Review Article

活性抗高血糖成分作为草药治疗对糖尿病预防保健管理的影响

卷 19, 期 1, 2019

页: [12 - 19] 页: 8

弟呕挨: 10.2174/1566524019666190219124301

价格: $65

摘要

糖尿病是一种代谢性高血糖症状,逐渐发展,影响受影响人群中的小而大的感觉纤维。它有各种并发症,如高血压,冠状动脉疾病,中风,失明,肾脏疾病以及周围神经病。磺脲类,噻唑烷二酮类,二甲双胍类,双胍类,阿卡波糖和胰岛素是糖尿病患者常用的药物,但这些都有一定的副作用。甚至二甲双胍,被称为糖尿病的神奇药物也被发现与副作用有关,因为在治疗期间它涉及眼睛,肾脏,外周神经,心脏和脉管系统的并发症。在本文中,我们假设最近发现了来自印度药用植物的活性成分,即多肽-p(蛋白质类似物充当人工胰岛素),charantin(甾体皂苷),苦瓜素(一种生物碱)和渗透调素(普遍存在的植物蛋白)和人类腺苷的动物类似物)具有II型糖尿病的抗高血糖潜力。因此,作为草药疗法的植物具有伴随健康生活方式的高血糖的预防性护理,其可以使未来的糖尿病发病率显着下降。

关键词: 糖尿病,糖尿病神经病变,抗高血糖,预防保健管理,二酰基甘油,草药疗法。

[1]
Cho NH, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2945. Diabetes Res Clin Pract 2018; 132: 271-81.
[2]
Loghami ES. Nutritional therapy for overweight children and adolescents with type 2 diabetes. Curr Diab Rep 2015; 5: 385-90.
[3]
Lakshmi SM, Rani SS, Reddy TUK. A review on diabetes melletus and the herbal plants used for its treatment. Asian J Pharm Clin Res 2012; 5: 15-21.
[4]
Cade WT. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys Ther 2008; 88: 1322-35.
[5]
Volpe CMO, Delfino PHV, Anjos PMF, Machado JAN. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9: 1-6.
[6]
Nayak A, De S. Anti Diabetic Potential Medicinal Plants. BioMedRx 2013; 1: 32-46.
[7]
Thornicroft G, Alem A, Santos RAD, et al. WPA guidance on steps, obstacles and mistakes to avoid in the implementation of community mental health care. World Psychiatry 2010; 9: 67-77.
[8]
Atlanta GA. National diabetes fact sheet: National estimates and general information on diabetes and prediabetes in the United States. Centers for Disease Control and Diabetes 2011; pp. 1-12.
[9]
Joseph B, Jini D. Antidiabetic Effects of Momordica charantia (bitter melon) and its medcal potency. Asian Pac J Trop Med 2013; 3: 93-102.
[10]
Seaquist ER. How does diabetes affect the brain? American Diabetes Association 2010; 59: 4-5.
[11]
Nauck M, Frid A, Hermansen K, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: The LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care 2009; 32: 84-90.
[12]
Sai Y, Tsuji A. Transporter-mediated drug delivery: Recent progress and experimental approaches. Drug Discov Today 2004; 9: 712-20.
[13]
Rizza RA. Pathogenesis of Fasting and Postprandial Hyperglycemia in Type 2 Diabetes: Implications for Therapy. Diabetes 2010; 59: 2697-707.
[14]
Singh S. Type 2 diabetes pharmacoepidemiology update 2014: Safety versus efficacy. Curr Diab Rep 2014; 14: 1-6.
[15]
Oberg M, Jaakkola MS, Woodward A, Peruga A, Prüss-Ustün A. Worldwide burden of disease from exposure to second-hand smoke: A retrospective analysis of data from 192 countries. Lancet 2011; 377: 139-46.
[16]
Seaquist ER. How does diabetes affect the brain? American Diabetes Association 2010; 59: 4-5.
[17]
Gaddam A, Galla C, Thummiseti S, Marikant RK, Palanisamy UD, Rao PV. Role of fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J Diabetes Metab Disord 2015; 14: 2-10.
[18]
Yadav M, Kha KK, Beg MZ. Medicinal plants used for the treatment of diabetes by the baiga tribe living in rewa district m.p. IJLS 2012; 2: 99-102.
[19]
Dwivedi C, Daspaul S. Antidiabetic herbal drugs and polyherbal formulation used for diabetes: A review. The Journal of Phytopharmocology 2013; 2: 44-51.
[20]
Shukla R, Sharma SB, Puri D, Prabhu KM, Murthy PS. Medicinal plants for treatment of diabetes mellitus. Indian J Clin Biochem 2000; 15: 169-77.
[21]
Bordoloi R, Dutt KN. A review on herbs used in the treatmment of diabetes mellitus. J Pharm Chem Biol Sci 2014; 2: 86-92.
[22]
Korczowski MM. Dietary control of diabetes: Reality or myth? South Med J 1985; 78: 979-86.
[23]
Ajabnoor MA, Tilmisany AK. Effect of trigonella foenumgraecum on blood glucose levels in normal and alloxan-diabetic mice. J Ethnopharmacol 1988; 22: 45-9.
[24]
Yoshikawa M, Murakami T, Shimada H, et al. Salacinol, potent antidiabetic principle with unique thiosugarsulfoniumsulfate structure from the ayurvedic traditional medicine salaciareticulata in sri lanka and india. Tetrahedron Lett 1997; 38: 8367-70.
[25]
Bailey CJ, Day C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989; 12: 553-64.
[26]
Luo J, Fort DM, Carlson TJ, et al. Cryptolepissanguinolenta: An ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycemic agent. Diabet Med 1998; 15: 367-74.
[27]
Ernst E. Plants with hypoglycemic activity in humans. Phytomedicine 1997; 4: 73-8.
[28]
Wanq CH, Lin PC, Lee YT, Chuanq CW, Tsay SL, Chu CY. Using a nurse invented t-bar device in a rehabilation program improved the range of motion for rotator cuff repair patients. J Clin Nurs 2012; 21(1-2): 121-8.
[29]
Kuhn TS. The Structure of Scientific Revolutions. The University of Chicago Press: Chicago 1970.
[30]
Assaad FF. Weeds and men: What genomes teach us about plant cell biology. Curr Opin Plant Biol 2001; 4: 478-87.
[31]
Ryan CA, Pearce G, Scheer J, Moura DS. Polypeptide hormones. Plant Cell 2002; 14: S251-64.
[32]
Jonak C, Hirt H. Glycogen synthase kinase 3/ shaggy-like kinases in plants: An emerging family with novel functions. Trends Plant Sci 2002; 7: 457-61.
[33]
Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica-. Drug Res 2010; 67(2): 113-8.
[34]
Laskowski M, Haessler HA, Miech RP, Peanasky RJ, Laskowski M. Effect of trypsin inhibitor on passage of insulin across the intestinal barrier. Science 1958; 127: 1115-6.
[35]
Oliveira AEA, Machado OLT, Gomes VM, et al. Jack bean seed coat contains a protein with complete sequence homology to bovine insulin. Protein Pept Lett 1999; 6: 15-21.
[36]
Oliveira AEA, Sassaki GL, Iacomini M, et al. Isolation and characterization of a galactorhamnan polysaccharide from the seed coat of Canavaliaensiformis that is toxic to the cowpea weevil (Callosobruchusmaculatus). Entomol Exp Appl 2001; 101: 225-31.
[37]
Oldham S, Hafen E. Insulin/IGF and target of rapamycin signalling: A tor de force in growth control. Trends Cell Biol 2003; 13: 79-85.
[38]
Zick Y. Insulin resistance: A phosphorylation-based uncoupling of insulin signalling. Trends Cell Biol 2001; 11: 437-41.
[39]
Smit AB, Van Kesteren RE, Li KW, et al. Towards understanding the role of insulin in the brain: Lessons from insulin-related signalling systems in the invertebrate brain. Prog Neurobiol 1998; 54: 35-54.
[40]
Jarald E, Joshi SB, Jain DC. Diabetes and herbal medicines. Iranian Journal of Pharmacology and Therapeutics 2008; 7: 97-106.
[41]
Pfeiffer AHF, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int 2014; 111: 69-82.
[42]
Tiwari P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J Diabetes Res 2015; 2015: 1-11.
[43]
Atansov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33: 1582-614.
[44]
Hemmings BA. Restuccia. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol 2012; 4: 1-3.
[45]
Khanna P, Jain SC, Panagariya A, Dixit VP. Hypoglycemic activity of Polypeptide-P from a plant source. J Nat Prod 1981; 44: 648-55.
[46]
Singh J, Cumming E, Manoharan G, Kalasz H, Adeghate E. Medicinal chemistry of the anti-diabetic effects of Momordica charantia: active constituents and modes of actions. Open Med Chem J 2011; 5: 70-7.
[47]
Grover JK, Vats V, Yadav S. Effect of feeding aqueous extract of Pterocarpusmarsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol Cell Biochem 2002; 241: 53-9.
[48]
Singh NK, Bracker CA, Hasegawa P, Handa AK. Characterization of osmotin: A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 1987; 85: 529-36.
[49]
Singh NK, Bracker CA, Hasegawa P, Handa AK. Characterization of osmotin: A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 1987; 85: 529-36.
[50]
Marles RJ. Farnsworth. Antidiabetic plants and their active constituents. Phytomedicine 1995; 2: 137-89.
[51]
Naseer MI, Ullah I, Narasimhan ML, et al. Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Cell Death Dis 2014; 5: e1150.
[52]
Narasimhan ML, Coca MA, Jin J, et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 2005; 17: 171-80.
[53]
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes and the metabolic syndrome. J Clin Invest 2006; 116: 1784-92.
[54]
Iwabu M, Iwabu MO, Yamauchi T. Kadowaki. Adiponectin/adiponectin receptor in disease and aging. Aging Mech Dis 2015; 13: 1-6.
[55]
Kumar SA, Kumari PH, Kumar GS, Mohanalatha C, Kishor PBK. Osmotin: A plant sentinel and a possible agonist of mammalian adiponecin. Mol Cell 2015; 6: 1-16.
[56]
Ali T, Yoon GH, Shah SA, Lee HY, Kim MO. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep 2015; 5: 1-17.
[57]
Trivedi VR, Chorawala MR, Shah GB. Osmotin: A new adiponectin agonist, in type 2 diabetes and obesity. Int J Pharma Sci 2012; 16: 70-4.
[58]
Raman A, Lau C. Anti-diabetic properties and phytochemistry of momordica charantia l. (cucurbitaceae). Phytomedicine 1996; 2: 349-62.
[59]
Tripathy V, Verma J. Different models used to induce diabetes: A comprehensive review. Int J Pharm Pharm Sci 2014; 6: 29-32.
[60]
Kumar S, Singh R, Vasudeva N, Sharma S. Acute and chronic animal models for the evaluation of anti-diabetic agents. Cardiovasc Diabetol 2012; 11: 1-13.
[61]
King AJF. The use of animal models in diabetes research. Br J Pharmacol 2012; 166: 877-94.
[62]
Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: An overview. Indian J Med Res 2007; 451-72.
[63]
Karthikeyan M, Balasubramanian T, Kumar P. In-vivo animal models and in-vitro techniques for screening antidiabetic activity. Journal of developing drugs 2016; 5: 1-6.
[64]
Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 2: 564-82.
[65]
Basnet P, Basnet NS. Curcumin: An anti-inflammatory molecules from a curry spice on the path to cancer treatment. Molecules 2011; 16: 4567-98.
[66]
Khanna P, Nag TN, Chandrajaia S, Mohan SV. Process for isolation of insulin from plant source. United States Patent 1976; 3: 945-88.
[67]
McCarty MF. Does bitter melon contain an activator of AMP-activated kinase. Med Hypotheses 2004; 63: 340-3.
[68]
Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50: 536-46.
[69]
Ku SK, Sung SH, Choung JJ, Choi JS, Shin YK, Kim JW. Anti-obesity and anti-diabetic effects of a standardized potato extract in ob/ob mice. Exp Ther Med 2016; 12: 354-64.
[70]
Etuk EU. Animals models for studying diabetes mellitus. Agriculture and Biology Journal of North America 2010; 1: 130-4.
[71]
Sharad S, Dwivedi J, Jha AK, Swapnil S. Experimental models of mice diabetes. Int J Res Ayurveda Pharm 2010; 1: 292-301.
[72]
Lenzen S. The mechanisms of alloxan and streptozotocin-induced diabetes. Diabetologia 2008; 51: 216-26.
[73]
Uebanso T, Arai H, Taketani Y, et al. Extracts of momordica charantia suppress postprandial hyperglycemia in rats. J Nutr Sci Vitaminol (Tokyo) 2007; 53: 482-8.
[74]
Kupsal K, Mudigonda S, Sai NVBK, Neelala K. Hanumanth. Metformin combinational therapy for type 2 diabetes mellitus. J of Metab Syndr 2016; 5: 1-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy