[1]
Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D, 2003, 36, 167-181.
[2]
Mekheimer, K.S. Abd elmaboud, Y. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope. Phys. Lett. A, 2008, 372, 1657-1665.
[3]
Habibi, M.R.; Ghassemi, M.; Hamedi, M.H. Analysis of high gradient magnetic field effects on distribution of nanoparticles injected into pulsatile blood stream. J. Magn. Magn. Mater., 2012, 324, 1473-1482.
[4]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9, 193-199.
[5]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 2005, 104, 1129-1137.
[6]
Ebaid, A.; Aly, E.H. Exact analytical solution of the peristaltic nanofluids flow in an asymmetric channel with flexible walls and slip condition: Application to the cancer treatment. Comput. Math. Method M; , 2013, 2013, . Article ID 825376..
[7]
Jackson, S.P.; Bartek, J. The DNA-damage response in human biology and disease. Nature, 2009, 461, 1071-1078.
[8]
Bernier, J.; Hall, E.J.; Giaccia, A. Radiation oncology: A century of achievements. Nature, 2004, 4, 737-747.
[9]
Ellahi, R.; Riaz, A.; Nadeem, S.; Mushtaq, M. Series solutions of magnetohydrodynamic peristaltic flow of a Jeffrey fluid in eccentric cylinders. Appl. Math. Inform. Sci., 2013, 7, 1441-1449.
[10]
Hariharan, P.; Seshadri, V.; Banerjee, R.K. Peristaltic transport of non-Newtonian fluid in a diverging tube with different wave forms. Math. Comput. Model., 2008, 48, 998-1017.
[11]
Akram, S.; Nadeem, S.; Hanif, M. Numerical and analytical treatment on peristaltic flow of Williamson fluid in the occurrence of induced magnetic field. J. Magn. Magn. Mater., 2013, 346, 142-151.
[12]
Abd-Alla, A.M.; Abo-Dahab, S.M.; El-Shahrany, H.D. Effects of rotation and initial stress on peristaltic transport of fourth grade fluid with heat transfer and induced magnetic field. J. Magn. Magn. Mater., 2014, 349, 268-280.
[13]
Sucharitha, G.; Narayana, P.L.; Sandeep, N. Joule heating and wall flexibility effects on the peristaltic flow of magnetohydrodynamic nanofluid. Int. J. Mech. Sci., 2017, 131, 52-62.
[14]
Hasona, W.M.; El-Shekhipy, A.A.; Ibrahim, M.G. Combined effects of magnetohydrodynamic and temperature dependent viscosity on peristaltic flow of Jeffrey Nanofluid through a porous medium: Applications to oil refinement. Int. J. Heat Mass Transf., 2018, 126, 700-714.
[15]
Ellahi, R.; Raiz, A. Analytical solution for MHD flow in a third grade fluid with variable viscosity. Math. Comput. Model., 2010, 52, 1783-1793.
[16]
Ellahi, R.; Gulzar, M.M.; Sheikholeslami, M. Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field. J. Magn. Magn. Mater., 2014, 372, 97-106.
[17]
Helmy, K.A. MHD boundary layer equations for power-Law fluids with variable electric conductivity. Meccanica, 1995, 30, 187-200.
[18]
Adetayo, S.; Oluwole, D. Second law analysis for MHD permeable channel flow with variable electrical conductivity and asymmetric Navier slips. Open Phys., 2015, 13, 100-110.
[19]
Hayat, T.; Abbasi, F.M.; Al-Yami, M.; Monaquel, S. Slip and Joule heating effects in mixed convection peristaltic transport of Nanofluid with Soret and Dufour effects. J. Mol. Liq., 2014, 194, 93-99.
[20]
Prakash, J.; Sharma, A.; Tripathi, D. Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq., 2018, 249, 843-855.
[21]
Bhatti, M.M.; Zeeshan, A.; Ijaz, N.; Beg, O.A.; Kadir, A. Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng. Sci. Technol, 2017, 20, 1129-1139.
[22]
Hayat, T.; Rafiq, M.; Ahmad, B. Combined effects of rotation and thermal radiation on peristaltic transport of Jeffrey fluid. Int. J. Biomath., 2015, 8, 1-21.
[23]
Ayub, S.; Hayat, T.; Asghar, S.; Ahmad, B. Thermal radiation impact in mixed convective peristaltic flow of third grade nanofluid. Res. Phys, 2017, 7, 3687-3695.
[24]
Kothandapani, M.; Prakash, J. Influence of heat source, thermal radiation and inclined magnetic field on peristaltic flow of a hyperbolic tangent Nanofluid in a tapered asymmetric channel. IEEE Trans. NanoBiosci, 2013, 14, 385-392.
[25]
Elogail, M.A.; Elshekhipy, A.A. Approximate analytical solutions to non-linear peristaltic flow with temperature dependent viscosity parameters: Application of multistep differential transform method (MsDTM). Can. J. Phys., 2018, 96, 287-299.
[26]
Srinivas, S.; Gayathri, R.; Kothandapani, M. Mixed convective heat and mass transfer in an asymmetric channel with peristalsis. Commun. Nonlinear. Sci, 2011, 16, 1845-1862.
[27]
Elshehawey, E.F.; Eldabe, N.T.; Elghazy, E.M.; Ebaid, A. Peristaltic transport in an asymmetric channel through a porous medium. Appl. Math. Comput., 2006, 182, 140-150.
[28]
Nadeem, S.; Akram, S. Influence of inclined magnetic field on peristaltic flow of a Jeffrey fluid with heat and mass transfer in a n inclined symmetric or asymmetric channel. Asia-Pac. J. Chem. Eng., 2012, 7, 33-44.
[29]
Akram, S. Effects of slip and heat transfer on a peristaltic flow of a Carreau fluid in a vertical asymmetric channel. Comput. Math. Math. Phys., 2014, 54, 1886-1902.
[30]
Nadeem, S.; Akram, S. Magneto hydrodynamic peristaltic flow of a hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer. Acta Mech. Sinica PRC, 2011, 27, 237-250.
[31]
Hina, S.; Hayat, T.; Alsaedi, A. Slip effects on MHD peristaltic motion with heat and mass transfer. Arab. J. Sci. Eng., 2014, 39, 593-603.
[32]
Wu, H.; Qu, S.; Lin, K.; Qing, Y.; Wang, L.; Fan, Y.; Fu, Q.; Zhang, F. Enhanced low-frequency microwave absorbing property of SCFs@ TiO2 composite. Powder Technol., 2018, 333, 153-159.
[33]
Wu, H.; Wu, G.; Ren, Y.; Yang, L.; Wang, L.; Li, X. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C, 2015, 3, 7669-7676.
[34]
Di, L.; Ming, Q.; Ruisheng, Y.; Shuang, C.; Hongjing, W.; Yuancheng, F.; Quanhong, F.; Fuli, Z. Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci., 2019, 533, 481-491.
[35]
Hayashi, M. Temperature electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ. Monit. Assess., 2004, 96, 119-128.
[36]
Sorensen, J.A.; Glass, G.E. Ion and temperature dependence of electrical conductance for natural waters. Anal. Chem., 1987, 59, 1594-1597.
[37]
Ellahi, R.; Riaz, A.; Nadeem, S.; Ali, M. Peristaltic flow of carreau fluid in a rectangular duct through a porous medium. Math. Probl. Eng., 2012, 2012Article ID 329639
[38]
Akbar, N.S.; Nadeem, S.; Khan, Z.H. Numerical simulation of peristaltic flow of a Carreau Nanofluid in an asymmetric channel. Alex. Eng. J., 2014, 53, 191-197.
[39]
Riaz, A.; Ellahi, R.; Nadeem, S. Peristaltic transport of a Carreau fluid in a compliant rectangular duct. Alex. Eng. J., 2014, 53, 475-484.