Review Article

季铵化壳聚糖纳米颗粒在疫苗中的应用

卷 27, 期 30, 2020

页: [4932 - 4944] 页: 13

弟呕挨: 10.2174/0929867326666190227192527

价格: $65

摘要

疫苗制剂中已经使用了不同的天然和合成生物可降解聚合物作为佐剂和递送系统,但是面临各种限制。 壳聚糖是一种新的递送系统,具有改善纳米疫苗和药物开发的潜力。 然而,壳聚糖仅可溶于低浓度无机酸(例如稀乙酸和稀盐酸)的酸性溶液中以及纯有机溶剂中,这极大地限制了其应用。 壳聚糖的化学改性是改善其弱溶解性的重要途径。 季铵化壳聚糖不仅保留了壳聚糖的优异性能,而且还改善了其水溶性,可广泛应用。 近年来,季铵化的壳聚糖纳米颗粒已被广泛用于生物医学领域。 综述了季铵化壳聚糖纳米粒子的研究现状,指出了季铵化壳聚糖纳米粒子的优势和研究方向。 如季铵化壳聚糖纳米颗粒作为佐剂和递送载体在疫苗中的应用所示,季铵化壳聚糖纳米颗粒在未来开发纳米疫苗中具有广阔的应用前景。

关键词: 季铵化壳聚糖,纳米颗粒,佐剂,递送载体,疫苗,疫苗制剂。

[1]
Apte, S.H.; Stephenson, R.J.; Simerska, P.; Groves, P.L.; Aljohani, S.; Eskandari, S.; Toth, I.; Doolan, D.L. Systematic evaluation of self-adjuvanting lipopeptide nano-vaccine platforms for the induction of potent CD8(+) T-cell responses. Nanomedicine (Lond.), 2016, 11(2), 137-152.
[http://dx.doi.org/10.2217/nnm.15.184] [PMID: 26653407]
[2]
Govindarajan, D.; Meschino, S.; Guan, L.; Clements, D.E.; ter Meulen, J.H.; Casimiro, D.R.; Coller, B.A.; Bett, A.J. Preclinical development of a dengue tetravalent recombinant subunit vaccine: immunogenicity and protective efficacy in nonhuman primates. Vaccine, 2015, 33(33), 4105-4116.
[http://dx.doi.org/10.1016/j.vaccine.2015.06.067] [PMID: 26144900]
[3]
Li, J.; Yu, J.; Xu, S.; Shi, J.; Xu, S.; Wu, X.; Fu, F.; Peng, Z.; Zhang, L.; Zheng, S.; Yuan, X.; Cong, X.; Sun, W.; Cheng, K.; Du, Y.; Wu, J.; Wang, J. Immunogenicity of porcine circovirus type 2 nucleic acid vaccine containing CpG motif for mice. Virol. J., 2016, 13(1), 185-192.
[http://dx.doi.org/10.1186/s12985-016-0597-0] [PMID: 27842600]
[4]
Zhao, K.; Zhang, Y.; Zhang, X.; Li, W.; Shi, C.; Guo, C.; Dai, C.; Chen, Q.; Jin, Z.; Zhao, Y.; Cui, H.; Wang, Y. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int. J. Nanomedicine, 2014, 9(1), 389-402.
[http://dx.doi.org/10.2147/IJN.S54226] [PMID: 24426783]
[5]
Zhao, K.; Shi, X.; Zhao, Y.; Wei, H.; Sun, Q.; Huang, T.; Zhang, X.; Wang, Y. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine, 2011, 29(47), 8549-8556.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.029] [PMID: 21945253]
[6]
Fowler, V.; Robinson, L.; Bankowski, B.; Cox, S.; Parida, S.; Lawlor, C.; Gibson, D.; O’Brien, F.; Ellefsen, B.; Hannaman, D.; Takamatsu, H.H.; Barnett, P.V. A DNA vaccination regime including protein boost and electroporation protects cattle against foot-and-mouth disease. Antiviral Res., 2012, 94(1), 25-34.
[http://dx.doi.org/10.1016/j.antiviral.2012.02.002] [PMID: 22330893]
[7]
Sridhar, S.; Brokstad, K.A.; Cox, R.J. Influenza vaccination strategies: comparing inactivated and live attenuated influenza vaccines. Vaccines (Basel), 2015, 3(2), 373-389.
[http://dx.doi.org/10.3390/vaccines3020373] [PMID: 26343192]
[8]
Correia, B.E.; Ban, Y.E.; Holmes, M.A.; Xu, H.; Ellingson, K.; Kraft, Z.; Carrico, C.; Boni, E.; Sather, D.N.; Zenobia, C.; Burke, K.Y.; Bradley-Hewitt, T.; Bruhn-Johannsen, J.F.; Kalyuzhniy, O.; Baker, D.; Strong, R.K.; Stamatatos, L.; Schief, W.R. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure, 2010, 18(9), 1116-1126.
[http://dx.doi.org/10.1016/j.str.2010.06.010] [PMID: 20826338]
[9]
Di Giacomo, S.; Quattrocchi, V.; Zamorano, P. Use of adjuvants to enhance the immune response induced by a DNA vaccine against Bovine herpesvirus-1. Viral Immunol., 2015, 28(6), 343-346.
[http://dx.doi.org/10.1089/vim.2014.0113] [PMID: 26133047]
[10]
Gordy, J.T.; Luo, K.; Francica, B.; Drake, C.; Markham, R.B. Anti-IL-10-mediated enhancement of antitumor efficacy of a dendritic cell-targeting MIP3 alpha-gp100 vaccine in the B16F10 mouse melanoma model is dependent on type I interferons. J. Immunother., 2018, 41(4), 181-189.
[http://dx.doi.org/10.1097/CJI.0000000000000212] [PMID: 29334492]
[11]
Liu, F.; Sun, X.; Fairman, J.; Lewis, D.B.; Katz, J.M.; Levine, M.; Tumpey, T.M.; Lu, X. A cationic liposome-DNA complexes adjuvant (JVRS-100) enhances the immunogenicity and cross-protective efficacy of pre-pandemic influenza A (H5N1) vaccine in ferrets. Virology, 2016, 492, 197-203.
[http://dx.doi.org/10.1016/j.virol.2016.02.024] [PMID: 26967975]
[12]
Xu, J.; Dai, W.; Wang, Z.; Chen, B.; Li, Z.; Fan, X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin. Vaccine Immunol., 2011, 18(1), 75-81.
[http://dx.doi.org/10.1128/CVI.00263-10] [PMID: 21047997]
[13]
Cordeiro, A.S.; Alonso, M.J. Recent advances in vaccine delivery. Pharm. Pat. Anal., 2016, 5(1), 49-73.
[http://dx.doi.org/10.4155/ppa.15.38] [PMID: 26667309]
[14]
Garg, N.; Aggarwal, A. Advances towards painless vaccination and newer modes of vaccine delivery. Indian J. Pediatr., 2018, 85(2), 132-138.
[http://dx.doi.org/10.1007/s12098-017-2377-2] [PMID: 28620730]
[15]
Correia-Pinto, J.F.; Csaba, N.; Schiller, J.T.; Alonso, M.J. Chitosan-poly (I:C)-PADRE based nanoparticles as delivery vehicles for synthetic peptide vaccines. Vaccines (Basel), 2015, 3(3), 730-750.
[http://dx.doi.org/10.3390/vaccines3030730] [PMID: 26378586]
[16]
Yue, H.; Ma, G. Polymeric micro/nanoparticles: particle design and potential vaccine delivery applications. Vaccine, 2015, 33(44), 5927-5936.
[http://dx.doi.org/10.1016/j.vaccine.2015.07.100] [PMID: 26263197]
[17]
Pellá, M.C.G.; Lima-Tenório, M.K.; Tenório-Neto, E.T.; Guilherme, M.R.; Muniz, E.C.; Rubira, A.F. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydr. Polym., 2018, 196, 233-245.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.033] [PMID: 29891292]
[18]
Molatlhegi, O.; Alagha, L. Adsorption characteristics of chitosan grafted copolymer on kaolin. Appl. Clay Sci., 2017, 150, 342-353.
[http://dx.doi.org/10.1016/j.clay.2017.09.032]
[19]
Shariatinia, Z.; Jalali, A.M. Chitosan-based hydrogels: preparation, properties and applications. Int. J. Biol. Macromol., 2018, 115, 194-220.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.034] [PMID: 29660456]
[20]
Gordon, S.; Teichmann, E.; Young, K.; Finnie, K.; Rades, T.; Hook, S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur. J. Pharm. Sci., 2010, 41(2), 360-368.
[http://dx.doi.org/10.1016/j.ejps.2010.07.004] [PMID: 20633644]
[21]
Ren, Y.; Zhao, X.; Liang, X.; Ma, P.X.; Guo, B. Injectable hydrogel based on quaternized chitosan, gelatin and dopamine as localized drug delivery system to treat Parkinson’s disease. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1079-1087.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.130] [PMID: 28746885]
[22]
Zhao, X.; Guo, B.; Wu, H.; Liang, Y.; Ma, P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun., 2018, 9(1), 2784.
[http://dx.doi.org/10.1038/s41467-018-04998-9] [PMID: 30018305]
[23]
Yan, D.; Hu, S.; Zhou, Z.; Zeenat, S.; Cheng, F.; Li, Y.; Feng, C.; Cheng, X.; Chen, X. Different chemical groups modification on the surface of chi-tosan nonwoven dressing and the hemostatic properties Int. J. Biol. Macromol, 2018, 107(Pt A), 463-469.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.008]
[24]
Zhao, K.; Li, S.; Li, W.; Yu, L.; Duan, X.; Han, J.; Wang, X.; Jin, Z. Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Deliv., 2017, 24(1), 1574-1586.
[http://dx.doi.org/10.1080/10717544.2017.1388450] [PMID: 29029568]
[25]
Zhang, S.; Huang, S.; Lu, L.; Song, X.; Li, P.; Wang, F. Curdlan sulfate-O-linked quaternized chitosan nanoparticles: potential adjuvants to improve the immunogenicity of exogenous antigens via intranasal vaccination. Int. J. Nanomedicine, 2018, 13, 2377-2394.
[http://dx.doi.org/10.2147/IJN.S158536] [PMID: 29713168]
[26]
Arthanari, S.; Mani, G.; Peng, M.M.; Jang, H.T. Chitosan-HPMC-blended microspheres as a vaccine carrier for the delivery of tetanus toxoid. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 517-523.
[http://dx.doi.org/10.3109/21691401.2014.966193] [PMID: 25472756]
[27]
Cai, J.; Zhang, W.; Xu, J.; Xue, W.; Liu, Z. Evaluation of N-phosphonium chitosan as a novel vaccine carrier for intramuscular immunization. J. Biomater. Appl., 2017, 32(5), 677-685.
[http://dx.doi.org/10.1177/0885328217735221] [PMID: 28992775]
[28]
Guo, T.; Li, X.K.; Lin, M.; Zhang, L.X. Mucosal adjuvant activity of chitosan encapsulated nanoparticles as Helicobacter pylori epitope vaccine carrier. Nanosci. Nanotechnol. Lett., 2016, 8(12), 1106-1111.
[http://dx.doi.org/10.1166/nnl.2016.2234]
[29]
Li, D.; Fu, D.; Kang, H.; Rong, G.; Jin, Z.; Wang, X.; Zhao, K. Advances and potential applications of chitosan nanoparticles as a delivery carrier for the mucosal immunity of vaccine. Curr. Drug Deliv., 2017, 14(1), 27-35.
[http://dx.doi.org/10.2174/1567201813666160804121123] [PMID: 27494157]
[30]
Mirzaei, F.; Mohammadpour Dounighi, N.; Avadi, M.R.; Rezayat, M. A new approach to antivenom preparation using chitosan nano-particles containing Echis carinatus venom as a novel antigen delivery system. Iran. J. Pharm. Res., 2017, 16(3), 858-867.
[PMID: 29201077]
[31]
Phan, D.C.; Goodwin, D.G.J. Jr.; Frank, B.P.; Bouwer, E.J.; Fairbrother, D.H. Biodegradability of carbon nanotube/polymer nanocomposites under aerobic mixed culture conditions. Sci. Total Environ., 2018, 639, 804-814.
[http://dx.doi.org/10.1016/j.scitotenv.2018.05.137] [PMID: 29803051]
[32]
Mokhtarzadeh, A.; Alibakhshi, A.; Hashemi, M.; Hejazi, M.; Hosseini, V.; de la Guardia, M.; Ramezani, M. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J. Control. Release, 2017, 245, 116-126.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.017] [PMID: 27884808]
[33]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001]
[34]
Landriscina, A.; Rosen, J.; Friedman, A.J. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine (Lond.), 2015, 10(10), 1609-1619.
[http://dx.doi.org/10.2217/nnm.15.7] [PMID: 26008195]
[35]
Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J. Pharm. Sci., 2015, 10(3), 203-211.
[http://dx.doi.org/10.1016/j.ajps.2014.09.005]
[36]
Ito, T.; Takami, T.; Uchida, Y.; Murakami, Y. Chitosan gel sheet containing drug carriers with controllable drug-release properties. Colloids Surf. B Biointerfaces, 2018, 163, 257-265.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.054] [PMID: 29310046]
[37]
Rahimi, M.; Shafiei-Irannejad, V; D; Safa, K.; Salehi, R. Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties. Carbohydr. Polym., 2018, 196, 299-312.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.059] [PMID: 29891300]
[38]
Li, P.; Yang, Z.; Wang, Y.; Peng, Z.; Li, S.; Kong, L.; Wang, Q. Microencapsulation of coupled folate and chitosan nanoparticles for targeted delivery of combination drugs to colon. J. Microencapsul., 2015, 32(1), 40-45.
[http://dx.doi.org/10.3109/02652048.2014.944947] [PMID: 25198909]
[39]
Mehrabi, M.; Dounighi, N.M.; Rezayat, S.M.; Doroud, D.; Amani, A.; Khoobi, M.; Ajdary, S. Novel approach to improve vaccine immunogenicity: mannosylated chitosan nanoparticles loaded with recombinant hepatitis B antigen as a targeted vaccine delivery system. J. Drug Deliv. Sci. Technol., 2018, 44, 19-26.
[http://dx.doi.org/10.1016/j.jddst.2017.11.022]
[40]
Rahmani, O.; Bouzid, B.; Guibadj, A. Extraction and characterization of chitin and chitosan: applications of chitosan nanoparticles in the adsorption of copper in an aqueous environment. E-Polymers, 2017, 17(5), 383-397.
[http://dx.doi.org/10.1515/epoly-2016-0318]
[41]
Singh, R.; Shitiz, K.; Singh, A. Chitin and chitosan: biopolymers for wound management. Int. Wound J., 2017, 14(6), 1276-1289.
[http://dx.doi.org/10.1111/iwj.12797] [PMID: 28799228]
[42]
Wei, H.; Lai, S.; Wei, J.; Yang, L.; Jiang, N.; Wang, Q.; Yu, Y. A novel delivery method of cyclovirobuxine D for brain-targeting: chitosan coated nanoparticles loading cyclovirobuxine D by intranasal administration. J. Nanosci. Nanotechnol., 2018, 18(8), 5274-5282.
[http://dx.doi.org/10.1166/jnn.2018.15371] [PMID: 29458577]
[43]
Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: a state-of-the-art review. Int. J. Biol. Macromol., 2013, 59, 46-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.043] [PMID: 23608103]
[44]
Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122, 34-47.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.011] [PMID: 28107663]
[45]
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183, 185-199.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.044] [PMID: 30172244]
[46]
Sonia, T.A.; Sharma, C.P. In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery. Carbohydr. Polym., 2011, 84(1), 103-109.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.070]
[47]
Wang, Q.; Zhang, J.; Mu, B.; Fan, L.; Wang, A. Facile preparation of magnetic 2-hydroxypropyltrimethyl ammonium chloride chitosan/Fe3O4/halloysite nanotubes microspheres for the controlled release of ofloxacin. Carbohydr. Polym., 2014, 102, 877-883.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.071] [PMID: 24507359]
[48]
Niamlang, P.; Tongrain, T.; Ekabutr, P.; Chuysinuan, P.; Supaphol, P. Preparation, characterization and biocompatibility of poly(vinyl alcohol) films containing tetracycline hydrochloride-loaded quaternized chitosan nanoparticles. J. Drug Deliv. Sci. Technol., 2017, 38, 36-44.
[http://dx.doi.org/10.1016/j.jddst.2016.12.006]
[49]
Jia, Z. shen, D.; Xu, W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res., 2001, 333(1), 1-6.
[http://dx.doi.org/10.1016/S0008-6215(01)00112-4] [PMID: 11423105]
[50]
Chen, Y.; Wang, F.; Zhang, N.; Li, Y.; Cheng, B.; Zheng, Y. Preparation of a 6-OH quaternized chitosan derivative through click reaction and its application to novel thermally induced/polyelectrolyte complex hydrogels. Colloids Surf. B Biointerfaces, 2017, 158, 431-440.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.028] [PMID: 28728085]
[51]
Luan, F.; Wei, L.; Zhang, J.; Tan, W.; Chen, Y.; Dong, F.; Li, Q.; Guo, Z. Preparation and characterization of quaternized chitosan derivatives and assessment of their antioxidant activity. Molecules, 2018, 23(3), 516-528.
[http://dx.doi.org/10.3390/molecules23030516] [PMID: 29495379]
[52]
Cheng, M.M.; Xin, M.H.; Li, M.C.; Li, X. Preparation and micelle formation of quaternary ammonium-N-(4-methyl-imidazole) chitosan. Chem. Ind. Eng. Pro., 2012, 31, 861-865.
[53]
Jin, Z.; Li, W.; Gao, H.W.; Zhang, X.; Chen, G.; Wu, H.; Guo, C.; Zhang, Y.; Kang, H.; Wang, Y.F.; Zhao, K. Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier. Chem. Eng. J., 2013, 221, 331-341.
[http://dx.doi.org/10.1016/j.cej.2013.02.011]
[54]
Zhao, K.; Sun, Y.; Chen, G.; Rong, G.; Kang, H.; Jin, Z.; Wang, X. Biological evaluation of N-2-hydroxypropyl trimethyl ammonium chloride chitosan as a carrier for the delivery of live Newcastle disease vaccine. Carbohydr. Polym., 2016, 149, 28-39.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.085] [PMID: 27261727]
[55]
Dai, C.; Kang, H.; Yang, W.; Sun, J.; Liu, C.; Cheng, G.; Rong, G.; Wang, X.; Wang, X.; Jin, Z.; Zhao, K. O-2′-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr. Polym., 2015, 130, 280-289.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.008] [PMID: 26076628]
[56]
Jin, Z.; Li, D.; Dai, C.; Cheng, G.; Wang, X.; Zhao, K. Response of live Newcastle disease virus encapsulated in N-2-hydroxypropyl dimethylethyl ammonium chloride chitosan nanoparticles. Carbohydr. Polym., 2017, 171, 267-280.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.022] [PMID: 28578963]
[57]
Tao, W.; Fu, T.; He, Z.; Hu, R.; Jia, L.; Hong, Y. Evaluation of immunostimulatory effects of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride for improving live attenuated hepatitis a virus vaccine efficacy. Viral Immunol., 2017, 30(2), 120-126.
[http://dx.doi.org/10.1089/vim.2016.0099] [PMID: 27918250]
[58]
Wongwanakul, R.; Jianmongkol, S.; Gonil, P.; Sajomsang, W.; Maniratanachote, R.; Aueviriyavit, S. Biocompatibility study of quaternized chitosan on the proliferation and differentiation of Caco-2 cells as an in vitro model of the intestinal barrier. J. Bioact. Compat. Polym., 2017, 32(1), 92-107.
[http://dx.doi.org/10.1177/0883911516658780]
[59]
Zhao, X.; Li, P.; Guo, B.; Ma, P.X. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater., 2015, 26, 236-248.
[http://dx.doi.org/10.1016/j.actbio.2015.08.006] [PMID: 26272777]
[60]
Liang, X.; Li, X.; Chang, J.; Duan, Y.; Li, Z. Properties and evaluation of quaternized chitosan/lipid cation polymeric liposomes for cancer-targeted gene delivery. Langmuir, 2013, 29(27), 8683-8693.
[http://dx.doi.org/10.1021/la401166v] [PMID: 23763489]
[61]
Huang, R.H.; Yang, B.C.; Zheng, D.S.; Wang, B. Preparation and characterization of a quaternized chitosan. J. Mater. Sci., 2012, 47(2), 845-851.
[http://dx.doi.org/10.1007/s10853-011-5862-4]
[62]
Opanasopit, P.; Petchsangsai, M.; Rojanarata, T.; Ngawhirunpat, T.; Sajomsang, W.; Ruktanonchai, U. Methylated N-(4-N,N-dimethylaminobenzyl) chitosan as effective gene carriers: effect of degree of substitution. Carbohydr. Polym., 2009, 75(1), 143-149.
[http://dx.doi.org/10.1016/j.carbpol.2008.07.012]
[63]
Song, Y.; Wang, H.; Zeng, X.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Effect of molecular weight and degree of substitution of quaternized cellulose on the efficiency of gene transfection. Bioconjug. Chem., 2010, 21(7), 1271-1279.
[http://dx.doi.org/10.1021/bc100068f] [PMID: 20521783]
[64]
Jesus, S.; Soares, E.; Borchard, G.; Borges, O. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine (Lond.), 2017, 12(19), 2335-2348.
[http://dx.doi.org/10.2217/nnm-2017-0138] [PMID: 28868964]
[65]
Kim, M.Y.; Copland, A.; Nayak, K.; Chandele, A.; Ahmed, M.S.; Zhang, Q.; Diogo, G.R.; Paul, M.J.; Hofmann, S.; Yang, M.S.; Jang, Y.S.; Ma, J.K.C.; Reljic, R. Plant-expressed Fc-fusion protein tetravalent dengue vaccine with inherent adjuvant properties. Plant Biotechnol. J., 2018, 16(7), 1283-1294.
[http://dx.doi.org/10.1111/pbi.12869] [PMID: 29223138]
[66]
Mbow, M.L.; De Gregorio, E.; Valiante, N.M.; Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol., 2010, 22(3), 411-416.
[http://dx.doi.org/10.1016/j.coi.2010.04.004] [PMID: 20466528]
[67]
Mohan, T.; Zhu, W.; Wang, Y.; Wang, B.Z. Applications of chemokines as adjuvants for vaccine immunotherapy. Immunobiology, 2018, 223(6-7), 477-485.
[http://dx.doi.org/10.1016/j.imbio.2017.12.001] [PMID: 29246401]
[68]
Rauw, F.; Gardin, Y.; Palya, V.; Anbari, S.; Gonze, M.; Lemaire, S.; van den Berg, T.; Lambrecht, B. The positive adjuvant effect of chitosan on antigen-specific cell-mediated immunity after chickens vaccination with live Newcastle disease vaccine. Vet. Immunol. Immunopathol., 2010, 134(3-4), 249-258.
[http://dx.doi.org/10.1016/j.vetimm.2009.10.028] [PMID: 19939464]
[69]
Smith, A.; Perelman, M.; Hinchcliffe, M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum. Vaccin. Immunother., 2014, 10(3), 797-807.
[http://dx.doi.org/10.4161/hv.27449] [PMID: 24346613]
[70]
Angelova, N.; Yordanov, G. Iron (III) and aluminium (III) based mixed nanostructured hydroxyphosphates as potential vaccine adju-vants: preparation and physicochemical characterization. Colloid. Surface. A, 2017, 535, 184-193.
[http://dx.doi.org/10.1016/j.colsurfa.2017.09.043]
[71]
Burakova, Y.; Madera, R.; McVey, S.; Schlup, J.R.; Shi, J. Adjuvants for animal vaccines. Viral Immunol., 2018, 31(1), 11-22.
[http://dx.doi.org/10.1089/vim.2017.0049] [PMID: 28618246]
[72]
Nagai, K.; Aratani, Y.; Shibuya, A.; Yamagata, K. Involvement of pentraxin-3 in anti-neutrophil cytoplasmic antibody production induced by aluminum salt adjuvant. Clin. Exp. Rheumatol., 2017, 35(5), 735-738.
[PMID: 28850023]
[73]
Sun, T.; Wang, J.; Li, X.; Li, Y.J.; Feng, D.; Shi, W.L.; Zhao, M.G.; Wang, J.B.; Wu, Y.M. Gastrodin relieved complete Freund’s adjuvant-induced spontaneous pain by inhibiting inflammatory response. Int. Immunopharmacol., 2016, 41, 66-73.
[http://dx.doi.org/10.1016/j.intimp.2016.10.020] [PMID: 27816787]
[74]
Bueter, C.L.; Lee, C.K.; Wang, J.P.; Ostroff, G.R.; Specht, C.A.; Levitz, S.M. Spectrum and mechanisms of inflammasome activation by chitosan. J. Immunol., 2014, 192(12), 5943-5951.
[http://dx.doi.org/10.4049/jimmunol.1301695] [PMID: 24829412]
[75]
Ghendon, Y.; Markushin, S.; Akopova, I.; Koptiaeva, I.; Krivtsov, G. Chitosan as an adjuvant for poliovaccine. J. Med. Virol., 2011, 83(5), 847-852.
[http://dx.doi.org/10.1002/jmv.22030] [PMID: 21412793]
[76]
Hogenesch, H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front. Immunol., 2013, 3, 406-418.
[http://dx.doi.org/10.3389/fimmu.2012.00406] [PMID: 23335921]
[77]
Khademi, F.; Taheri, R.A.; Yousefi Avarvand, A.; Vaez, H.; Momtazi-Borojeni, A.A.; Soleimanpour, S. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines? Microb. Pathog., 2018, 121, 218-223.
[http://dx.doi.org/10.1016/j.micpath.2018.05.035] [PMID: 29800697]
[78]
Mohan, T.; Verma, P.; Rao, D.N. Novel adjuvants & delivery vehicles for vaccines development: a road ahead. Indian J. Med. Res., 2013, 138(5), 779-795.
[PMID: 24434331]
[79]
Di Pasquale, A.; Preiss, S.; Tavares Da Silva, F.; Garçon, N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines (Basel), 2015, 3(2), 320-343.
[http://dx.doi.org/10.3390/vaccines3020320] [PMID: 26343190]
[80]
Tao, W.; Zheng, H.Q.; Fu, T.; He, Z.J.; Hong, Y. N -(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: an immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice. Hum. Vaccin. Immunother., 2017, 13(8), 1818-1822.
[http://dx.doi.org/10.1080/21645515.2017.1331191] [PMID: 28604244]
[81]
Tahamtan, A.; Ghaemi, A.; Gorji, A.; Kalhor, H.R.; Sajadian, A.; Tabarraei, A.; Moradi, A.; Atyabi, F.; Kelishadi, M. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J. Biomed. Sci., 2014, 21(1), 69-73.
[http://dx.doi.org/10.1186/s12929-014-0069-z] [PMID: 25077570]
[82]
Coffman, R.L.; Sher, A.; Seder, R.A. Vaccine adjuvants: putting innate immunity to work. Immunity, 2010, 33(4), 492-503.
[http://dx.doi.org/10.1016/j.immuni.2010.10.002] [PMID: 21029960]
[83]
Li, X.; Wu, Y.; Huang, S.; Lu, F. Disodium cromoglycate may act as a novel adjuvant for UV-attenuated Toxoplasma gondii vaccine in mouse model. Parasitol. Int., 2018, 67(3), 351-356.
[http://dx.doi.org/10.1016/j.parint.2018.02.002] [PMID: 29421521]
[84]
MacLeod, M.K.L.; McKee, A.S.; David, A.; Wang, J.; Mason, R.; Kappler, J.W.; Marrack, P. Vaccine adjuvants aluminum and monophosphoryl lipid A provide distinct signals to generate protective cytotoxic memory CD8 T cells. Proc. Natl. Acad. Sci. USA, 2011, 108(19), 7914-7919.
[http://dx.doi.org/10.1073/pnas.1104588108] [PMID: 21518876]
[85]
Zhao, K.; Chen, G.; Shi, X.M.; Gao, T.T.; Li, W.; Zhao, Y.; Zhang, F.Q.; Wu, J.; Cui, X.; Wang, Y.F. Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One, 2012, 7(12), e53314.
[http://dx.doi.org/10.1371/journal.pone.0053314] [PMID: 23285276]
[86]
Farhadian, A.; Dounighi, N.M.; Avadi, M. Enteric trimethyl chitosan nanoparticles containing hepatitis B surface antigen for oral delivery. Hum. Vaccin. Immunother., 2015, 11(12), 2811-2818.
[http://dx.doi.org/10.1080/21645515.2015.1053663] [PMID: 26158754]
[87]
Xu, B.; Zhang, W.; Chen, Y.; Xu, Y.; Wang, B.; Zong, L. Eudragit® L100-coated mannosylated chitosan nanoparticles for oral protein vaccine delivery. Int. J. Biol. Macromol., 2018, 113, 534-542.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.016] [PMID: 29408613]
[88]
Marasini, N.; Skwarczynski, M.; Toth, I. Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines, 2014, 13(11), 1361-1376.
[http://dx.doi.org/10.1586/14760584.2014.936852] [PMID: 25155636]
[89]
Mishra, N.; Singh, D.; Sharma, S.; Baldi, A. Surface modified nanoparticulate carrier constructs for oral mucosal vaccine delivery. Curr. Drug Deliv., 2014, 11(6), 729-743.
[http://dx.doi.org/10.2174/1567201811666140709112040] [PMID: 25007830]
[90]
Guo, Z.; Li, S.; Lv, M.; Liu, Z.H.; Xue, W. Redox-responsive biodegradable polycation poly(amido amine) used as intranasal vaccine delivery systems. ACS Biomater. Sci. Eng., 2017, 3(10), 2420-2430.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00538]
[91]
Jesus, S.; Soares, E.; Borges, O. Poly-epsilon-caprolactone/chitosan and chitosan particles: two recombinant antigen delivery systems for intranasal vaccination. Methods Mol. Biol., 2016, 1404, 697-713.
[http://dx.doi.org/10.1007/978-1-4939-3389-1_45] [PMID: 27076331]
[92]
Trows, S.; Scherliess, R. Carrier-based dry powder formulation for nasal delivery of vaccines utilizing BSA as model drug. Powder Technol., 2016, 292, 223-231.
[http://dx.doi.org/10.1016/j.powtec.2016.01.042]
[93]
Zhao, K.; Rong, G.; Hao, Y.; Yu, L.; Kang, H.; Wang, X.; Wang, X.; Jin, Z.; Ren, Z.; Li, Z. IgA response and protection following nasal vaccination of chickens with Newcastle disease virus DNA vaccine nanoencapsulated with Ag@SiO2 hollow nanoparticles. Sci. Rep., 2016, 6, 25720.
[http://dx.doi.org/10.1038/srep25720] [PMID: 27170532]
[94]
Illum, L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J. Pharm. Sci., 2007, 96(3), 473-483.
[http://dx.doi.org/10.1002/jps.20718] [PMID: 17117404]
[95]
Amidi, M.; Romeijn, S.G.; Verhoef, J.C.; Junginger, H.E.; Bungener, L.; Huckriede, A.; Crommelin, D.J.A.; Jiskoot, W. N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine, 2007, 25(1), 144-153.
[http://dx.doi.org/10.1016/j.vaccine.2006.06.086] [PMID: 16973248]
[96]
Huang, J.L.; Yin, Y.X.; Pan, Z.M.; Zhang, G.; Zhu, A.P.; Liu, X.F.; Jiao, X.A. Intranasal immunization with chitosan/pCAGGS-flaA nanoparticles inhibits Campylobacter jejuni in a White Leghorn model. J. Biomed. Biotechnol., 2010, 2010, 1-8.
[http://dx.doi.org/10.1155/2010/589476]] [PMID: 20936115]
[97]
Boonnak, K.; Dhitavat, J.; Thantamnu, N.; Kosoltanapiwat, N.; Auayporn, M.; Jiang, L.; Puthavathana, P.; Pitisuttithum, P. Immune responses to intradermal and intramuscular inactivated influenza vaccine among older age group. Vaccine, 2017, 35(52), 7339-7346.
[http://dx.doi.org/10.1016/j.vaccine.2017.10.106] [PMID: 29157960]
[98]
Erkinharju, T.; Lundberg, M.R.; Isdal, E.; Hordvik, I.; Dalmo, R.A.; Seternes, T. Studies on the antibody response and side effects after intramuscular and intraperitoneal injection of Atlantic lumpfish (Cyclopterus lumpus L.) with different oil-based vaccines. J. Fish Dis., 2017, 40(12), 1805-1813.
[http://dx.doi.org/10.1111/jfd.12649] [PMID: 28548686]
[99]
Friede, M.; Aguado, M.T. Need for new vaccine formulations and potential of particulate antigen and DNA delivery systems. Adv. Drug Deliv. Rev., 2005, 57(3), 325-331.
[http://dx.doi.org/10.1016/j.addr.2004.10.001] [PMID: 15560944]
[100]
Scherließ, R.; Buske, S.; Young, K.; Weber, B.; Rades, T.; Hook, S. In vivo evaluation of chitosan as an adjuvant in subcutaneous vaccine formulations. Vaccine, 2013, 31(42), 4812-4819.
[http://dx.doi.org/10.1016/j.vaccine.2013.07.081] [PMID: 23933339]
[101]
Li, D.; Tomljenovic, L.; Li, Y.; Shaw, C.A. RETRACTED: subcutaneous injections of aluminum at vaccine adjuvant levels activate innate immune genes in mouse brain that are homologous with biomarkers of autism. J. Inorg. Biochem., 2017, 177, 39-54.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.035] [PMID: 28923356]
[102]
Gordon, S.; Saupe, A.; McBurney, W.; Rades, T.; Hook, S. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J. Pharm. Pharmacol., 2008, 60(12), 1591-1600.
[http://dx.doi.org/10.1211/jpp.60.12.0004] [PMID: 19000363]
[103]
Qin, T.; Yin, Y.; Huang, L.; Yu, Q.; Yang, Q. H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice. Clin. Vaccine Immunol., 2015, 22(4), 421-429.
[http://dx.doi.org/10.1128/CVI.00778-14] [PMID: 25673304]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy