[1]
International Agency for Research on Cancer, “World cancer report
2014,” WHO, Geneva, Switzerland..
[2]
World Health Organization. Global Battle against Cancer Won’t Be Won with Treatment Alone. Effective Prevention Measures Urgently Needed to Prevent Cancer Crisis; International Agency for Research on Cancer: London, UK, 2014.
[3]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Xue, H.Y.; Babakhanian, K.; Wu, X.Y. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther., 2010, 317(3), 1372-1381.
[4]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: The role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[5]
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
[6]
Alves, T.M.; Silva, A.F.; Brandão, M.; Grandi, T.S.; Smânia, E.; Smânia Júnior, A.; Zani, C.L. Biological screening of Brazilian medicinal plants. Mem. Inst. Oswaldo Cruz, 2000, 95(3), 367-373.
[7]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100(1-2), 72-79.
[8]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[9]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[10]
Hu, M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang Gung Med. J., 2011, 34(5), 449-460.
[11]
Dzubak, P.; Hajduch, M.; Vydra, D.; Hustova, A.; Kvasnica, M.; Biedermann, D.; Markova, L.; Urban, M.; Sarek, J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep., 2006, 23(3), 394-411.
[12]
Lu, J.J.; Bao, J.L.; Chen, X.P.; Huang, M.; Wang, Y.T. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med., 2012, 2012 Article ID 485042
[13]
Rao, P.V.; Sujana, P.; Vijayakanth, T.; Naidu, M.D. Rhinacanthus nasutus—its protective role in oxidative stress and antioxidant status in streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Dis., 2012, 2(4), 327-330.
[14]
Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr., 2004, 134(12), 3479S-3485S.
[15]
Le Marchand, L. Cancer-preventive effects of flavonoids-a review. Biomed. Pharmacother., 2002, 56(6), 296-301.
[16]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3, 16-20.
[17]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5, 161-171.
[18]
Fox, J.L. Researchers discuss NIH’s nanotechnology initiative. Nat. Biotechnol., 2000, 18, 821.
[19]
Jiang, W.; Kim, B.Y.; Rutka, J.T.; Chan, W.C. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin. Drug Deliv., 2007, 4, 621-633.
[20]
Peppas, N.A. Intelligent therapeutics: Biomimetic systems and nanotechnology in drug delivery. Adv. Drug Deliv. Rev., 2004, 56, 1529-1531.
[21]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, 5, 1909-1917.
[22]
Uchegbu, I.F. Pharmaceutical nanotechnology: Polymeric vesicles for drug and gene delivery. Expert Opin. Drug Deliv., 2006, 3, 629-640.
[23]
Singh, R.; Lillard, Jr, J.W. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[24]
Koo, H.; Huh, M.S.; Sun, I.C.; Yuk, S.H.; Choi, K.; Kim, K.; Kwon, I.C. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res., 2011, 44(10), 1018-1028.
[25]
Ali, I.; Rahis, U.; Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11, 135-146.
[26]
Heidel, J.D.; Davis, M.E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res., 2011, 28, 187-199.
[27]
Nguyen, K.T. Targeted nanoparticles for cancer therapy: Promises and challenges. J. Nanomed. Nanotechnol., 2011, 2, 103e.
[28]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13, 238-252.
[29]
Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature, 1976, 263, 797-800.
[30]
Heath, T.D.; Fraley, R.T.; Papahdjopoulos, D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab’)2 to vesicle surface. Science, 1980, 210, 539-541.
[31]
Leserman, L.D.; Barbet, J.; Kourilsky, F.; Weinstein, J.N. Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature, 1980, 288, 602-604.
[32]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263, 1600-1603.
[33]
Klibanov, A.L.; Maruyama, K.; Torchilin, V.P.; Huang, L. Amphipathic polyethylene-glycols effectively prolong the circulation time of liposomes. FEBS Lett., 1990, 268, 235-237.
[34]
James, J.S. DOXIL approved by FDA. AIDS Patient Care, 1995, 9, 306.
[35]
James, J.S. DOXIL approved for KS. AIDS Treat. News, 1995, (236), 6.
[36]
Porche, D.J. Liposomal doxorubicin (Doxil). J. Assoc. Nurses AIDS Care, 1996, 7, 55-59.
[37]
Tejada-Berges, T.; Granai, C.O.; Gordinier, M.; Gajewski, W. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev. Anticancer Ther., 2002, 2, 143-150.
[38]
Moghimi, S.M. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer. Agents Med. Chem., 2006, 6, 553-561.
[39]
Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond.), 2007, 2, 669-680.
[40]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4, 145-160.
[41]
Fan, H. Nanocrystal-micelle: Synthesis, self-assembly, and application. Chem. Commun. (Camb.), 2008, 28, 1383-1394.
[42]
Matsumura, Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv. Drug Deliv. Rev., 2008, 60, 899-914.
[43]
Lee, C.C.; MacKay, J.A.; Frechet, J.M.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23, 1517-1526.
[44]
McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.; Matthews, B.R.; Holan, G. Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2, 312-318.
[45]
Najlah, M.; D’Emanuele, A. Synthesis of dendrimers and drug-dendrimer conjugates for drug delivery. Curr. Opin. Drug Discov. Devel., 2007, 10, 756-767.
[46]
Greco, F.; Vicent, M.J. Polymer-drug conjugates: Current status and future trends. Front. Biosci., 2008, 13, 2744-2756.
[47]
Li, C.; Wallace, S. Polymer-drug conjugates: Recent development in clinical oncology. Adv. Drug Deliv. Rev., 2008, 60, 886-898.
[48]
Hawkins, M.J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug Deliv. Rev., 2008, 60, 876-885.
[49]
Wang, G.; Uludag, H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin. Drug Deliv., 2008, 5, 499-515.
[50]
Murakami, T.; Tsuchida, K. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev. Med. Chem., 2008, 8, 175-183.
[51]
Díaz, M.R.; Vivas-Mejia, P.E. Nanoparticles as drug delivery systems in cancer medicine: Emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel), 2013, 6(11), 1361-1380.
[52]
Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9343-9348.
[53]
Hu, C.M.; Aryal, S.; Zhang, L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther. Deliv., 2010, 1(2), 323-334.
[54]
Loo, C.; Lin, A.; Hirsch, L.; Lee, M.H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging, and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3(1), 33-40.
[55]
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.; Kalaichelvan, P. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep., 2014, 4, 42-49.
[56]
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G.; Mubarak Ali, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
[57]
Pan, Y.; Leifert, A.; Ruau, D.; Neuss, S.; Bornemann, J.; Schmid, G.; Brandau, W.; Simon, U.; Jahnen-Dechent, W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5(18), 2067-2076.
[58]
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid-mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
[59]
Alshatwi, A.A.; Athinarayanan, J.; Periasamy, V.S. Green synthesis of bimetallic Au@Pt nanostructures and their application for proliferation inhibition and apoptosis induction in the human cervical cancer cell. J. Mater. Sci. Mater. Med., 2015, 26(3), 148-156.
[60]
Roopan, S.M.; Surendra, T.V.; Elango, G.; Kumar, S.H.S. Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl. Microbiol. Biotechnol., 2014, 98(12), 5289-5300.
[61]
Wu, P.; Gao, Y.; Zhang, H.; Cai, C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal. Chem., 2012, 84(18), 7692-7699.
[62]
Thevenot, P.; Cho, J.; Wavhal, D.; Timmons, R.B.; Tang, L. Surface chemistry influences cancer-killing effect of TiO2 nanoparticles. Nanomedicine, 2008, 4(3), 226-236.
[63]
Hou, Z.; Zhang, Y.; Deng, K.; Chen, Y.; Li, X.; Deng, X.; Cheng, Z.; Lian, H.; Li, C.; Lin, J. UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: Near-infrared light-mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano, 2015, 9(3), 2584-2599.
[64]
Pešić, M.; Podolski-Renić, A.; Stojković, S.; Matović, B.; Zmejkoski, D.; Kojić, V.; Bogdanović, G.; Pavićević, A.; Mojović, M.; Savić, A.; Milenković, I.; Kalauzi, A.; Radotić, K. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity. Chem. Biol. Interact., 2015, 232, 85-93.
[65]
Castor, T.P. Phospholipid nanosomes. Curr. Drug Deliv., 2005, 2, 329-340.
[66]
Andresen, T.L.; Davidsen, J.; Begtrup, M.; Mouritsen, O.G.; Jorgensen, K. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem., 2004, 47, 1694-1703.
[67]
Andresen, T.L.; Jensen, S.S.; Kaasgaard, T.; Jorgensen, K. Triggered activation and release of liposomal prodrugs and drugs in cancer tissue by secretory phospholipase A2. Curr. Drug Deliv., 2005, 2, 353-362.
[68]
Aliabadi, H.M.; Shahin, M.; Brocks, D.R.; Lavasanifar, A. Disposition of drugs in block copolymer micelle delivery systems: From discovery to recovery. Clin. Pharmacokinet., 2008, 47, 619-634.
[69]
Lee, K.S.; Chung, H.C. Im, S.A.; Park, Y.H.; Kim, C.S.; Kim, S.B.; Rha, S.Y.; Lee, M.Y.; Ro, J. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat., 2008, 108, 241-250.
[70]
Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K.; Shimada, Y.; Nakahama, H.; Matsumura, Y. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer, 2007, 97, 170-176.
[71]
Couvreur, P.; Kante, B.; Roland, M.; Speiser, P. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharm. Sci., 1979, 68, 1521-1524.
[72]
Peracchia, M.T.; Harnisch, S.; Pinto-Alphandary, H.; Gulik, A.; Dedieu, J.C.; Desmaele, D.; d’Angelo, J.; Muller, R.H.; Couvreur, P. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials, 1999, 20, 1269-1275.
[73]
Kelly, J.Y.; DeSimone, J.M. Shape-specific, monodisperse nano-molding of protein particles. J. Am. Chem. Soc., 2008, 130, 5438-5439.
[74]
Vasey, P.A.; Kaye, S.B.; Morrison, R.; Twelves, C.; Wilson, P.; Duncan, R.; Thomson, A.H.; Murray, L.S.; Hilditch, T.E.; Murray, T.; Burtles, S.; Fraier, D.; Frigerio, E.; Cassidy, J. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. Clin. Cancer Res., 1999, 5, 83-94.
[75]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, (197), 55-86.
[76]
Myc, A.; Douce, T.B.; Ahuja, N.; Kotlyar, A.; Kukowska-Latallo, J.; Thomas, T.P.; Baker, J.R., Jr Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates. Anticancer Drugs, 2008, 19, 143-149.
[77]
Majoros, I.J.; Thomas, T.P.; Mehta, C.B.; Baker, J.R., Jr Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem., 2005, 48, 5892-5899.
[78]
Discher, B.M.; Won, Y.Y.; Ege, D.S.; Lee, J.C.; Bates, F.S.; Discher, D.E.; Hammer, D.A. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999, 284, 1143-1146.
[79]
Ahmed, F.; Pakunlu, R.I.; Srinivas, G.; Brannan, A.; Bates, F.; Klein, M.L.; Minko, T.; Discher, D.E. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharm., 2006, 3, 340-350.
[80]
Gradishar, W.J. Albumin-bound paclitaxel: A next-generation taxane. Expert Opin. Pharmacother., 2006, 7, 1041-1053.
[81]
Nyman, D.W.; Campbell, K.J.; Hersh, E.; Long, K.; Richardson, K.; Trieu, V.; Desai, N.; Hawkins, M.J.; Von Hoff, D.D. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J. Clin. Oncol., 2005, 23, 7785-7793.
[82]
Visaria, R.; Bischof, J.C.; Loren, M.; Williams, B.; Ebbini, E.; Paciotti, G.; Griffin, R. Nanotherapeutics for enhancing thermal therapy of cancer. Int. J. Hyperthermia, 2007, 23, 501-511.
[83]
Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldofner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.A.; Jordan, A. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique. Int. J. Hyperthermia, 2005, 21, 637-647.
[84]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11, 169-183.
[85]
Sengupta, S.; Eavarone, D.; Capila, I.; Zhao, G.; Watson, N.; Kiziltepe, T.; Sasisekharan, R. Temporal targeting of tumor cells and neovasculature with a nanoscale delivery system. Nature, 2005, 436, 568-572.
[86]
Chung, P-H.; Perevedentseva, E.; Cheng, C-L. The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci., 2007, 601(18), 3866-3870.
[87]
Yang, G.W.; Wang, J.B.; Liu, Q.X. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter, 1998, 10, 7923.
[88]
Daulton, T.L.; Kirk, M.A.; Lewis, R.S.; Rehn, L.E. Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature. Nucl. Instrum. Methods Phys. Res. B, 2001, 175-177, 12-20.
[89]
Welz, S.; Gogotsi, Y.; McNallan, M.J. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides. J. Appl. Phys., 2003, 93(7), 4207.
[90]
Frenklach, M.; Howard, W.; Huang, D.; Yuan, J.; Spear, K.; Koba, R. Induced nucleation of diamond powder. Appl. Phys. Lett., 1991, 59(5), 546-548.
[91]
Kumar, A.; Lin, P.A.; Xue, A.; Hao, B.; Yap, Y.K.; Sankaran, R.M. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat. Commun., 2013, 4, 2618.
[92]
Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2012, 7(1), 11-23.
[93]
Schrand, A.M.; Huang, H.; Carlson, C.; Schlager, J.J.; Ōsawa, E.; Hussain, S.M.; Dai, L. Are diamond nanoparticles cytotoxic? J. Phys. Chem. B, 2007, 111(1), 2-7.
[94]
Neugart, F.; Zappe, A.; Jelezko, F.; Tietz, C.; Boudou, J.p.; Krueger, A.; Wrachtrup, J. Dynamics of diamond nanoparticles in solution and cells. Nano Lett., 2007, 7(12), 3588-3591.
[95]
Faklaris, O.; Joshi, V.; Irinopoulou, T.; Tauc, P.; Sennour, M.; Girard, H.; Gesset, C.; Arnault, J-C.; Thorel, A.; Boudou, J-P.; Curmi, P.A.; Treussart, F. Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano, 2009, 3(12), 3955-3962.