[1]
Thibodeaux, C.J.; Chang, W.C.; Liu, H.W. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem. Rev., 2012, 112(3), 1681-1709.
[2]
Brackmann, F.; De Meijere, A. Natural occurrence, syntheses, and applications of cyclopropyl-group-containing α-amino acids. 1. 1-aminocyclo-propanecarboxylic acid and other 2,3-methanoamino acids. Chem. Rev., 2007, 107(11), 4493-4537.
[3]
Gnad, F.; Reiser, O. Synthesis and applications of β-aminocarboxylic acids containing a cyclopropane ring. Chem. Rev., 2003, 103(4), 1603-1624.
[4]
Kulinkovich, O.G. Cyclopropanes in organic synthesis; John Wiley & Sons, 2015.
[5]
Peter, K.; Andras, K.; Laszlo, H.; Gyorgy, K.; Csaba, S. Natural compounds containing a condensed cyclopropane ring. Natural and synthetic aspects. Curr. Org. Chem., 2014, 18(15), 2037-2042.
[6]
Celerier, J.P.; Haddad, M.; Jacoby, D.; Lhommet, G. Heterocyclization of primary amines with highly activated cyclopropanes: A new route to isoretronecanol. Tetrahedron Lett., 1987, 28(52), 6597-6600.
[7]
Denis, J.N.; Krief, A. Diphosphorus tetraiodide. A valuable reagent in cyclopropane chemistry. J. Chem. Soc. Chem. Commun., 1983, (5), 229-230.
[8]
Dieter, R.K.; Pounds, S. Ring opening reactions of electrophilic cyclopropanes. J. Org. Chem., 1982, 47(16), 3174-3177.
[9]
Miller, R.D.; McKean, D.R. Ring opening of cyclopropyl ketones by trimethylsilyl iodide. J. Org. Chem., 1981, 46(11), 2412-2414.
[10]
Truce, W.E.; Lindy, L.B. Cyclopropyl sulfones1. J. Org. Chem., 1961, 26(5), 1463-1467.
[11]
Lifchits, O.; Alberico, D.; Zakharian, I.; Charette, A.B. Nucleophilic addition of phenol derivatives to methyl 1-nitrocyclopropanecarboxylates. J. Org. Chem., 2008, 73(17), 6838-6840.
[12]
Zhang, Z.G.; Zhang, Q.; Sun, S.G.; Xiong, T.; Liu, Q. Domino ring-opening/recyclization reactions of doubly activated cyclopropanes as a strategy for the synthesis of furoquinoline derivatives. Angew. Chem. Int. Ed., 2007, 46(10), 1726-1729.
[13]
Budynina, E.M.; Ivanova, O.A.; Averina, E.B.; Kuznetsova, T.S.; Zefirov, N.S. Ring opening of 1,1-dinitrocyclopropane by addition of C, N, O and S nucleophiles. Tetrahedron Lett., 2006, 47(5), 647-649.
[14]
Krief, A. Novel syntheses of γ-selenobutyrates from germinally diactivated cyclopropane derivatives. Tetrahedron Lett., 1987, 28, 4225-4228.
[15]
Danishefsky, S.; McKee, R.; Singh, R.K. Kinetically controlled total syntheses of dl-trachelanthamidine and dl-isoretronecanol. J. Am. Chem. Soc., 1977, 99(14), 4783-4788.
[16]
Danishefsky, S.; McKee, R.; Singh, R.K. Stereospecific total synthesis of dl-hastanecine and dl-dihydroxyheliotridane. J. Am. Chem. Soc., 1977, 99(23), 7711-7713.
[17]
Reißig, H-U. Donor-acceptor-substituted cyclopropanes: Versatile building
blocks in organic synthesis, Small ring compounds in organic synthesis III;
Berlin, Heidelberg, 1988; Baird, M.S.; Reißig, H.U.; Salaün, J.R.Y., Eds.
Springer Berlin Heidelberg: Berlin, Heidelberg, 1988, pp 73-135.
[18]
Yu, M.; Pagenkopf, B.L. Recent advances in donor–acceptor (DA) cyclopropanes. Tetrahedron, 2005, 61(2), 321-347.
[19]
Pagenkopf, B.L.; Vemula, N. Cycloadditions of donor–acceptor cyclopropanes and nitriles. Eur. J. Org. Chem., 2017, (18), 2561-2567.
[20]
Gharpure, S.J.; Nanda, L.N. Application of oxygen/nitrogen substituted donor-acceptor cyclopropanes in the total synthesis of natural products. Tetrahedron Lett., 2017, 58(8), 711-720.
[21]
Davies, H.M.; Antoulinakis, E.G. Intermolecular metal-catalyzed carbenoid cyclopropanations. Org. React., 2004, 57, 1-326.
[22]
Ganesh, V.; Chandrasekaran, S. Recent advances in the synthesis and reactivity of vinylcyclopropanes. Synthesis, 2016, 48(24), 4347-4380.
[23]
Charette, A.B.; Wurz, R.P.; Ollevier, T. Synthesis of α-nitro-α-diazocarbonyl derivatives and their applications in the cyclopropanation of alkenes and in O–H insertion reactions. Helv. Chim. Acta, 2002, 85(12), 4468-4484.
[24]
Charette, A.B.; Wurz, R. Progress towards asymmetric intermolecular and intramolecular cyclopropanations using α-nitro-α-diazo carbonyl substrates. J. Mol. Catal. Chem., 2003, 196(1), 83-91.
[25]
Jackson, S.K.; Karadeolian, A.; Driega, A.B.; Kerr, M.A. Stereodivergent methodology for the synthesis of complex pyrrolidines. J. Am. Chem. Soc., 2008, 130(12), 4196-4201.
[26]
Sapeta, K.; Kerr, M.A. The cycloaddition of nitrones with homochiral cyclopropanes. J. Org. Chem., 2007, 72(22), 8597-8599.
[28]
Young, I.S.; Williams, J.L.; Kerr, M.A. Diastereoselective synthesis of pyrrolidines using a nitrone/cyclopropane cycloaddition: Synthesis of the tetracyclic core of nakadomarin. A. Org. Lett., 2005, 7(5), 953-955.
[29]
Ganton, M.D.; Kerr, M.A. Magnesium iodide promoted reactions of nitrones with cyclopropanes: A synthesis of tetrahydro-1,2-oxazines. J. Org. Chem., 2004, 69(24), 8554-8557.
[30]
Perkin, W.H. LXXVIII.—On the synthetical formation of closed carbon-chains. J. Chem. Soc. Trans., 1885, 47(0), 801-855.
[31]
Ghanem, A.; Lacrampe, F.; Schurig, V. Rhodium(ii)-catalyzed inter- and intramolecular cyclopropanations with diazo compounds and phenyliodonium ylides: synthesis and chiral analysis. Helv. Chim. Acta, 2005, 88(2), 216-239.
[32]
Yongming, D.; Huang, Q.; Harathi, D.S.; Michael, P.D. Chiral dirhodium(ii) catalysts for selective metal carbene reactions. Curr. Org. Chem., 2016, 20(1), 61-81.
[33]
Nishikata, T.; Noda, Y.; Fujimoto, R.; Ishikawa, S. A facile formal [2+1] cycloaddition of styrenes with alpha-bromocarbonyls catalyzed by copper: efficient synthesis of donor–acceptor cyclopropanes. Chem. Commun., 2015, 51(64), 12843-12846.
[34]
Xin, X.Q.; Zhang, Q.; Liang, Y.J.; Zhang, R.; Dong, D.W. Tandem halogenation/Michael-initiated ring-closing reaction of alpha, beta-unsaturated nitriles and activated methylene compounds: One-pot diastereoselective synthesis of functionalized cyclopropanes. Org. Biomol. Chem., 2014, 12(15), 2427-2435.
[35]
Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Asymmetric cyclopropanation reactions. Synthesis, 2014, 46(08), 979-1029.
[36]
Lindsay, V.N.G.; Fiset, D.; Gritsch, P.J.; Azzi, S.; Charette, A.B. Stereoselective rh2(s-ibaz)4-catalyzed cyclopropanation of alkenes, alkynes, and allenes: Asymmetric synthesis of diacceptor cyclopropylphosphonates and alkylidenecyclopropanes. J. Am. Chem. Soc., 2013, 135(4), 1463-1470.
[37]
Stokes, S.; Mustain, R.; Pickle, L.; Mead, K.T. Rhodium-catalyzed cyclopropanations of 2-aryl-2H-chromenes with dialkyl malonate esters. A comparison of α-diazo derivatives and phenyliodonium ylides. Tetrahedron Lett., 2012, 53(30), 3890-3893.
[38]
Wang, Q.F.; Song, X.K.; Chen, J.; Yan, C.G. Pyridinium ylide-assisted one-pot two-step tandem synthesis of polysubstituted cyclopropanes. J. Comb. Chem., 2009, 11(6), 1007-1010.
[39]
Chen, J.; Xin, N.; Ma, S.M. Synthesis of polyfunctionalized vinyl cyclopropanes via the nal-catalyzed ring-opening cyclization of doubly activated cyclopropenes with 1,1-bis(phenylsulfonyl)ethylene. Tetrahedron Lett., 2009, 50(26), 3175-3177.
[40]
Ciaccio, J.A.; Aman, C.E. “Instant Methylide” modification of the corey–chaykovsky cyclopropanation reaction. Synth. Commun., 2006, 36(10), 1333-1341.
[41]
Wurz, R.P.; Charette, A.B. An expedient and practical method for the synthesis of a diverse series of cyclopropane α-amino acids and amines. J. Org. Chem., 2004, 69(4), 1262-1269.
[42]
Chelucci, G.; Saba, A. Intramolecular C-H insertion or styrene cyclopropanation in catalytic decomposition of dicyclohexyldiazomalonic esters. Tetrahedron Lett., 1995, 36(26), 4673-4676.
[43]
Wenkert, E. Oxycyclopropanes in organochemical synthesis. Acc. Chem. Res., 1980, 13(1), 27-31.
[44]
Nishiwaki, N. [2+1] Type cyclopropanation reactions. In:Methods and Applications of Cycloaddition Reactions in Organic Syntheses; John Wiley & Sons, 2013.
[45]
Tomilov, Y.V.; Menchikov, L.G.; Novikov, R.A.; Ivanova, O.A.; Trushkov, I.V. Methods for the synthesis of donor-acceptor cyclopropanes. Russ. Chem. Rev., 2018, 87(3), 201.
[46]
Doyle, M.P.; Forbes, D.C. Recent advances in asymmetric catalytic metal carbene transformations. Chem. Rev., 1998, 98(2), 911-936.
[47]
Pons, A.; Beucher, H.; Ivashkin, P.; Lemonnier, G.; Poisson, T.; Charette, A.B.; Jubault, P.; Pannecoucke, X. Rhodium-catalyzed cyclopropanation of fluorinated olefins: A straightforward route to highly functionalized fluorocyclopropanes. Org. Lett., 2015, 17(7), 1790-1793.
[48]
Xu, X.; Zhu, S.; Cui, X.; Wojtas, L.; Zhang, X.P. Cobalt(ii)-catalyzed asymmetric olefin cyclopropanation with α-ketodiazoacetates. Angew. Chem. Int. Ed., 2013, 52(45), 11857-11861.
[49]
Maurya, R.A.; Kapure, J.S.; Adiyala, P.R.; Srikanth, P.S.; Chandrasekhara, D.; Kamal, A. Catalyst-free stereoselective cyclopropanation of electron deficient alkenes with ethyl diazoacetate. RSC Advances, 2013, 3(36), 15600-15603.
[50]
Xu, X.; Lu, H.; Ruppel, J.V.; Cui, X.; Lopez de Mesa, S.; Wojtas, L.; Zhang, X.P. Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by co(ii)-based metalloradical catalysis: Iterative approach for development of new-generation catalysts. J. Am. Chem. Soc., 2011, 133(39), 15292-15295.
[51]
Lindsay, V.N.G.; Nicolas, C.; Charette, A.B. Asymmetric rh(ii)-catalyzed cyclopropanation of alkenes with diacceptor diazo compounds: P-methoxyphenyl ketone as a general stereoselectivity controlling group. J. Am. Chem. Soc., 2011, 133(23), 8972-8981.
[52]
Zhu, S.; Xu, X.; Perman, J.A.; Zhang, X.P. A general and efficient cobalt(ii)-based catalytic system for highly stereoselective cyclopropanation of alkenes with α-cyanodiazoacetates. J. Am. Chem. Soc., 2010, 132(37), 12796-12799.
[53]
Marcoux, D.; Lindsay, V.N.G.; Charette, A.B. Use of achiral additives to increase the stereoselectivity in Rh(ii)-catalyzed cyclopropanations. Chem. Commun., 2010, 46(6), 910-912.
[54]
Marcoux, D.; Goudreau, S.R.; Charette, A.B. Trans-directing ability of the amide group: Enabling the enantiocontrol in the synthesis of 1,1-dicarboxy cyclopropanes. Reaction development, scope, and synthetic applications. J. Org. Chem., 2009, 74(23), 8939-8955.
[55]
Wulfman, D.S.; McDaniel, R.S. Decomposition d’une pyrazoline-1 par le fluoborate chivrique. Tetrahedron Lett., 1975, 16(50), 4523-4524.
[56]
Peace, B.W.; Wulfman, D.S. Preparation and Reactions of Diazomalonic Esters. Synthesis, 1973, 1973(03), 137-145.
[57]
O’Bannon, P.E.; Dailey, W.P. Catalytic cyclopropanation of alkenes with ethyl nitrodiazoacetate. A facile synthesis of ethyl 1-nitrocyclopropanecarboxylates. J. Org. Chem., 1989, 54(13), 3096-3101.
[58]
Salomon, R.G.; Kochi, J.K. Copper(i) catalysis in cyclopropanations with diazo compounds. Role of Olefin coordination. J. Am. Chem. Soc., 1973, 95(10), 3300-3310.
[59]
Jones, M.; Kulczycki, A.; Hummel, K.F. The addition of bis-carbomethoxycarbene to olefins. Tetrahedron Lett., 1967, 8(2), 183-187.
[60]
González-Bobes, F.; Fenster, M.D.B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Rhodium-catalyzed cyclopropanation of alkenes with dimethyl diazomalonate. Adv. Synth. Catal., 2008, 350(6), 813-816.
[61]
Armstrong, E.L.; Kerr, M.A. Synthesis and reactivity of bis(2,2,2-trifluoroethyl) cyclopropane-1,1-dicarboxylates. Org. Chem. Front., 2015, 2(9), 1045-1047.
[62]
Angulo, B.; Fraile, J.M.; Herrerías, C.I.; Mayoral, J.A. Challenging cyclopropanation reactions on non-activated double bonds of fatty esters. RSC Advances, 2017, 7(32), 19417-19424.
[63]
Reyes, Y.; Mead, K.T. Acetoxy-substituted cyclopropane dicarbonyls as stable donor–acceptor–acceptor cyclopropanes. Synthesis, 2015, 47(19), 3020-3026.
[64]
Wurz, R.P.; Charette, A.B. Doubly activated cyclopropanes as synthetic precursors for the preparation of 4-nitro- and 4-cyano-dihydropyrroles and pyrroles. Org. Lett., 2005, 7(12), 2313-2316.
[65]
Zhu, S.; Perman, J.A.; Zhang, X.P. Acceptor/acceptor-substituted diazo reagents for carbene transfers: Cobalt-Catalyzed asymmetric Z-Cyclopropanation of Alkenes with α-Nitrodiazoacetates. Angew. Chem. Int. Ed., 2008, 47(44), 8460-8463.
[66]
Bos, M.; Huang, W.S.; Poisson, T.; Pannecoucke, X.; Charette, A.B.; Jubault, P. Catalytic enantioselective synthesis of highly functionalized difluoromethylated cyclopropanes. Angew. Chem. Int. Ed., 2017, 56(43), 13319-13323.
[67]
Zhu, J.L.; Wu, Y.P. Rhodium-catalyzed intramolecular cyclopropanation of α-diazo β-keto nitriles containing an unsaturated substituted cycloalkyl group. Synlett, 2017, 28(12), 1467-1472.
[68]
Nani, R.R.; Reisman, S.E. α-diazo-β-ketonitriles: uniquely reactive substrates for arene and alkene cyclopropanation. J. Am. Chem. Soc., 2013, 135(19), 7304-7311.
[69]
Wurz, R.P.; Charette, A.B. Hypervalent iodine(iii) reagents as safe alternatives to α-nitro-α-diazocarbonyls. Org. Lett., 2003, 5(13), 2327-2329.
[70]
Tao, J.; Tuck, T.N.; Murphy, G.K. Geminal dichlorination of phenyliodonium ylides of β-dicarbonyl compounds through double ligand transfer from (dichloroiodo)benzene. Synthesis, 2016, 48(05), 772-782.
[71]
Guo, J.; Liu, Y.; Li, X.; Liu, X.; Lin, L.; Feng, X. Nickel(ii)-catalyzed enantioselective cyclopropanation of 3-alkenyl-oxindoles with phenyliodonium ylide via free carbene. Chem. Sci., 2016, 7(4), 2717-2721.
[72]
Duan, Y-N.; Zhang, Z.; Zhang, C. Recyclable hypervalent-iodine-mediated dehydrogenative cyclopropanation under metal-free conditions. Org. Lett., 2016, 18(23), 6176-6179.
[73]
Goudreau, S.R.; Marcoux, D.; Charette, A.B. General method for the synthesis of phenyliodonium ylides from malonate esters: Easy access to 1,1-cyclopropane diesters. J. Org. Chem., 2009, 74(1), 470-473.
[74]
Georgakopoulou, G.; Kalogiros, C.; Hadjiarapoglou, L.P. Rhii-catalyzed thermal cyclopropanations of a phenyliodonium bis(carbomethoxy)methylide with alkenes and dienes. Synlett, 2001, 2001(12), 1843-1846.
[75]
Müller, P.; Fernandez, D. Carbenoid reactions in rhodium(ii)-catalyzed decomposition of iodonium ylides. Helv. Chim. Acta, 1995, 78(4), 947-958.
[76]
Tao, J.; Estrada, C.D.; Murphy, G.K. Metal-free intermolecular cyclopropanation between alkenes and iodonium ylides mediated by PhI(OAc)2·Bu4NI. Chem. Commun., 2017, 53(64), 9004-9007.
[77]
Moriarty, R.M.; Tyagi, S.; Kinch, M. Metal-free intramolecular cyclopropanation of alkenes through iodonium ylide methodology. Tetrahedron, 2010, 66(31), 5801-5810.
[78]
Deng, C.; Wang, L-J.; Zhu, J.; Tang, Y. A chiral cagelike copper(i) catalyst for the highly enantioselective synthesis of 1,1-cyclopropane diesters. Angew. Chem. Int. Ed., 2012, 51(46), 11620-11623.
[79]
Müller, P.; Bernardinelli, G.; Allenbach, Y.F.; Ferri, M.; Flack, H.D. Selectivity enhancement in the rh(ii)-catalyzed cyclopropanation of styrene with(silanyloxyvinyl)diazoacetates. Org. Lett., 2004, 6(11), 1725-1728.
[80]
Muller, P.; Allenbach, Y.; Robert, E. Rhodium(ii)-catalyzed olefin cyclopropanation with the phenyliodonium ylide derived from meldrum’s acid. Tetrahedron Asymmetry, 2003, 14(7), 779-785.
[81]
Chow, Y.L.; Bakker, B.H.; Iwai, K. Dimethyl-α-styrylsulphonium bromide as a reaction intermediate. J. Chem. Soc. Chem. Commun., 1980, (11), 521-522.
[82]
Chow, Y.L.; Bakker, B.H. Electrophilic addition of bromodimethylsulfonium bromide to olefins. Synthesis, 1982, 1982(08), 648-650.
[83]
Gopinath, P.; Chandrasekaran, S. Synthesis of functionalized dihydrothiophenes from doubly activated cyclopropanes using tetrathiomolybdate as the sulfur transfer reagent. J. Org. Chem., 2011, 76(2), 700-703.
[84]
Tabolin, A.A.; Gorbacheva, E.O.; Novikov, R.A.; Khoroshutina, Y.A.; Nelyubina, Y.V.; Ioffe, S.L. Synthesis and chemical transformations of six/six-membered bicyclic nitroso acetals. Russ. Chem. Bull., 2016, 65(9), 2243-2259.
[85]
Ivanov, K.L.; Villemson, E.V.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V.; Melnikov, M.Y. Ring opening of donor–acceptor cyclopropanes with the azide ion: A tool for construction of n-heterocycles. Chem. Eur. J., 2015, 21(13), 4975-4987.
[86]
Nambu, H.; Fukumoto, M.; Hirota, W.; Ono, N.; Yakura, T. An efficient synthesis of cycloalkane-1,3-dione-2-spirocyclopropanes from 1,3-cycloalkanediones using (1-aryl-2-bromoethyl)-dimethylsulfonium bromides: application to a one-pot synthesis of tetrahydroindol-4(5h)-one. Tetrahedron Lett., 2015, 56(29), 4312-4315.
[87]
Stewart, J.M.; Westberg, H.H. Nucleophilic ring-opening additions to 1,1-disubstituted cyclopropanes. J. Org. Chem., 1965, 30(6), 1951-1955.
[88]
Danishefsky, S.; Rovnyak, G. Effects of substituents on the nucleophilic ring opening of activated cyclopropanes. J. Org. Chem., 1975, 40(1), 114-115.
[89]
Cérat, P.; Gritsch, P.J.; Goudreau, S.R.; Charette, A.B. Synthesis of enantioenriched allenes from 1,1-cyclopropanediesters. Org. Lett., 2010, 12(3), 564-567.
[90]
Saha, A.; Bhattacharyya, A.; Talukdar, R.; Ghorai, M.K. Stereospecific syntheses of enaminonitriles and β-enaminoesters via domino ring-opening cyclization(droc) of activated cyclopropanes with pronucleophilic malononitriles. J. Org. Chem., 2018, 83(4), 2131-2144.
[91]
Richmond, E.; Vuković, V.D.; Moran, J. Nucleophilic ring opening of donor–acceptor cyclopropanes catalyzed by a brønsted acid in hexafluoroisopropanol. Org. Lett., 2018, 20(3), 574-577.
[93]
Smith, R.J.; Nhu, D.; Clark, M.R.; Gai, S.; Lucas, N.T.; Hawkins, B.C. Synthesis of chromones from 1,1-diacylcyclopropanes: toward the synthesis of bromophycoic acid e. J. Org. Chem., 2017, 82(10), 5317-5327.
[94]
Budynina, E.M.; Ivanov, K.L.; Sorokin, I.D.; Melnikov, M.Y. Ring opening of donor-acceptor cyclopropanes with n-nucle-ophiles. Synthesis (Stuttg), 2017, 49(14), 3035-3068.
[95]
Ye, W.J.; Tan, C.; Yao, J.; Xue, S.W.; Li, Y.; Wang, C.D. Iodine-promoted domino reactions of 1-cyanocyclopropane 1-esters: A straightforward approach to fully substituted 2-aminofurans. Adv. Synth. Catal., 2016, 358(3), 426-434.
[96]
Xia, Y.; Liu, X.; Zheng, H.; Lin, L.; Feng, X. Asymmetric synthesis of 2,3-dihydropyrroles by ring-opening/cyclization of cyclopropyl ketones using primary amines. Angew. Chem. Int. Ed., 2015, 54(1), 227-230.
[97]
Matsuoka, S-I.; Numata, K.; Suzuki, M. Lewis acid-catalyzed ring-opening addition reactions of alcohols to vinylcyclopropane. Chem. Lett., 2015, 44(11), 1532-1534.
[99]
Lifchits, O.; Charette, A.B. A mild procedure for the lewis acid-catalyzed ring-opening of activated cyclopropanes with amine nucleophiles. Org. Lett., 2008, 10(13), 2809-2812.
[100]
Gopinath, P.; Chandrasekaran, S. Catalyst-free, regioselective ring opening of donor-acceptor cyclopropanes: Synthesis of functionalized mono- and disulfides. Synthesis (Stuttg), 2016, 48(18), 3087-3096.
[101]
Gopinath, P.; Chandrakala, R.N.; Chandrasekaran, S. A mild protocol for the regioselective ring opening of doubly activated cyclopropanes by using selenolates generated in situ: Synthesis of functionalized organoselenium compounds. Synthesis (Stuttg), 2015, 47(10), 1488-1498.
[102]
Xia, Y.; Chang, F.; Lin, L.; Xu, Y.; Liu, X.; Feng, X. Asymmetric ring-opening of cyclopropyl ketones with β-naphthols catalyzed by a chiral n,n′-dioxide–scandium(iii) complex. Org. Chem. Front., 2018, 5(8), 1293-1296.
[103]
Martin, M.C.; Patil, D.V.; France, S. Functionalized 4-carboxy- and 4-keto-2,3-dihydropyrroles via ni(ii)-catalyzed nucleophilic amine ring-opening cyclizations of cyclopropanes. J. Org. Chem., 2014, 79(7), 3030-3039.
[104]
Nambu, H.; Fukumoto, M.; Hirota, W.; Yakura, T. Ring-opening cyclization of cyclohexane-1,3-dione-2-spirocyclopropanes with amines: rapid access to 2-substituted 4-hydroxyindole. Org. Lett., 2014, 16(15), 4012-4015.
[105]
Zhang, Z.; Zhang, W.; Li, J.; Liu, Q.; Liu, T.; Zhang, G. Synthesis of multisubstituted pyrroles from doubly activated cyclopropanes using an iron-mediated oxidation domino reaction. J. Org. Chem., 2014, 79(22), 11226-11233.
[107]
Ghorai, M.K.; Talukdar, R.; Tiwari, D.P. A route to highly functionalized β-enaminoesters via a domino ring-opening cyclization/decarboxylative tautomerization sequence of donor–acceptor cyclopropanes with substituted malononitriles. Org. Lett., 2014, 16(8), 2204-2207.
[108]
Ghorai, M.K.; Talukdar, R.; Tiwari, D.P. An efficient synthetic route to carbocyclic enaminonitriles via lewis acid catalysed domino-ring-opening-cyclisation (droc) of donor–acceptor cyclopropanes with malononitrile. Chem. Commun., 2013, 49(74), 8205-8207.
[110]
Ivanov, K.L.; Bezzubov, S.I.; Melnikov, M.Y.; Budynina, E.M. Donor–acceptor cyclopropanes as ortho-quinone methide equivalents in formal (4 + 2)-cycloaddition to alkenes. Org. Biomol. Chem., 2018, 16(21), 3897-3909.
[111]
Dey, R.; Banerjee, P. Lewis acid catalyzed diastereoselective cycloaddition reactions of donor–acceptor cyclopropanes and vinyl azides: Synthesis of functionalized azidocyclopentane and tetrahydropyridine derivatives. Org. Lett., 2017, 19(2), 304-307.
[112]
Curiel Tejeda, J.E.; Irwin, L.C.; Kerr, M.A. Annulation reactions of donor–acceptor cyclopropanes with (1-azidovinyl) benzene and 3-phenyl-2h-azirine. Org. Lett., 2016, 18(18), 4738-4741.
[113]
Grover, H.K.; Emmett, M.R.; Kerr, M.A. Carbocycles from donor-acceptor cyclopropanes. Org. Biomol. Chem., 2015, 13(3), 655-671.
[114]
Chen, H.Y.; Zhang, J.; Wang, D.Z. Gold-catalyzed rearrangement of alkynyl donor-acceptor cyclopropanes to construct highly functionalized alkylidenecyclopentenes. Org. Lett., 2015, 17(9), 2098-2101.
[115]
Flisar, M.E.; Emmett, M.R.; Kerr, M.A. Catalyst-free tandem ring-opening/click reaction of acetylene-bearing donor–acceptor cyclopropanes. Synlett, 2014, 25(16), 2297-2300.
[116]
Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor–acceptor cyclopropanes. J. Am. Chem. Soc., 2013, 135(21), 7851-7854.
[117]
Humenny, W.J.; Kyriacou, P.; Sapeta, K.; Karadeolian, A.; Kerr, M.A. Multicomponent synthesis of pyrroles from cyclopropanes: A one-pot palladium (0)-catalyzed dehydrocarbonylation/dehydration. Angew. Chem. Int. Ed., 2012, 51(44), 11088-11091.
[118]
Wang, H.; Denton, J.R.; Davies, H.M.L. Sequential rhodium-, silver-, and gold-catalyzed synthesis of fused dihydrofurans. Org. Lett., 2011, 13(16), 4316-4319.
[119]
Lebold Terry, P.; Kerr Michael, A. Intramolecular annulations of donor–acceptor cyclopropanes. Pure Appl. Chem., 2010, 82(9), 1797.
[120]
Campbell, M.J.; Johnson, J.S.; Parsons, A.T.; Pohlhaus, P.D.; Sanders, S.D. Complexity-building annulations of strained cycloalkanes and c═o π bonds. J. Org. Chem., 2010, 75(19), 6317-6325.
[122]
Zhang, J.; Jiang, H.; Zhu, S. Cascade one-pot synthesis of indanone-fused cyclopentanes from the reaction of donor-acceptor cyclopropanes and enynals via a sequential hydrolysis/knoevenagel condensation/ [3+2] cycloaddition. Adv. Synth. Catal., 2017, 359(17), 2924-2930.
[123]
Kaga, A.; Gandamana, D.A.; Tamura, S.; Demirelli, M.; Chiba, S. [3+2] annulation of donor–acceptor cyclopropanes with vinyl azides. Synlett, 2017, 28(09), 1091-1095.
[124]
Verma, K.; Banerjee, P. Lewis acid-catalyzed [3+2] cycloaddition of donor-acceptor cyclopropanes and enamines: Enantioselective synthesis of nitrogen-functionalized cyclopentane derivatives. Adv. Synth. Catal., 2016, 358(13), 2053-2058.
[125]
Xing, S.; Pan, W.; Liu, C.; Ren, J.; Wang, Z. Efficient construction of oxa- and aza- [n.2.1] skeletons: Lewis acid catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with carbonyls and imines. Angew. Chem. Int. Ed., 2010, 49(18), 3215-3218.
[126]
Racine, S.; De Nanteuil, F.; Serrano, E.; Waser, J. Synthesis of (carbo)nucleoside analogues by [3+2] annulation of aminocyclopropanes. Angew. Chem. Int. Ed., 2014, 53(32), 8484-8487.
[127]
Xu, H.; Qu, J-P.; Liao, S.; Xiong, H.; Tang, Y. Highly enantioselective [3+2] annulation of cyclic enol silyl ethers with donor–acceptor cyclopropanes: Accessing 3a-hydroxy [n.3.0] carbobicycles. Angew. Chem. Int. Ed., 2013, 52(14), 4004-4007.
[128]
Yang, P.F.; Shen, Y.; Feng, M.L.; Yang, G.S.; Chai, Z. Lewis acid catalyzed [3+2] annulation of -butyrolactone fused cyclopropane with aldehydes/ketones. Eur. J. Org. Chem., 2018, (30), 4103-4112.
[129]
Goldberg, A.F.G.; O’Connor, N.R.; Craig, R.A.; Stoltz, B.M. Lewis acid mediated (3 + 2) cycloadditions of donor–acceptor cyclopropanes with heterocumulenes. Org. Lett., 2012, 14(20), 5314-5317.
[130]
Pohlhaus, P.D.; Sanders, S.D.; Parsons, A.T.; Li, W.; Johnson, J.S. Scope and mechanism for lewis acid-catalyzed cycloadditions of aldehydes and donor−acceptor cyclopropanes: Evidence for a stereospecific intimate ion pair pathway. J. Am. Chem. Soc., 2008, 130(27), 8642-8650.
[131]
Pohlhaus, P.D.; Johnson, J.S. Enantiospecific sn(ii)- and sn(iv)-catalyzed cycloadditions of aldehydes and donor−acceptor cyclopropanes. J. Am. Chem. Soc., 2005, 127(46), 16014-16015.
[132]
Fu, X.; Lin, L.L.; Xia, Y.; Zhou, P.F.; Liu, X.H.; Feng, X.M. Catalytic asymmetric [3+3] annulation of cyclopropanes with mercaptoacetaldehyde. Org. Biomol. Chem., 2016, 14(25), 5914-5917.
[133]
Sathishkannan, G.; Srinivasan, K. [3+3] annulation of donor–acceptor cyclopropanes with mercaptoacetaldehyde: Application to the synthesis of tetrasubstituted thiophenes. Chem. Commun., 2014, 50(31), 4062-4064.
[134]
Zhou, Y-Y.; Li, J.; Ling, L.; Liao, S-H.; Sun, X-L.; Li, Y-X.; Wang, L-J.; Tang, Y. Highly enantioselective [3+3] cycloaddition of aromatic azomethine imines with cyclopropanes directed by π–π stacking interactions. Angew. Chem. Int. Ed., 2013, 52(5), 1452-1456.
[135]
Grover, H.K.; Lebold, T.P.; Kerr, M.A. Tandem cyclopropane ring-opening/conia-ene reactions of 2-alkynyl indoles: a [3 + 3] annulative route to tetrahydrocarbazoles. Org. Lett., 2011, 13(2), 220-223.
[136]
Perreault, C.; Goudreau, S.R.; Zimmer, L.E.; Charette, A.B. Cycloadditions of aromatic azomethine imines with 1,1-cyclopropane diesters. Org. Lett., 2008, 10(5), 689-692.
[137]
Zhang, H-H.; Luo, Y-C.; Wang, H-P.; Chen, W.; Xu, P-F. Ticl4 promoted formal [3 + 3] cycloaddition of cyclopropane 1,1-diesters with azides: synthesis of highly functionalized triazinines and azetidines. Org. Lett., 2014, 16(18), 4896-4899.
[138]
Liu, H.; Yuan, C.; Wu, Y.; Xiao, Y.; Guo, H. Sc(otf)3-catalyzed [3 + 3] cycloaddition of cyclopropane 1,1-diesters with phthalazinium dicyanomethanides. Org. Lett., 2015, 17(17), 4220-4223.
[139]
Chidley, T.; Vemula, N.; Carson, C.A.; Kerr, M.A.; Pagenkopf, B.L. Cascade reaction of donor–acceptor cyclopropanes: mechanistic studies on cycloadditions with nitrosoarenes and cis-diazenes. Org. Lett., 2016, 18(12), 2922-2925.
[140]
Xu, H.; Hu, J-L.; Wang, L.; Liao, S.; Tang, Y. Asymmetric annulation of donor–acceptor cyclopropanes with dienes. J. Am. Chem. Soc., 2015, 137(25), 8006-8009.
[142]
Garve, L.K.B.; Pawliczek, M.; Wallbaum, J.; Jones, P.G.; Werz, D.B. [4+3] cycloaddition of donor–acceptor cyclopropanes with amphiphilic benzodithioloimine as surrogate for ortho‐bisthioquinone. Chem. - Eur. J., 2016, 22(2), 521-525.
[143]
Ghosh, A.; Mandal, S.; Chattaraj, P.K.; Banerjee, P. Ring expansion of donor–acceptor cyclopropane via substituent controlled selective n-transfer of oxaziridine: synthetic and mechanistic insights. Org. Lett., 2016, 18(19), 4940-4943.
[144]
Denisov, D.A.; Novikov, R.A.; Potapov, K.V.; Korolev, V.A.; Shulishov, E.V.; Tomilov, Y.V. 1,1′-bicyclopropyl-2,2-dicarboxylate and cyclopropylmethylidenemalonate as homovinylogs and vinylogs of donor-acceptor cyclopropanes. ChemistrySelect, 2016, 1(20), 6374-6381.
[145]
Wenz, D.R.; Read de Alaniz, J. Aza-piancatelli rearrangement initiated by ring opening of donor–acceptor cyclopropanes. Org. Lett., 2013, 15(13), 3250-3253.
[146]
Schmidt, C.D.; Kaschel, J.; Schneider, T.F.; Kratzert, D.; Stalke, D.; Werz, D.B. Donor-substituted nitrocyclopropanes: Immediate ring-enlargement to cyclic nitronates. Org. Lett., 2013, 15(23), 6098-6101.
[147]
Phun, L.H.; Patil, D.V.; Cavitt, M.A.; France, S. A catalytic homo-nazarov cyclization protocol for the synthesis of heteroaromatic ring-fused cyclohexanones. Org. Lett., 2011, 13(8), 1952-1955.
[148]
Ma, H.; Hu, X-Q.; Luo, Y-C.; Xu, P-F. 3,4,5-trimethylphenol and lewis acid dual-catalyzed cascade ring-opening/cyclization: direct synthesis of naphthalenes. Org. Lett., 2017, 19(24), 6666-6669.
[149]
Cavitt, M.A.; France, S. Aluminum(iii)-catalyzed, formal homo-nazarov-type ring-opening cyclizations toward the synthesis of functionalized tetrahydroindolizines. Synthesis, 2016, 48(12), 1910-1919.
[150]
Chen, H.; Zhang, J.; Wang, D.Z. Gold-catalyzed rearrangement of alkynyl donor–acceptor cyclopropanes to construct highly functionalized alkylidenecyclopentenes. Org. Lett., 2015, 17(9), 2098-2101.
[151]
Ivanov, K.L.; Villemson, E.V.; Latyshev, G.V.; Bezzubov, S.I.; Majouga, A.G.; Melnikov, M.Y.; Budynina, E.M. Regioselective hydrogenolysis of donor–acceptor cyclopropanes with zn-acoh reductive system. J. Org. Chem., 2017, 82(18), 9537-9549.
[152]
Zhang, D.; Song, H.; Qin, Y. Total synthesis of indoline alkaloids: a cyclopropanation strategy. Acc. Chem. Res., 2011, 44(6), 447-457.
[153]
Levin, S.; Nani, R.R.; Reisman, S.E. Enantioselective total synthesis of(+)-salvileucalin b. J. Am. Chem. Soc., 2011, 133(4), 774-776.
[154]
Tanimori, S.; He, M.Q.; Nakayama, M. Stereoselective syntheses of 22-oxavitamin-d3 d-ring and cd-ring synthones by using cleavage of activated cyclopropane. Synth. Commun., 1993, 23(20), 2861-2868.
[155]
Chumoyer, M.Y.; Danishefsky, S.J. On the mode of action of myrocin-c - evidence for a cc-1065 connection. Tetrahedron Lett., 1993, 34(19), 3025-3028.
[156]
Tanimori, S.J.; Tsubota, M.; He, M.Q.; Nakayama, M. A new nucleophilic ring-opening of an activated cyclopropane and a formal synthesis of (+/-)-carbovir. Biosci. Biotechnol. Biochem., 1995, 59(11), 2091-2093.
[157]
Breitler, S.; Carreira, E.M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed., 2013, 52(42), 11168-11171.
[158]
Grover, H.K.; Emmett, M.R.; Kerr, M.A. γ-substituted butanolides from cyclopropane hemimalonates: an expedient synthesis of natural (r)-dodecan-4-olide. Org. Lett., 2013, 15(18), 4838-4841.