Review Article

Structure and Function of Proprotein Convertase Subtilisin/kexin Type 9 (PCSK9) in Hyperlipidemia and Atherosclerosis

Author(s): Xinjie Lu*

Volume 20, Issue 10, 2019

Page: [1029 - 1040] Pages: 12

DOI: 10.2174/1389450120666190214141626

Price: $65

Abstract

Background: One of the important factors in Low-Density Lipoprotein (LDL) metabolism is the LDL receptor (LDLR) by its capacity to bind and subsequently clear cholesterol derived from LDL (LDL-C) in the circulation. Proprotein Convertase Subtilisin-like Kexin type 9 (PCSK9) is a newly discovered serine protease that destroys LDLR in the liver and thereby controls the levels of LDL in plasma. Inhibition of PCSK9-mediated degradation of LDLR has, therefore, become a novel target for lipid-lowering therapy.

Methods: We review the current understanding of the structure and function of PCSK9 as well as its implications for the treatment of hyperlipidemia and atherosclerosis.

Results: New treatments such as monoclonal antibodies against PCSK9 may be useful agents to lower plasma levels of LDL and hence prevent atherosclerosis.

Conclusion: PCSK9's mechanism of action is not yet fully clarified. However, treatments that target PCSK9 have shown striking early efficacy and promise to improve the lives of countless patients with hyperlipidemia and atherosclerosis.

Keywords: Proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein cholesterol (LDL-C), LDL receptor (LDLR), atherosclerosis, monoclonal antibody, vaccine.

Graphical Abstract

[1]
Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154-6.
[2]
Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA 2003; 100: 928-33.
[3]
Piper DE, Jackson S, Liu Q, et al. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure 2007; 15: 545-52.
[4]
Seidah NG, Mattei MG, Gaspar L, et al. Chromosomal assignments of the genes for neuroendocrine convertase PC1 (NEC1) to human 5q15-21, neuroendocrine convertase PC2 (NEC2) to human 20p11.1-11.2, and furin (mouse 7[D1-E2] region). Genomics 1991; 11: 103-7.
[5]
Wei X, Ma X, Lu R, et al. Genetic variants in PCSK1 gene are associated with the risk of coronary artery disease in type 2 diabetes in a Chinese Han population: a case control study. PLoS One 2014; 9e87168
[6]
Villalobos-Comparán M, Villamil-Ramírez H, Villarreal-Molina T, et al. PCSK1 rs6232 is associated with childhood and adult class III obesity in the Mexican population. PLoS One 2012; 7e39037
[7]
Leak TS, Keene KL, Langefeld CD, et al. Association of the proprotein convertase subtilisin/kexin-type 2 (PCSK2) gene with type 2 diabetes in an African American population. Mol Genet Metab 2007; 92: 145-50.
[8]
Kiefer MC, Tucker JE, Joh R, et al. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol 1991; 10: 757-69.
[9]
Shin K, Pandey A, Liu XQ, Anini Y, Rainey JK. Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio 2013; 3: 328-33.
[10]
Mbikay M, Seidah NG, Chrétien M, Simpson EM. Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human. Genomics 1995; 26: 123-9.
[11]
Li JP, Wang XB, Chen CZ, et al. The association between paired basic amino acid cleaving enzyme 4 gene haplotype and diastolic blood pressure. Chin Med J (Engl) 2004; 117: 382-8.
[12]
Bruzzaniti A, Goodge K, Jay P, et al. PC8 [corrected], a new member of the convertase family. Biochem J 1996; 14: 727-31.
[13]
Guillemot J, Essalmani R, Hamelin J, Seidah NG. Is there a link between proprotein convertase PC7 activity and human lipid homeostasis? FEBS Open Bio 2014; 4: 741-5.
[14]
Nakajima T, Iwaki K, Kodama T, Inazawa J, Emi M. Genomic structure and chromosomal mapping of the human site-1 protease (S1P) gene. J Hum Genet 2000; 45: 212-7.
[15]
Popkin DL, Teijaro JR, Sullivan BM, et al. Hypomorphic mutation in the site-1 protease Mbtps1 endows resistance to persistent viral infection in a cell-specific manner. Cell Host Microbe 2011; 9: 212-22.
[16]
Lipari MT, Li W, Moran P, et al. Furin-cleaved proprotein convertase subtilisin/kexin type 9 (PCSK9) is active and modulates low density lipoprotein receptor and serum cholesterol levels. J Biol Chem 2012; 287: 43482-91.
[17]
Cunningham D, Danley DE, Geoghegan KF, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007; 14: 413-9.
[18]
Zhang Y, Ultsch M, Skelton NJ, et al. Discovery of a cryptic peptide-binding site on PCSK9 and design of antagonists. Nat Struct Mol Biol 2017; 24: 848-56.
[19]
Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 2012; 11: 367-83.
[20]
Saavedra YG, Day R, Seidah NG. The M2 module of the Cys-His-rich domain (CHRD) of PCSK9 protein is needed for the extracellular low-density lipoprotein receptor (LDLR) degradation pathway. J Biol Chem 2012; 287: 43492-501.
[21]
Lo Surdo P, Bottomley MJ, Calzetta A, et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep 2011; 12: 1300-5.
[22]
Garvie CW, Fraley CV, Elowe NH, et al. Point mutations at the catalytic site of PCSK9 inhibit folding, autoprocessing, and interaction with the LDL receptor. Protein Sci 2016; 25: 2018-27.
[23]
Henrich S, Lindberg I, Bode W, Than ME. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 2005; 345: 211-27.
[24]
Zhang DW, Lagace TA, Garuti R, et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007; 282: 18602-12.
[25]
Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J Biol Chem 2008; 283: 2363-72.
[26]
Shan L, Pang L, Zhang R, et al. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem Biophys Res Commun 2008; 375: 69-73.
[27]
Canuel M, Sun X, Asselin MC, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 2013; 8e64145
[28]
Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem 2006; 281: 30561-72.
[29]
Zhao Z, Tuakli-Wosornu Y, Lagace TA, et al. Molecular characteri- zation of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006; 79: 514-23.
[30]
Cameron J, Holla OL, Laerdahl JK, et al. Characterization of novel mutations in the catalytic domain of the PCSK9 gene. J Intern Med 2008; 263: 420-31.
[31]
Delano WL. The PyMOL Molecular Graphics System 2010, Version 1.3. Schrödinger, LLC
[32]
Schiele F, Park J, Redemann N, Luippold G, Nar H. An antibody against the C-terminal domain of PCSK9 lowers LDL cholesterol levels in vivo. J Mol Biol 2014; 426: 843-52.
[33]
Saavedra YG, Zhang J, Seidah NG. PCSK9 pro-segment chimera as novel inhibitors of LDLR degradation. PLoS One 2013; 8e72113
[34]
Richardson JS. The anatomy and taxonomy of protein structure. Adv Protein Chem 1981; 34: 167-339.
[35]
Benjannet S, Hamelin J, Chretien M, Seidah NG. Loss- and Gain-of-function PCSK9 Variants: Clevage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J Biol Chem 2012; 287: 33745-55.
[36]
Kurniawan ND, Aliabadizadeh K, Brereton IM, Kroon PA, Smith R. NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor. J Mol Biol 2001; 311: 341-56.
[37]
Saha S, Boyd J, Werner JM, et al. Downing AK. Solution structure of the LDL receptor EGF-AB pair: a paradigm for the assembly of tandem calcium binding EGF domains. Structure 2001; 9: 451-6.
[38]
Malby S, Pickering R, Saha S, et al. The first epidermal growth factor-like domain of the low-density lipoprotein receptor contains a noncanonical calcium binding site. Bioc Biochemistry 2001; 40: 2555-63.
[39]
Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci USA 2008; 105: 1820-5.
[40]
Poirier S, Mayer G, Poupon V, et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem 2009; 284: 8856-64.
[41]
Fisher TS, Lo Surdo P, Pandit S, et al. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J Biol Chem 2007; 282: 20502-12.
[42]
Basu SK, Goldstein JL, Brown MS. Characterization of the low density lipoprotein receptor in membranes prepared from human fibroblasts. J Biol Chem 1978; 253: 3852-6.
[43]
Huijgen R, Boekholdt SM, Arsenault BJ, et al. Plasma PCSK9 levels and clinical outcomes in the TNT (treating to new targets) trial: a nested case-control study. J Am Coll Cardiol 2012; 59: 1778-84.
[44]
Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 1977; 46: 897-930.
[45]
McNutt MC, Kwon HJ, Chen C, et al. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem 2009; 284: 10561-70.
[46]
Jeon H, Shipley GG. Vesicle-reconstituted low density lipoprotein receptor. Visualization by cryoelectron microscopy. J Biol Chem 2000; 275: 30458-64.
[47]
Rudenko G, Henry L, Henderson K, et al. Structure of the LDL receptor extracellular domain at endosomal pH. Science 2002; 298: 2353-8.
[48]
Mousavi SA, Berge KE, Berg T, Leren TP. Affinity and kinetics of proprotein convertase subtilisin/kexin type 9 binding to low-density lipoprotein receptors on HepG2 cells. FEBS J 2011; 278: 2938-50.
[49]
Yamamoto T, Lu C, Ryan RO. A two-step binding model of PCSK9 interaction with the low density lipoprotein receptor. J Biol Chem 2011; 286: 5464-70.
[50]
Zhang DW, Garuti R, Tang WJ, Cohen JC, Hobbs HH. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci USA 2008; 105: 13045-50.
[51]
Weber C, Noels H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat Med 2011; 17: 1410-22.
[52]
Sato R, Inoue J, Kawabe Y, Kodama T, Takano T, Maeda M. Sterol-dependent transcriptional regulation of sterol regulatory element-binding protein-2. J Biol Chem 996(271): 26461-4.
[53]
Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts: Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem 1974; 249: 5l53-62.
[54]
Kitamura K, Okada Y, Okada K, Kawaguchi Y, Nagaoka S. Epigallocatechin gallate induces an up-regulation of LDL receptor accompanied by a reduction of PCSK9 via the annexin A2-independent pathway in HepG2 cells. Mol Nutr Food Res 2017; 61
[http://dx.doi.org/10.1002/mnfr.201600836]
[55]
Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 2004; 279: 48865-75.
[56]
Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc Natl Acad Sci USA 2005; 102: 2069-74.
[57]
Sun XM, Eden ER, Tosi I, et al. Evidence for effect of mutant PCSK9 on apolipoprotein B secretion as the cause of unusually severe dominant hypercholesterolaemia. Hum Mol Genet 2005; 14: 1161-9.
[58]
Feingold KR, Moser AH, Shigenaga JK, Patzek SM, Grunfeld C. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008; 374: 341-4.
[59]
Liu A, Frostegård J. PCSK9 plays a novel immunological role in oxidized LDL-induced dendritic cell maturation and activation of T cells from human blood and atherosclerotic plaque. J Intern Med 2018.
[http://dx.doi.org/10.1111/joim.12758]
[60]
Karagiannis AD, Liu M, Toth PP, et al. Pleiotropic anti-atherosc- lerotic effects of pcsk9 inhibitors from molecular biology to clinical translation. Curr Atheroscler Rep 2018; 20: 20.
[61]
Cameron J, Holla OL, Ranheim T, et al. Effect of mutations in the PCSK9 gene on the cell surface LDL receptors. Hum Mol Genet 2006; 15: 1551-8.
[62]
Pandit S, Wisniewski D, Santoro JC, et al. Functional analysis of sites within PCSK9 responsible for hypercholesterolemia. J Lipid Res 2008; 49: 1333-43.
[63]
Qian YW, Schmidt RJ, Zhang Y, et al. Secreted PCSK9 downregulates low density lipoprotein receptor through receptor-mediated endocytosis. J Lipid Res 2007; 48: 1488-98.
[64]
Lagace TA, Curtis DE, Garuti R, et al. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice. J Clin Invest 2006; 116: 2995-3005.
[65]
Grefhorst A, McNutt MC, Lagace TA, Horton JD. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J Lipid Res 2008; 49: 1303-11.
[66]
Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: Paralyzing the cell’s master switches. Biochem Pharmacol 2017; 140: 8-15.
[67]
Li J, Tumanut C, Gavigan JA, et al. Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem J 2007; 406: 203-7.
[68]
Schmidt RJ, Beyer TP, Bensch WR, et al. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochem Biophys Res Commun 2008; 370: 634-40.
[69]
Poirier S, Hamouda HA, Villeneuve L, Demers A, Mayer G. Trafficking dynamics of pcsk9 induced ldlr degradation: focus on human pcsk9 mutationsand c-terminal domain. PLoS One 2016; 11e0157230
[70]
Zaid A, Roubtsova A, Essalmani R, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): Hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 2008; 48: 646-54.
[71]
Schulz R, Schlüter KD. PCSK9 targets important for lipid metabolism. Clin Res Cardiol Suppl 2017; 12(Suppl. 1): 2-11.
[72]
Awan Z, Dubuc G, Faraj M, et al. The effect of insulin on circulating PCSK9 in postmenopausal obese women. Clin Biochem 2014; 47: 1033-9.
[73]
Stein EA, Raal F. Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9. Annu Rev Med 2014; 65: 417-31.
[74]
Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 2007; 193: 445-8.
[75]
Folsom AR, Peacock JM, Boerwinkle E. Sequence variation in proprotein convertase subtilisin/kexin type 9 serine protease gene, low LDL cholesterol, and cancer incidence. Cancer Epidemiol Biomarkers Prev 2007; 16: 2455-8.
[76]
Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 2004; 65: 419-22.
[77]
Timms KM, Wagner S, Samuels ME, et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum Genet 2004; 114: 349-53.
[78]
Naoumova RP, Tosi I, Patel D, et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol 2005; 25: 2654-60.
[79]
Bourbon M, Alves AC, Medeiros AM, Silva S, Soutar AK. Investigators of Portuguese FH Study. Familial hypercholesterolaemia in Portugal. Atherosclerosis 2008; 196: 633-42.
[80]
Abifadel M, Guerin M, Benjannet S, et al. Identification and characterization of new gain-of-function mutations in the PCSK9 gene responsible for autosomal dominant hypercholesterolemia. Atherosclerosis 2012; 223: 394-400.
[81]
Cohen J, Pertsemlidis A, Kotowski IK, et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005; 37: 161-5.
[82]
Abifadel M, Bernier L, Dubuc G, et al. A PCSK9 variant and familial combined hyperlipidaemia. J Med Genet 2008; 45: 780-6.
[83]
Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 2006; 26: 1094-100.
[84]
Kotowski I, Pertsemlidis A, Luke RS, et al. A spectrum PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 2006; 78: 410-22.
[85]
Shioji K, Mannami T, Kokubo Y, et al. Genetic variants in PCSK9 affect the cholesterol level in Japanese. J Hum Genet 2004; 49: 109-14.
[86]
Miyake Y, Kimura R, Kokubo Y, et al. Genetic variants in PCSK9 in the Japanese population: rare genetic variants in PCSK9 might collectively contribute to plasma LDL cholesterol levels in the general population. Atherosclerosis 2008; 196: 29-36.
[87]
Wierzbicki AS, Grant P. Drugs for hypercholesterolaemia - from statins to pro-protein convertase subtilisin kexin 9 (PCSK9) inhibition. Clin Med (Lond) 2016; 16: 353-7.
[88]
Nassoury N, Blasiole DA, Tebon Oler A, et al. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic 2007; 8: 718-32.
[89]
Soltanmohammadi E, Piran S, Mohammadi A, et al. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Med Biochem 2016; 35: 410-5.
[90]
Mohammadi A, Shabani M, Naseri F, et al. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression. Adv Clin Exp Med 2017; 26(4): 655-9.
[91]
Cui CJ, Li S, Zhu CG, et al. Enhanced pro-protein convertase subtilisin/kexin type 9 expression by C-reactive protein through p38MAPK-HNF1α pathway in HepG2 cells. J Cell Mol Med 2016; 20: 2374-83.
[92]
Costet P. cariou B, Lambert G, et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem 2006; 281: 6211-8.
[93]
Miao J, Manthena PV, Haas ME, et al. Role of Insulin in the Regulation of Proprotein Convertase Subtilisin/Kexin Type 9. Arterioscler Thromb Vasc Biol 2015; 35: 1589-96.
[94]
Horton JD, Goldstein JL, Brown MS. SREBPs: Transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 2002; 67: 491-8.
[95]
Mousavi SA, Berge KE, Leren TP. The unique role of proprotein convertase subtilisin/kexin 9 in cholesterol homeostasis. J Intern Med 2009; 266: 507-19.
[96]
Garcia CK, Wilund K, Arca M, et al. Autosomal recessive hypercho- lesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001; 292: 1394-8.
[97]
Michaely P, Li WP, Anderson RG, Cohen JC, Hobbs HH. The modular adaptor protein ARH is required for low density lipoprotein (LDL) binding and internalization but not for LDL receptor clustering in coated pits. J Biol Chem 2004; 279: 34023-31.
[98]
Ginsberg HN. New perspectives on atherogenesis: role of abnormal triglyceride-rich lipoprotein metabolism. Circulation 2002; 106: 2137-42.
[99]
Smith D, Watts GF, Dane-Stewart C, Mamo JC. Postprandial chylo- micron response may be predicted by a single measurement of plasma apolipoprotein B-48 in the fasting state. Eur J Clin Invest 1999; 29: 204-9.
[100]
Twickler TB, Dallinga-Thie GM, Cohn JS, Chapman MJ. Elevated remnant-like particle cholesterol concentration: a characteristic feature of the atherogenic lipoprotein phenotype. Circulation 2004; 109: 1918-25.
[101]
Chan DC, Watts GF, Barrett PH, Mamo JC, Redgrave TG. Markers of triglyceride-rich lipoprotein remnant metabolism in visceral obesity. Clin Chem 2002; 48: 278-83.
[102]
Sacks FM, Alaupovic P, Moye LA, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the cholesterol and recurrent events (CARE) trial. Circulation 2000; 102: 1886-92.
[103]
Proctor SD, Mamo JC. Intimal retention of cholesterol derived from apolipoprotein B100– and apolipoprotein B48–containing lipoproteins in carotid arteries of Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol 2003; 23: 1595-600.
[104]
Proctor SD, Vine DF, Mamo JC. Arterial retention of apolipoprotein B(48)- and B(100)-containing lipoproteins in atherogenesis. Curr Opin Lipidol 2002; 13: 461-70.
[105]
Pal S, Semorine K, Watts GF, Mamo J. Identification of lipoproteins of intestinal origin in human atherosclerotic plaque. Clin Chem Lab Med 2003; 41: 792-5.
[106]
Lambert G, Jarnoux AL, Pineau T, et al. Fasting induces hyperlipidemia in mice overexpressing PCSK9: lack of modulation of VLDL hepatic output by the LDLr. Endocrinology 2006; 147: 4985-95.
[107]
Ouguerram K, Chetiveaux M, Zair Y, et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol 2004; 24: 1448-53.
[108]
Horton JD, Shimano H, Hamilton RL, Brown MS, Goldstein JL. Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J Clin Invest 1999; 103: 1067-76.
[109]
Twisk J, Gillian-Daniel DL, Tebon A, et al. The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 2000; 105: 521-32.
[110]
Duff CJ, Scott MJ, Kirby IT, et al. Antibody-mediated disruption of the interaction between PCSK9 and the lowdensity lipoprotein receptor. Biochem J 2009; 419: 577-84.
[111]
Chan JC, Piper DE, Cao Q, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA 2009; 106: 9820-5.
[112]
Kawashiri MA, Nohara A, Higashikata T, et al. Impact of evolocumab treatment on low-density lipoprotein cholesterol levels in heterozygous familial hypercholesterolemic patients withdrawing from regular apheresis. Atherosclerosis 2017; 265: 225-30.
[113]
Nicholls SJ, Puri R. Implications of GLAGOV study. Curr Opin Lipidol 2017; 28: 465-9.
[114]
Robinson JG. Models for describing relations among the various statin drugs, low-density lipoprotein cholesterol lowering, pleiotropic effects, and cardiovascular risk. Am J Cardiol 2008; 101: 1009-15.
[115]
Williams KJ, Feig JE, Fisher EA. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nat Clin Pract Cardiovasc Med 2008; 5: 91-102.
[116]
Baruch A, Mosesova S, Davis JD, et al. Effects of RG7652, a Monoclonal Antibody Against PCSK9, on LDL-C, LDL-C Subfractions, and Inflammatory Biomarkers in Patients at High Risk of or with Established Coronary Heart Disease (from the Phase 2 EQUATOR Study). Am J Cardiol 2017; 119: 1576-83.
[117]
Baruch A, Luca D, Kahn RS, et al. A phase 1 study to evaluate the safety and LDL cholesterol-lowering effects of RG7652, a fully human monoclonal antibody against proprotein convertase subtilisin/kexin type 9. Clin Cardiol 2017; 40: 503-11.
[118]
Galabova G, Brunner S, Winsauer G, et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One 2014; 9e114469
[119]
Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res 2012; 53: 2515-24.
[120]
Turpeinen H, Raitoharju E, Oksanen A, et al. Proprotein convertases in human atherosclerotic plaques: the overexpression of FURIN and its substrate cytokines BAFF and APRIL. Atherosclerosis 2011; 219: 799-806.
[121]
Govea-Alonso DO, Beltrán-López J, Salazar-González JA, Vargas-Morales J, Rosales-Mendoza S. Progress and future opportunities in the development of vaccines against atherosclerosis. Expert Rev Vaccines 2017; 16: 337-50.
[122]
Banerjee Y, Santos RD, Al-Rasadi K, Rizzo M. Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns? Atherosclerosis 2016; 248: 62-75.
[123]
Abifadel M, Elbitar S, El Khoury P, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep 2014; 16: 439.
[124]
Ridker PM, Revkin J, Amarenco P, et al. SPIRE cardiovascular outcome investigators. Cardiovascular efficacy and Safety of bococizumab in high-risk patients. N Engl J Med 2017; 376: 1527-39.
[125]
Sabatine MS, Giugliano RP, Keech AC, et al. FOURIER steering committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017; 376: 1713-22.
[126]
Shah PK, Chyu KY, Dimayuga PC, et al. Vaccine for atherosclerosis. J Am Coll Cardiol 2014; 64: 2779-91.
[127]
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13: 647-61.
[128]
Mullard A. Nine paths to PCSK9 inhibition. Nat Rev Drug Discov 2017; 16: 299-301.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy