23(2), 154-171.
[http://dx.doi.org/10.11613/BM.2013.020] [PMID: 23894862]
[93]
Shu, Y.; Brown, C.; Castro, R.A.; Shi, R.J.; Lin, E.T.; Owen, R.P.; Sheardown, S.A.; Yue, L.; Burchard, E.G.; Brett, C.M.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther., 2008, 83(2), 273-280.
[http://dx.doi.org/10.1038/sj.clpt.6100275] [PMID: 17609683]
[94]
Tzvetkov, M.V.; Vormfelde, S.V.; Balen, D.; Meineke, I.; Schmidt, T.; Sehrt, D.; Sabolić, I.; Koepsell, H.; Brockmöller, J. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther., 2009, 86(3), 299-306.
[http://dx.doi.org/10.1038/clpt.2009.92] [PMID: 19536068]
[95]
Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J., 2009, 9(4), 242-247.
[http://dx.doi.org/10.1038/tpj.2009.15] [PMID: 19381165]
[96]
Christensen, M.M.; Brasch-Andersen, C.; Green, H.; Nielsen, F.; Damkier, P.; Beck-Nielsen, H.; Brosen, K. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet. Genomics, 2011, 21(12), 837-850.
[http://dx.doi.org/10.1097/FPC.0b013e32834c0010] [PMID: 21989078]
[97]
Tarasova, L.; Kalnina, I.; Geldnere, K.; Bumbure, A.; Ritenberga, R.; Nikitina-Zake, L.; Fridmanis, D.; Vaivade, I.; Pirags, V.; Klovins, J. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet. Genomics, 2012, 22(9), 659-666.
[http://dx.doi.org/10.1097/FPC.0b013e3283561666] [PMID: 22735389]
[98]
Wilcock, C.; Bailey, C.J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica, 1994, 24(1), 49-57.
[http://dx.doi.org/10.3109/00498259409043220] [PMID: 8165821]
[99]
Müller, J.; Lips, K.S.; Metzner, L.; Neubert, R.H.; Koepsell, H.; Brandsch, M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol., 2005, 70(12), 1851-1860.
[http://dx.doi.org/10.1016/j.bcp.2005.09.011] [PMID: 16263091]
[100]
Chen, Y.; Li, S.; Brown, C.; Cheatham, S.; Castro, R.A.; Leabman, M.K.; Urban, T.J.; Chen, L.; Yee, S.W.; Choi, J.H.; Huang, Y.; Brett, C.M.; Burchard, E.G.; Giacomini, K.M. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genomics, 2009, 19(7), 497-504.
[http://dx.doi.org/10.1097/FPC.0b013e32832cc7e9] [PMID: 19483665]
[101]
Jablonski, K.A.; McAteer, J.B.; de Bakker, P.I.; Franks, P.W.; Pollin, T.I.; Hanson, R.L.; Saxena, R.; Fowler, S.; Shuldiner, A.R.; Knowler, W.C.; Altshuler, D.; Florez, J.C. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes, 2010, 59(10), 2672-2681.
[http://dx.doi.org/10.2337/db10-0543] [PMID: 20682687]
[102]
Zhou, K.; Bellenguez, C.; Spencer, C.C.; Bennett, A.J.; Coleman, R.L.; Tavendale, R.; Hawley, S.A.; Donnelly, L.A.; Schofield, C.; Groves, C.J.; Burch, L.; Carr, F.; Strange, A.; Freeman, C.; Blackwell, J.M.; Bramon, E.; Brown, M.A.; Casas, J.P.; Corvin, A.; Craddock, N.; Deloukas, P.; Dronov, S.; Duncanson, A.; Edkins, S.; Gray, E.; Hunt, S.; Jankowski, J.; Langford, C.; Markus, H.S.; Mathew, C.G.; Plomin, R.; Rautanen, A.; Sawcer, S.J.; Samani, N.J.; Trembath, R.; Viswanathan, A.C.; Wood, N.W.; Harries, L.W.; Hattersley, A.T.; Doney, A.S.; Colhoun, H.; Morris, A.D.; Sutherland, C.; Hardie, D.G.; Peltonen, L.; McCarthy, M.I.; Holman, R.R.; Palmer, C.N.; Donnelly, P.; Pearson, E.R. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet., 2011, 43(2), 117-120.
[http://dx.doi.org/10.1038/ng.735] [PMID: 21186350]
[103]
Seino, S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia, 2012, 55(8), 2096-2108.
[http://dx.doi.org/10.1007/s00125-012-2562-9] [PMID: 22555472]
[104]
Duggleby, R.G.; McCourt, J.A.; Guddat, L.W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem., 2008, 46(3), 309-324.
[http://dx.doi.org/10.1016/j.plaphy.2007.12.004] [PMID: 18234503]
[105]
Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103(2), 137-149.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002] [PMID: 24630390]
[106]
Ashcroft, F.M.; Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell, 2012, 148(6), 1160-1171.
[http://dx.doi.org/10.1016/j.cell.2012.02.010] [PMID: 22424227]
[107]
Cefalu, W.T. Pharmacotherapy for the treatment of patients with type 2 diabetes mellitus: rationale and specific agents. Clin. Pharmacol. Ther., 2007, 81(5), 636-649.
[http://dx.doi.org/10.1038/sj.clpt.6100156] [PMID: 17438539]
[108]
Loganadan, N.K.; Huri, H.Z.; Vethakkan, S.R.; Hussein, Z. Genetic markers predicting sulphonylurea treatment outcomes in type 2 diabetes patients: current evidence and challenges for clinical implementation. Pharmacogenomics J., 2016, 16(3), 209-219.
[http://dx.doi.org/10.1038/tpj.2015.95] [PMID: 26810132]
[109]
Holstein, A.; Plaschke, A.; Ptak, M.; Egberts, E.H.; El-Din, J.; Brockmöller, J.; Kirchheiner, J. Association between CYP2C9 slow metabolizer genotypes and severe hypoglycaemia on medication with sulphonylurea hypoglycaemic agents. Br. J. Clin. Pharmacol., 2005, 60(1), 103-106.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02379.x] [PMID: 15963101]
[110]
Zhou, K.; Donnelly, L.; Burch, L.; Tavendale, R.; Doney, A.S.; Leese, G.; Hattersley, A.T.; McCarthy, M.I.; Morris, A.D.; Lang, C.C.; Palmer, C.N.; Pearson, E.R. Loss-of-function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go-DARTS study. Clin. Pharmacol. Ther., 2010, 87(1), 52-56.
[http://dx.doi.org/10.1038/clpt.2009.176] [PMID: 19794412]
[111]
Becker, M.L.; Visser, L.E.; Trienekens, P.H.; Hofman, A.; van Schaik, R.H.; Stricker, B.H. Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin. Pharmacol. Ther., 2008, 83(2), 288-292.
[http://dx.doi.org/10.1038/sj.clpt.6100273] [PMID: 17597710]
[112]
Xu, H.; Murray, M.; McLachlan, A.J. Influence of genetic polymorphisms on the pharmacokinetics and pharmaco-dynamics of sulfonylurea drugs. Curr. Drug Metab., 2009, 10(6), 643-658.
[http://dx.doi.org/10.2174/138920009789375388] [PMID: 19799532]
[113]
Proks, P.; de Wet, H.; Ashcroft, F.M. Molecular mechanism of sulphonylurea block of K(ATP) channels carrying mutations that impair ATP inhibition and cause neonatal diabetes. Diabetes, 2013, 62(11), 3909-3919.
[http://dx.doi.org/10.2337/db13-0531] [PMID: 23835339]
[114]
Gloyn, A.L.; Pearson, E.R.; Antcliff, J.F.; Proks, P.; Bruining, G.J.; Slingerland, A.S.; Howard, N.; Srinivasan, S.; Silva, J.M.; Molnes, J.; Edghill, E.L.; Frayling, T.M.; Temple, I.K.; Mackay, D.; Shield, J.P.; Sumnik, Z.; van Rhijn, A.; Wales, J.K.; Clark, P.; Gorman, S.; Aisenberg, J.; Ellard, S.; Njølstad, P.R.; Ashcroft, F.M.; Hattersley, A.T. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med., 2004, 350(18), 1838-1849.
[http://dx.doi.org/10.1056/NEJMoa032922] [PMID: 15115830]
[115]
Patch, A.M.; Flanagan, S.E.; Boustred, C.; Hattersley, A.T.; Ellard, S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabetes Obes. Metab., 2007, 9(Suppl. 2), 28-39.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00772.x] [PMID: 17919176]
[116]
Huang, C.; Florez, J.C. Pharmacogenetics in type 2 diabetes: potential implications for clinical practice. Genome Med., 2011, 3(11), 76.
[http://dx.doi.org/10.1186/gm292] [PMID: 22126607]
[117]
Zhang, H.; Liu, X.; Kuang, H.; Yi, R.; Xing, H. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes. Diabetes Res. Clin. Pract., 2007, 77(1), 58-61.
[http://dx.doi.org/10.1016/j.diabres.2006.10.021] [PMID: 17118480]
[118]
Feng, Y.; Mao, G.; Ren, X.; Xing, H.; Tang, G.; Li, Q.; Li, X.; Sun, L.; Yang, J.; Ma, W.; Wang, X.; Xu, X. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabetes Care, 2008, 31(10), 1939-1944.
[http://dx.doi.org/10.2337/dc07-2248] [PMID: 18599530]
[119]
El-Sisi, A.E.; Hegazy, S.K.; Metwally, S.S.; Wafa, A.M.; Dawood, N.A. Effect of genetic polymorphisms on the development of secondary failure to sulfonylurea in egyptian patients with type 2 diabetes. Ther. Adv. Endocrinol. Metab., 2011, 2(4), 155-164.
[http://dx.doi.org/10.1177/2042018811415985] [PMID: 23148181]
[120]
Nikolac, N.; Simundic, A.M.; Katalinic, D.; Topic, E.; Cipak, A.; Zjacic Rotkvic, V. Metabolic control in type 2 diabetes is associated with sulfonylurea receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch. Med. Res., 2009, 40(5), 387-392.
[http://dx.doi.org/10.1016/j.arcmed.2009.06.006] [PMID: 19766903]
[121]
Weedon, M.N. The importance of TCF7L2. Diabet. Med., 2007, 24(10), 1062-1066.
[http://dx.doi.org/10.1111/j.1464-5491.2007.02258.x] [PMID: 17888129]
[122]
Mitchell, R.K.; Mondragon, A.; Chen, L.; Mcginty, J.A.; French, P.M.; Ferrer, J.; Thorens, B.; Hodson, D.J.; Rutter, G.A.; Da Silva Xavier, G. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum. Mol. Genet., 2015, 24(5), 1390-1399.
[http://dx.doi.org/10.1093/hmg/ddu553] [PMID: 25355422]
[123]
Pearson, E.R.; Donnelly, L.A.; Kimber, C.; Whitley, A.; Doney, A.S.; McCarthy, M.I.; Hattersley, A.T.; Morris, A.D.; Palmer, C.N. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes, 2007, 56(8), 2178-2182.
[http://dx.doi.org/10.2337/db07-0440] [PMID: 17519421]
[124]
Wang, J.; Hu, F.; Feng, T.; Zhao, J.; Yin, L.; Li, L.; Wang, Y.; Wang, Q.; Hu, D. Meta-analysis of associations between TCF7L2 polymorphisms and risk of type 2 diabetes mellitus in the Chinese population. BMC Med. Genet., 2013, 14, 8.
[http://dx.doi.org/10.1186/1471-2350-14-8] [PMID: 23311683]
[125]
Arikoglu, H.; Aksoy Hepdogru, M.; Erkoc Kaya, D.; Asik, A.; Ipekci, S.H.; Iscioglu, F. IRS1 gene polymorphisms Gly972Arg and Ala513Pro are not associated with insulin resistance and type 2 diabetes risk in non-obese Turkish population. Meta Gene, 2014, 2, 579-585.
[http://dx.doi.org/10.1016/j.mgene.2014.07.008] [PMID: 25606440]
[126]
McGettrick, A.J.; Feener, E.P.; Kahn, C.R. Human insulin receptor substrate-1 (IRS-1) polymorphism G972R causes IRS-1 to associate with the insulin receptor and inhibit receptor autophosphorylation. J. Biol. Chem., 2005, 280(8), 6441-6446.
[http://dx.doi.org/10.1074/jbc.M412300200] [PMID: 15590636]
[127]
Huri, H.Z.; Makmor-Bakry, M.; Hashim, R.; Mustafa, N.; Wan Ngah, W.Z. Optimisation of glycaemic control during episodes of severe/acute hyperglycaemia in patients with type 2 diabetes mellitus. Int. J. Clin. Pharm., 2012, 34(6), 863-870.
[http://dx.doi.org/10.1007/s11096-012-9682-7] [PMID: 22869200]
[128]
Sesti, G.; Marini, M.A.; Cardellini, M.; Sciacqua, A.; Frontoni, S.; Andreozzi, F.; Irace, C.; Lauro, D.; Gnasso, A.; Federici, M.; Perticone, F.; Lauro, R. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabetes Care, 2004, 27(6), 1394-1398.
[http://dx.doi.org/10.2337/diacare.27.6.1394] [PMID: 15161794]
[129]
Chistiakov, D.A.; Potapov, V.A.; Smetanina, S.A.; Bel’chikova, L.N.; Suplotova, L.A.; Nosikov, V.V. The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel. Acta Diabetol., 2011, 48(3), 227-235.
[http://dx.doi.org/10.1007/s00592-011-0299-4] [PMID: 21611789]
[130]
Schroner, Z.; Javorský, M.; Halušková, J.; Klimčáková, L.; Babjaková, E.; Fabianová, M.; Slabá, E.; Kozárová, M.; Tkáč, I. Variation in CDKAL1 gene is associated with therapeutic response to sulphonylureas. Physiol. Res., 2012, 61(2), 177-183.
[PMID: 22292718]
[131]
Guardado-Mendoza, R.; Prioletta, A.; Jiménez-Ceja, L.M.; Sosale, A.; Folli, F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch. Med. Sci., 2013, 9(5), 936-943.
[http://dx.doi.org/10.5114/aoms.2013.34991] [PMID: 24273582]
[132]
Information N. C. f. 2018.
[133]
Soegondo, S.; Subekti, I.; Luthariana, L. The efficacy of repaglinide monotherapy and in combination with metformin in Indonesian type 2 diabetes mellitus patients. Acta Med. Indones., 2004, 36(3), 142-147.
[PMID: 15557683]
[134]
Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther., 2012, 92(4), 414-417.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[135]
Bidstrup, T.B.; Bjørnsdottir, I.; Sidelmann, U.G.; Thomsen, M.S.; Hansen, K.T. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol., 2003, 56(3), 305-314.
[http://dx.doi.org/10.1046/j.0306-5251.2003.01862.x] [PMID: 12919179]
[136]
Tomalik-Scharte, D.; Fuhr, U.; Hellmich, M.; Frank, D.; Doroshyenko, O.; Jetter, A.; Stingl, J.C. Effect of the CYP2C8 genotype on the pharmacokinetics and pharmacodynamics of repaglinide. Drug Metab. Dispos., 2011, 39(5), 927-932.
[http://dx.doi.org/10.1124/dmd.110.036921] [PMID: 21270106]
[137]
Kalliokoski, A.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br. J. Clin. Pharmacol., 2008, 66(6), 818-825.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03287.x] [PMID: 18823304]
[138]
Semiz, S.; Dujic, T.; Causevic, A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem. Med. (Zagreb), 2013, 23(2), 154-171.
[http://dx.doi.org/10.11613/BM.2013.020] [PMID: 23894862]
[139]
Cheng, Y.; Wang, G.; Zhang, W.; Fan, L.; Chen, Y.; Zhou, H.H. Effect of CYP2C9 and SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of nateglinide in healthy Chinese male volunteers. Eur. J. Clin. Pharmacol., 2013, 69(3), 407-413.
[http://dx.doi.org/10.1007/s00228-012-1364-9] [PMID: 22842957]
[140]
Xiang, Q.; Cui, Y.M.; Zhao, X.; Yan, L.; Zhou, Y. The Influence of MDR1 G2677T/a genetic polymorphisms on the pharmacokinetics of repaglinide in healthy Chinese volunteers. Pharmacology, 2012, 89(1-2), 105-110.
[http://dx.doi.org/10.1159/000336345] [PMID: 22398664]
[141]
Dai, X.P.; Huang, Q.; Yin, J.Y.; Guo, Y.; Gong, Z.C.; Lei, M.X.; Jiang, T.J.; Zhou, H.H.; Liu, Z.Q. KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol., 2012, 39(5), 462-468.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05701.x] [PMID: 22414228]
[142]
Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; Yamagata, K.; Hinokio, Y.; Wang, H.Y.; Tanahashi, T.; Nakamura, N.; Oka, Y.; Iwasaki, N.; Iwamoto, Y.; Yamada, Y.; Seino, Y.; Maegawa, H.; Kashiwagi, A.; Takeda, J.; Maeda, E.; Shin, H.D.; Cho, Y.M.; Park, K.S.; Lee, H.K.; Ng, M.C.; Ma, R.C.; So, W.Y.; Chan, J.C.; Lyssenko, V.; Tuomi, T.; Nilsson, P.; Groop, L.; Kamatani, N.; Sekine, A.; Nakamura, Y.; Yamamoto, K.; Yoshida, T.; Tokunaga, K.; Itakura, M.; Makino, H.; Nanjo, K.; Kadowaki, T.; Kasuga, M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet., 2008, 40(9), 1092-1097.
[http://dx.doi.org/10.1038/ng.207] [PMID: 18711367]
[143]
Huang, Q.; Yin, J.Y.; Dai, X.P.; Wu, J.; Chen, X.; Deng, C.S.; Yu, M.; Gong, Z.C.; Zhou, H.H.; Liu, Z.Q. Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. Eur. J. Clin. Pharmacol., 2010, 66(12), 1207-1215.
[http://dx.doi.org/10.1007/s00228-010-0882-6] [PMID: 20809084]
[144]
Yu, M.; Xu, X.J.; Yin, J.Y.; Wu, J.; Chen, X.; Gong, Z.C.; Ren, H.Y.; Huang, Q.; Sheng, F.F.; Zhou, H.H.; Liu, Z.Q. KCNJ11 Lys23Glu and TCF7L2 rs290487(C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin. Pharmacol. Ther., 2010, 87(3), 330-335.
[http://dx.doi.org/10.1038/clpt.2009.242] [PMID: 20054294]
[145]
Sheng, F.F.; Dai, X.P.; Qu, J.; Lei, G.H.; Lu, H.B.; Wu, J.; Xu, X.J.; Pei, Q.; Dong, M.; Liu, Y.Z.; Zhou, H.H.; Liu, Z.Q. NAMPT -3186C/T polymorphism affects repaglinide response in Chinese patients with Type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol., 2011, 38(8), 550-554.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05548.x] [PMID: 21631570]
[146]
Hauner, H. The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev., 2002, 18(Suppl. 2), S10-S15.
[http://dx.doi.org/10.1002/dmrr.249] [PMID: 11921433]
[147]
Wang, Q.A.; Zhang, F.; Jiang, L.; Ye, R.; An, Y.; Shao, M.; Tao, C.; Gupta, R.K.; Scherer, P.E. PPARgamma and its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated In-sulin Sensitization. Mol. Cell. Biol., 2018.
[http://dx.doi.org/10.1128/MCB.00677-17]
[148]
Yasmin, S.; Jayaprakash, V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: From past to present. Eur. J. Med. Chem., 2017, 126, 879-893.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.020] [PMID: 27988463]
[149]
Karalliedde, J.; Buckingham, R.E. Thiazolidinediones and their fluid-related adverse effects: facts, fiction and putative management strategies. Drug Saf., 2007, 30(9), 741-753.
[http://dx.doi.org/10.2165/00002018-200730090-00002] [PMID: 17722967]
[150]
Schroner, Z.; Javorsky, M.; Kozarova, M.; Tkac, I. Pharmacogenetics of oral antidiabetic treatment. Bratisl. Lek Listy, 2011, 112(8), 441-446.
[PMID: 21863614]
[151]
Pearson, E.R. Personalized medicine in diabetes: the role of ‘omics’ and biomarkers. Diabet. Med., 2016, 33(6), 712-717.
[http://dx.doi.org/10.1111/dme.13075] [PMID: 26802434]
[152]
Barroso, I.; Gurnell, M.; Crowley, V.E.; Agostini, M.; Schwabe, J.W.; Soos, M.A.; Maslen, G.L.; Williams, T.D.; Lewis, H.; Schafer, A.J.; Chatterjee, V.K.; O’Rahilly, S. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature, 1999, 402(6764), 880-883.
[http://dx.doi.org/10.1038/47254] [PMID: 10622252]
[153]
Kang, E.S.; Park, S.Y.; Kim, H.J.; Kim, C.S.; Ahn, C.W.; Cha, B.S.; Lim, S.K.; Nam, C.M.; Lee, H.C. Effects of Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes. Clin. Pharmacol. Ther., 2005, 78(2), 202-208.
[http://dx.doi.org/10.1016/j.clpt.2005.04.013] [PMID: 16084854]
[154]
Chang, T-J.; Liu, P-H.; Liang, Y-C.; Chang, Y-C.; Jiang, Y-D.; Li, H-Y.; Lo, M-T.; Chen, H-S.; Chuang, L-M. Genetic predisposition and nongenetic risk factors of thiazolidinedione-related edema in patients with type 2 diabetes. Pharmacogenet. Genomics, 2011, 21(12), 829-836.
[http://dx.doi.org/10.1097/FPC.0b013e32834bfff1] [PMID: 21934636]
[155]
Dawed, A.Y.; Donnelly, L.; Tavendale, R.; Carr, F.; Leese, G.; Palmer, C.N.A.; Pearson, E.R.; Zhou, K. CYP2C8 and SLCO1B1 Variants and Therapeutic Response to Thiazolidinediones in Patients With Type 2 Diabetes. Diabetes Care, 2016, 39(11), 1902-1908.
[http://dx.doi.org/10.2337/dc15-2464] [PMID: 27271184]
[156]
Karaglani, M.; Ragia, G.; Panagopoulou, M.; Balgkouranidou, I.; Nena, E.; Kolios, G.; Papanas, N.; Manolopoulos, V.G.; Chat-zaki, E. Search for Pharmacoepigenetic Correlations in Type 2 Diabetes Under Sulfonylurea Treatment. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology German Diabetes Association, 2018. and
[157]
Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990), 457-463.
[http://dx.doi.org/10.1038/nature02625] [PMID: 15164071]
[158]
Relton, C.L.; Davey Smith, G. Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med., 2010, 7(10)e1000356
[http://dx.doi.org/10.1371/journal.pmed.1000356] [PMID: 21048988]
[159]
Gluckman, P.D.; Hanson, M.A.; Buklijas, T.; Low, F.M.; Beedle, A.S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat. Rev. Endocrinol., 2009, 5(7), 401-408.
[http://dx.doi.org/10.1038/nrendo.2009.102] [PMID: 19488075]
[160]
Mohammadi-asl, J.; Larijani, B.; Khorgami, Z.; Tavangar, S.M.; Haghpanah, V.; Kheirollahi, M.; Mehdipour, P. Qualitative and quantitative promoter hypermethylation patterns of the P16, TSHR, RASSF1A and RARβ2 genes in papillary thyroid carcinoma. Med. Oncol., 2011, 28(4), 1123-1128.
[http://dx.doi.org/10.1007/s12032-010-9587-z] [PMID: 20535589]
[161]
Bao, B.; Azmi, A.S.; Ali, S.; Zaiem, F.; Sarkar, F.H. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. Ann. Transl. Med., 2014, 2(6), 59.
[PMID: 25333034]
[162]
García-Calzón, S.; Perfilyev, A.; Männistö, V.; de Mello, V.D.; Nilsson, E.; Pihlajamäki, J.; Ling, C. Diabetes medication associates with DNA methylation of metformin transporter genes in the human liver. Clin. Epigenetics, 2017, 9, 102.
[http://dx.doi.org/10.1186/s13148-017-0400-0] [PMID: 28947922]
[163]
Niu, N.; Liu, T.; Cairns, J.; Ly, R.C.; Tan, X.; Deng, M.; Fridley, B.L.; Kalari, K.R.; Abo, R.P.; Jenkins, G.; Batzler, A.; Carlson, E.E.; Barman, P.; Moran, S.; Heyn, H.; Esteller, M.; Wang, L. Metformin pharmacogenomics: a genome-wide association study to identify genetic and epigenetic biomarkers involved in metformin anticancer response using human lymphoblastoid cell lines. Hum. Mol. Genet., 2016, 25(21), 4819-4834.
[http://dx.doi.org/10.1093/hmg/ddw301] [PMID: 28173075]
[164]
Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; Shah, A.; Willeit, J.; Mayr, M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res., 2010, 107(6), 810-817.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[165]
Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.; Chen, R.; Miriami, E.; Karczewski, K.J.; Hariharan, M.; Dewey, F.E.; Cheng, Y.; Clark, M.J. Im, H.; Habegger, L.; Balasubramanian, S.; O’Huallachain, M.; Dudley, J.T.; Hillenmeyer, S.; Haraksingh, R.; Sharon, D.; Euskirchen, G.; Lacroute, P.; Bettinger, K.; Boyle, A.P.; Kasowski, M.; Grubert, F.; Seki, S.; Garcia, M.; Whirl-Carrillo, M.; Gallardo, M.; Blasco, M.A.; Greenberg, P.L.; Snyder, P.; Klein, T.E.; Altman, R.B.; Butte, A.J.; Ashley, E.A.; Gerstein, M.; Nadeau, K.C.; Tang, H.; Snyder, M. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 2012, 148(6), 1293-1307.
[http://dx.doi.org/10.1016/j.cell.2012.02.009] [PMID: 22424236]
[166]
Johnson, J.A.; Burkley, B.M.; Langaee, T.Y.; Clare-Salzler, M.J.; Klein, T.E.; Altman, R.B. Implementing personalized medicine: development of a cost-effective customized pharmacogenetics genotyping array. Clin. Pharmacol. Ther., 2012, 92(4), 437-439.
[http://dx.doi.org/10.1038/clpt.2012.125] [PMID: 22910441]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy