[1]
Dicks, P. Green Organic Chemistry in Lecture and Laboratory; Taylor & FrancisGroup: Boca Raton, 2012.
[2]
Lévêque, J-M.; Cravotto, G. Power ultrasound, and ionic liquids. A new synergy in green organic synthesis. Chimia, 2006, 60, 313-320.
[3]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2017, 82, 1-28.
[4]
Veitía, M.S-I.; Ferroud, C. New activation methods used in green chemistry for the synthesis of high added value molecules. Int. J. Energy Environ. Eng., 2015, 6, 37-46.
[5]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27, 279-282.
[6]
Lidström, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis – A review. Tetrahedron, 2001, 57, 9225-9283.
[7]
Loupy, A. Microwaves in Organic Synthesis; Wiley-VCH Verlag GmbH&
Co. KGaA, Weinheim,, 2002.
[8]
Kappe, C.O.; Dallinger, D.; Murphree, S.S. Practical Microwave Synthesis for Organic Chemists; Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
[9]
De la Hoz, A.; Díaz-Ortiz, Á.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34, 164-178.
[10]
Herrero, M.A.; Kremsner, J.M.; Kappe, C.O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem., 2008, 73, 36-47.
[11]
Razzaq, T.; Kremsner, J.M.; Kappe, C.O. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J. Org. Chem., 2008, 73, 6321-6329.
[12]
Obermayer, D.; Gutmann, B.; Kappe, C.O. Microwave chemistry in silicon carbide reaction vials: Separating thermal from nonthermal effects. Angew. Chem. Int. Ed., 2009, 48, 8321-8324.
[13]
Gutmann, B.; Obermayer, D.; Reichart, B.; Prekodravac, B.; Irfan, M.; Kremsner, J.M.; Kappe, C.O. Sintered silicon carbide: A new ceramic vessel material for microwave chemistry in single-mode reactors. Chem. Eur. J., 2010, 16, 12182-12194.
[14]
Kappe, C.O.; Damm, M. Parallel microwave chemistry in silicon carbide microtiter platforms: A review. Mol. Divers., 2012, 16, 5-25.
[15]
Kappe, C.O.; Pieber, B.; Dallinger, D. Microwave effects in organic synthesis: myth or reality? Angew. Chem. Int. Ed., 2013, 52, 1088-1094.
[16]
Kappe, C.O. Reply to the correspondence on microwave effects in organic synthesis. Angew. Chem. Int. Ed., 2013, 52, 7924-7928.
[17]
Jain, A.K.; Singla, R.K. An overview of microwave assisted technique: green synthesis. Webmed Cent. Pharm. Sci, 2011, 2, 2-15.
[18]
Larhed, M.; Olafsson, K. Microwave methods in organic synthesis. Top. Curr. Chem., 2006, 1, 266-278.
[19]
Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave-Assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem., 2009, 62, 16-26.
[20]
Talaviya, S.; Majmudar, F. Green chemistry: A tool in Pharmaceutical Chemistry. NHL J. Med.Sci., 2012, 1, 7-13.
[21]
Savage, P.B.; Li, C. Cholic acid derivatives: Novel antimicrobials. Expert Opin. Investig. Drugs, 2000, 2, 263-272.
[22]
Zhu, X-X.; Nichifor, M. Polymeric materials containing bile acids. Acc. Chem. Res., 2002, 35, 539-546.
[23]
Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem., 2004, 16, 3385-3399.
[24]
Hanson, J.R. Steroids: Reactions and partial synthesis. Nat. Prod. Rep., 2004, 21, 386-394.
[25]
Mukhopadhy, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci. India, 2004, 87, 1666-1683.
[26]
Kuhajda, K.; Kevrešan, S.; Kandrač, J.; Fawcett, J.P.; Mikov, M. Chemical and metabolic transformations of selected bile acids. Eur. J. Drug Metab. Pharmacokinet., 2006, 31, 179-235.
[27]
Balakrishnan, A.; Polli, J.E. Apical sodium dependent bile acid transporter (ASBT,SLC10A2): A potential prodrug target. Mol. Pharm., 2006, 3, 223-230.
[28]
Wei, Z.J.; Xia, Z.X. Biomaterials made of bile acids. Sci. China Ser. B Chem., 2009, 52, 849-861.
[29]
Gautrot, J.E.; Zhu, X.X. Macrocyclic bile acids: From molecular recognition to degradable biomaterial building blocks. J. Mater. Chem., 2009, 19, 5705-5716.
[30]
Sharma, R.; Long, A.; Gilmer, J.F. Advances in bile acid medicinal chemistry. Curr. Med. Chem., 2011, 18, 4029-4052.
[31]
Hofmann, A.F.; Hagey, L.R. Key discoveries in bile acid chemistry and biology and their clinical applications: History of the last eight decades. J. Lipid Res., 2014, 55, 1553-1595.
[32]
Brycki, B.; Koenig, H.; Pospieszny, T. Quaternary alkylammonium conjugates of steroids: Synthesis, molecular structure, and biological studies. Molecules, 2015, 20, 20887-20900.
[33]
Dayal, B.; Rao, K.; Salen, G. Microwave-induced organic reactions of bile acids: Esterification, deformylation and deacetylation using mild reagents. Steroids, 1995, 60, 453-457.
[34]
Dayal, B.; Rapole, K.R.; Salen, G.; Shefer, S.; Tint, G.S.; Wilson, S.R. Microwave-induced rapid synthesis of bile acid conjugates. Synlett, 1995, 861-862.
[35]
Dayal, B.; Rapole, K.R.; Patel, C.; Pramanik, B.N.; Shefer, S.; Tint, G.S.; Salen, G. Microwave-induced rapid synthesis of sarcosine conjugated bile acids. Bioorg. Med. Chem. Lett., 1995, 5, 1301-1306.
[36]
Dayal, B.; Bhojawala, J.; Rapole, K.R.; Pramanik, B.N.; Ertel, N.H.; Shefer, S.; Salen, G. Chemical synthesis, structural analysis, and decomposition of N-Nitroso bile acid conjugates. Bioorg. Med. Chem., 1996, 4, 885-890.
[37]
Dayal, B.; Ertel, N.H.; Padia, J.; Rapole, K.R.; Salen, G. 7β-Hydroxy bile alcohols: Facile synthesis and 2D 1NMR studies of 5β-cholestane-3α,7β,12α,25-tetrol. Steroids, 1997, 62, 409-411.
[38]
Pore, V.S.; Aher, N.G.; Kumar, M.; Shukla, P.K. Design and synthesis of fluconazole/bile acid conjugate using click reaction. Tetrahedron, 2006, 62, 11178-11186.
[39]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19, 759-763.
[40]
Aher, N.G.; Pore, V.S.; Patil, S.P. Design, synthesis, and micellar properties of bile acid dimers and oligomers linked with a 1,2,3-triazole ring. Tetrahedron, 2007, 63, 12927-12934.
[41]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Chavan, P.S.; Deshpande, M.V. Synthesis and antimicrobial activity of β-lactam-bile acid conjugates linked via triazole. Bioorg. Med. Chem. Lett., 2008, 18, 2043-2047.
[42]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Deshpande, M.V.; Kadreppa, S.; Chattopadhyay, S.; Gonnade, R.G. Synthesis and biological evaluation of bile acid dimers linked with 1,2,3-triazole and bis-β-lactam. Org. Biomol. Chem., 2008, 6, 3823-3830.
[43]
Zeng, B.T.; Zhao, Z.G.; Liu, X.L.; Shi, Y. Microwave assisted one-pot synthesis of novel molecular clefts with only one chiral arm based on deoxycholic acid. Chin. Chem. Lett., 2008, 19, 33-36.
[44]
Cravotto, G.; Boffa, L.; Turello, M.; Parenti, M.; Barge, A. Chemical modifications of bile acids under high-intensity ultrasound or microwave irradiation. Steroids, 2005, 70, 77-83.
[45]
Chen, Y.; Zhao, Z.G.; Liu, X.L.; Shi, Z.C. Synthesis of novel alkoxycarbonyl thiosemicarbazide molecular tweezers derived from deoxycholic acid under microwave irradiation. J. Chem. Res., 2010, 34, 416-420.
[46]
Zhao, Z-G.; Liu, X-L.; Chen, Y.; Shi, Z-C. One-pot synthesis of new carbamate-type molecular tweezers derived from deoxycholic acid under microwave irradiation. J. Chem. Res., 2010, 34, 481-484.
[47]
Chen, Y.; Zhao, Z.G.; Liu, X-L.; Shi, Z-C. A Facile and efficient approach to the synthesis of novel chiral molecular tweezers based on deoxycholic acid under microwave irradiation. Lett. Org. Chem., 2011, 8, 210-215.
[48]
Huong, N.T.T.; Klímková, P.; Sorrenti, A.; Mancini, G.; Drašar, P. Synthesis of spiroannulated oligopyrrole macrocycles derived from lithocholic acid. Steroids, 2009, 74, 715-720.
[49]
Thi, T.H.N.; Cardová, L.; Dvořáková, M.; Ročková, D.; Drašar, P. Synthesis of cholic acid based calixpyrroles and porphyrins. Steroids, 2012, 77, 858-863.
[50]
Ibrahim-Ouali, M.; Botsi-Nkomendi, N.; Rocheblave, L. Synthesis of heterosteroids. First synthesis of oxa steroid from cholic acid. Tetrahedron Lett., 2010, 51, 93-95.
[51]
Ibrahim-Ouali, M.; Rocheblave, L. First synthesis of thia steroids from cholic acid. Steroids, 2010, 75, 701-709.
[52]
Ibrahim-Ouali, M.; Hamze, K.; Rocheblave, L. Synthesis of 12-oxa, 12-aza and 12-thia cholanetriols. Steroids, 2011, 76, 324-330.
[53]
Ibrahim-Ouali, M.; Zoubir, J.; Romero, E. A ring-closing metathesis approach to secosteroidal macrocycles. Tetrahedron Lett., 2011, 52, 7128-7131.
[54]
Ibrahim-Ouali, M.; Romero, E. Synthesis of various secosteroidal macrocycles by ring-closing metathesis. Steroids, 2013, 78, 651-661.
[55]
Ibrahim-Ouali, M.; Hamze, K. A click chemistry approach to secosteroidal macrocycles. Steroids, 2014, 80, 102-110.
[56]
Popadyuk, I.; Markov, A.V.; Salomatina, O.V.; Logashenko, E.B.; Shernyukov, A.V.; Zenkova, M.A.; Salakhutdinov, N.F. Synthesis and biological activity of novel deoxycholic acid derivatives. Bioorg. Med. Chem., 2015, 23, 5022-5034.
[57]
Dang, Z.; Lin, A.; Ho, P.; Soroka, D.; Lee, K-H.; Huang, L.; Chen, C-H. Synthesis and proteasome inhibition of lithocholic acid derivatives. Bioorg. Med. Chem. Lett., 2011, 21, 1926-1928.
[58]
Ahonen, K.V.; Lahtinen, M.K.; Valkonen, A.M.; Dračínský, M.; Kolehmainen, E.T. Microwave assisted synthesis and solid-state characterization of lithocholyl amides of isomeric aminopyridines. Steroids, 2011, 76, 261-268.
[59]
Yang, J.; Cheng, Y.Y.; Shi, Z.C.; Zhao, Z.G. Synthesis of novel triazole derivatives of methyl 3-oxocholanate using microwave irradiation. J. Chem. Res., 2010, 34, 680-683.
[60]
Shi, Z-C.; Zhao, Z-G.; Liu, X-L.; Wu, L. Synthesis of new deoxycholic acid bis thiocarbazones under solvent-free conditions using microwave irradiation. J. Chem. Res., 2011, 35, 198-201.
[61]
Shi, Z.; Zhao, Z.; Liu, M.; Wang, X. Solvent-free synthesis of novel unsymmetric chenodeoxycholic acid bis thiocarbazone derivatives promoted by microwave irradiation and evaluation of their antibacterial activity. C. R. Chim., 2013, 16, 977-984.
[62]
Shi, Z-C.; Zhao, Z-G.; Liu, X-L.; Qiu, L-Y. Rapid and efficient synthesis of new deoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwaves. Lett. Org. Chem., 2011, 8, 515-519.
[63]
Qiu, L.; Shi, Z.; Mei, Q.; Zhao, Z. Microwave-assisted synthesis and antibacterial activity of novel chenodeoxycholic acid thiosemicarbazone derivatives. J. Chem. Res., 2011, 35, 456-459.
[64]
Shi, Z.C.; Zhao, Z.G.; Liu, X.L.; Chen, Y. Synthesis of new hyodeoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwave. Chin. Chem. Lett., 2011, 22, 405-408.
[65]
Zhao, Z-G.; Yan, P.; Liu, X-L.; Shi, Z-C. microwave assisted solvent-free synthesis of novel chenodeoxycholic acid thiosemicarbazone derivatives and studies on antibacterial activities. Lett. Org. Chem., 2012, 9, 604-608.
[66]
Zhao, Z.; Li, L.; Liu, M.; Mei, Q. An efficient synthesis of novel bis-1,3,4-thiadiazolyl-carbamate derivatives based on deoxycholic acid under microwave irradiation. J. Chem. Res., 2012, 36, 218-221.
[67]
Yang, J.; Zhao, Z.; Li, H. Synthesis using microwave irradiation, characterisation and antibacterial activity of novel deoxycholic acid-triazole conjugates. J. Chem. Res., 2012, 36, 383-386.
[68]
Wang, X.; Liu, X.; Jiang, Y.; Zhao, Z. Microwave-assisted synthesis and in vitro antibacterial activity of novel steroidal 1,2,4-triazole Schiff base derivatives. J. Chem. Res., 2014, 38, 300-303.
[69]
Li, X.; Zhao, Z.; Cheng, Y.; Li, H. Synthesis of novel arylhydrazide molecular tweezer artificial receptors based on deoxycholic acid using microwave irradiation. J. Chem. Res., 2011, 35, 234-237.
[70]
Liu, X.L.; Zhao, Z.G.; Zeng, B.T. Solvent-Fee synthesis of molecular tweezer artificial receptors derived from deoxycholic acid under microwave irradiation. Chin. J. Org. Chem., 2007, 27, 994-998.
[71]
Li, X.; Qiu, L.; Mei, Q.; Bi, Q.; Zhao, Z. Preparation of novel molecular tweezers based on 3,6-O-(2-acylhydrazinocarbonyl) esters of hyodeoxycholic acid using microwave irradiation. J. Chem. Res., 2011, 35, 364-367.
[72]
Zeng, B.; Zhao, Z.; Zhouand, L.; Li, Q. Synthesis of novel chiral cholic acid-based molecular tweezers containing unsymmetrically disubstituted urea units using microwave irradiation. J. Chem. Res., 2012, 36, 206-209.
[73]
Liu, M.; Wang, X.; Bi, Q.; Zhao, Z. Microwave-assisted synthesis and recognition properties of chiral molecular tweezers based on deoxycholic acid. J. Chem. Res., 2013, 37, 394-397.
[74]
Ye, Y.; Suo, Y.; Yang, F.; Han, L. Microwave-assisted Synthesis of novel chiral receptors derived from deoxycholic acid and their molecular recognition properties. Chem. Lett., 2014, 43, 1812-1814.
[75]
Y., Ye; Z., Zhao; X., Liu; Q., Li Microwave-assisted synthesis of indole-6-acylhydrazone and their antibacterial activities. Chin. J. Org. Chem., 2009, 29, 993-997.