[1]
INCA - Instituto Nacional de Câncer INCA . 2018.
[2]
Walker RA, Jones JL, Chappell S, Walsh T, Shaw JA. Molecular pathology of breast cancer and its application to clinical management. Cancer Metastasis Ver 1997; 16(1-2): 5-27.
[3]
Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med 2013; 274(2): 113-26.
[4]
Hicks DG, Kulkarni S. Trastuzumab as adjuvant therapy for early breast cancer: the importance of accurate human epidermal growth factor receptor 2 testing. Arch Pathol Lab Med 2008; 132(6): 1008-15.
[5]
Park SY, Jang WJ, Yi EY, et al. Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia. J Pineal Res 2010; 48(2): 178-84.
[6]
Wang Z, Dabrosin C, Yin X, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35(Suppl.): S224-43.
[7]
Danza K, De Summa S, Pinto R, et al. MiR-578 and miR-573 as potential players in BRCA-related breast cancer angiogenesis. Oncotarget 2015; 6(1): 471-83.
[8]
Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353(17): 1793-801.
[9]
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449(7163): 682-8.
[10]
Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015; 5(10): 1122-43.
[11]
Wang S, Olson EN. AngiomiRs-key regulators of angiogenesis. Curr Opin Genet Dev 2009; 19(3): 205-11.
[12]
Di Bella G, Mascia F, Ricchi A, Colori B. Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report. Neuroendocrinol Lett 2013; 34(7): 660-8.
[13]
Sousa-Neto JA, Scaldaferri PM. Melatonina e câncer -revisão da literatura. Rev Bras Cancerol 2005; 51(1): 49-58.
[14]
Alvarez-García V, González A, Alonso-González C, Martínez-Campa C, Cos S. Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J Pineal Res 2013; 54(4): 373-80.
[15]
Jardim-Perassi BV, Arbab AS, Ferreira LC, et al. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer. PLoS One 2014; 9(1): e85311.
[16]
Cucina A, Proietti S, D’Anselmi F, et al. Evidence for a biphasic apoptotic pathway induced by melatonin in MCF-7 breast cancer cells. J Pineal Res 2009; 46(2): 172-80.
[17]
Girgert R, Hanf V, Emons G, Gründker C. Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J Pineal Res 2009; 47(1): 23-31.
[18]
Martínez-Campa CM, Alonso-González C, Mediavilla MD, Cos S, González A, Sanchez-Barcelo EJ. Melatonin down-regulates hTERT expression induced by either natural estrogens (17beta-estradiol) or metalloestrogens (cadmium) in MCF-7 human breast cancer cells. Cancer Lett 2008; 268(2): 272-7.
[19]
Lee SE, Kim SJ, Youn J-P, Hwang SY, Park C-S, Park YS. MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 2011; 51(3): 345-52.
[20]
Chen Y, Song Y-X, Wang Z-N. The microRNA-148/152 family: multi-faceted players. Mol Cancer 2013; 12: 43.
[21]
Friedrich M, Pracht K, Mashreghi M-F, Jäck H-M, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol 2017; 47(12): 2026-38.
[22]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR- 148 a / 152 and DNMT 1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS 1. J Mol Cell Biol 2013; 5: 3-13.
[23]
Hiroki E, Akahira J, Suzuki F, et al. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci 2010; 101(1): 241-9.
[24]
Tsuruta T, Kozaki K, Uesugi A, et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res 2011; 71(20): 6450-62.
[25]
Braconi C, Huang N, Patel T. MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010; 51(3): 881-90.
[26]
Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9(4): 493-501.
[27]
Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009; 55(4): 611-22.
[28]
Xu Q, Jiang Y, Yin Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol 2013; 5(1): 3-13.
[29]
Boudreau N, Myers C. Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res 2003; 5(3): 140-6.
[30]
Tominaga N, Katsuda T, Ochiya T. Micromanaging of tumor metastasis by extracellular vesicles. Semin Cell Dev Biol 2015; 40: 52-9.
[31]
Borin TF, Arbab AS, Gelaleti GB, et al. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J Pineal Res 2016; 60(1): 3-15.
[32]
Gelaleti GB, Borin TF, Maschio-Signorini LB, et al. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci 2017; 183: 98-109.
[33]
Lopes JR, Kavagutti M da S, de Medeiros FAF. de Campos Zuccari DAP. Evaluation of melatonin effect on human breast cancer stem cells using a threedimensional growth method of mammospheres. Anticancer Agents Med Chem 2017; 17(7): 961-5.
[34]
Jardim-Perassi BV, Lourenço MR, Doho GM, et al. Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anticancer Agents Med Chem 2016; 16(3): 347-8.
[35]
Maschio-Signorini LB, Gelaleti GB, Moschetta MG, et al. Melatonin regulates angiogenic and inflammatory proteins in MDA-MB-231 cell line and in co-culture with cancer-associated fibroblasts. Anticancer Agents Med Chem 2016; 16(11): 1474-84.
[36]
Cos S, Blask DE, Lemus-Wilson A, Hill AB. Effects of melatonin on the cell cycle kinetics and “estrogen-rescue” of MCF-7 human breast cancer cells in culture. J Pineal Res 1991; 10(1): 36-42.
[37]
Kilic E, Kilic Ü, Reiter RJ, Bassetti CL, Hermann DM. Prophylactic use of melatonin protects against focal cerebral ischemia in mice: role of endothelin converting enzyme-1. J Pineal Res 2004; 37(4): 247-51.
[38]
Lissoni P, Rovelli F, Malugani F, Bucovec R, Conti A, Maestroni GJ. Anti-angiogenic activity of melatonin in advanced cancer patients. Neuroendocrinol Lett 2001; 22(1): 45-7.
[39]
Alicia González-González, Alicia González, Carolina Alonso- González, Javier Menéndez-Menéndez Carlos Martínez-Campa SC. Complementary actions of melatonin on angiogenic factors, the angiopoietin/Tie2 axis and VEGF, in co-cultures of human endothelial and breast cancer cells. Oncol Rep 2017; 39(1): 433-41.
[40]
Miller SC, Pandi-Perumal SR, Pandi PSR, Esquifino AI, Cardinali DP, Maestroni GJM. The role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol 2006; 87(2): 81-7.
[41]
Das R, Gregory PA, Fernandes RC, et al. MicroRNA-194 promotes prostate cancer metastasis by inhibiting SOCS2. Cancer Res 2017; 77(4): 1021-34.
[42]
Smolle MA, Leithner A, Posch F, Szkandera J, Liegl-Atzwanger B, Pichler M. MicroRNAs in different histologies of soft tissue sarcoma: a comprehensive review. Int J Mol Sci 2017; 18(9): 1960.
[43]
Qu S, Liu Z, Yang X, et al. The emerging functions and roles of circular RNAs in cancer. Cancer Lett 2018; 414: 301-9.
[44]
Kennedy L, Francis H, Meng F, Glaser S, Alpini G. Diagnostic and therapeutic potentials of microRNAs in cholangiopathies. Liver Res 2017; 1(1): 34-41.
[45]
Duggal B, Gupta MK, Naga PSV. Potential role of microRNAs in cardiovascular disease: are they up to their hype? Curr Cardiol Rev 2016; 12(4): 304-10.
[46]
Wang TH, Hsueh C, Chen CC, et al. Melatonin inhibits the progression of hepatocellular carcinoma through microRNA let7i-3p mediated RAF1 reduction. Int J Mol Sci 2018; 19(9): 2687.
[47]
Kim SJ, Kang HS, Lee JH, et al. Melatonin ameliorates ER stress-mediated hepatic steatosis through miR-23a in the liver. Biochem Biophys Res Commun 2015; 458(3): 462-9.
[48]
Mori F, Ferraiuolo M, Santoro R, et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget 2016; 7(15): 20532-48.
[49]
Zhu C, Huang Q, Zhu H. Melatonin inhibits the proliferation of gastric cancer cells through regulating the miR-16-5p-Smad3 pathway. DNA Cell Biol 2018; 37(3): 244-52.
[50]
Gu J, Lu Z, Ji C, et al. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed Pharmacother 2017; 93: 969-75.
[51]
Marques JHM, Mota AL, Oliveira JG, et al. Melatonin restrains angiogenic factors in triple-negative breast cancer by targeting miR-152-3p: In vivo and in vitro studies. Life Sci 2018; 208: 131-8.
[52]
Mu J, Zhu D, Shen Z, et al. The repressive effect of miR-148a on Wnt/β-catenin signaling involved in Glabridin-induced anti-angiogenesis in human breast cancer cells. BMC Cancer 2017; 17(1): 307.
[53]
Li F, Liu W, Song Z, Chang D. miR-148a overexpression inhibits cell proliferation and induces cell apoptosis by suppressing the Wnt/β-catenin signal pathway in breast cancer MCF-7 cells. Int J Clin Exp Pathol 2016; 9(3): 3349-56.
[54]
Huang M-X. Down-expression of circulating micro ribonucleic acid (miRNA)-148/152 family in plasma samples of non-small cell lung cancer patients. J Cancer Res Ther 2016; 12(2): 671.
[55]
Zhao M, Su Z, Zhang S, Zhuang L, Xie Y, Li X. Suppressive role of microRNA-148a in cell proliferation and invasion in ovarian cancer through targeting transforming growth factor-b-induced 2. Oncol Res 2016; 24: 353-60.
[56]
Martínez-Campa C, González A, Mediavilla MD, et al. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br J Cancer 2009; 101(9): 1613-9.
[57]
Lee SE, Kim SJ, Youn J-P, Hwang SY, Park C-S, Park YS. MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J Pineal Res 2011; 51(3): 345-52.
[58]
Ge H, Shrestha A, Liu C, Wu P, Cheng B. MicroRNA 148a-3p promotes thrombospondin-4 expression and enhances angiogenesis during tendinopathy development by inhibiting Krüppel-like factor 6. Biochem Biophys Res Commun 2018; 502(2): 276-82.
[59]
Nooshinfar E, Safaroghli-Azar A, Bashash D, Akbari ME. Melatonin, an inhibitory agent in breast cancer. Breast Cancer 2017; 24(1): 42-51.
[60]
Mao L, Yuan L, Slakey LM, Jones FE, Burow ME, Hill SM. Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res 2010; 12(6): R107.
[61]
Jiang Q, He M, Ma M-T, et al. MicroRNA-148a inhibits breast cancer migration and invasion by directly targeting WNT-1. Oncol Rep 2016; 35(3): 1425-32.
[62]
Xue J, Chen Z, Gu X, Zhang Y, Zhang W. MicroRNA-148a inhibits migration of breast cancer cells by targeting MMP-13. Tumour Biol 2016; 37(2): 1581-90.