[1]
Quihui-Cota, L.; Morales-Figueroa, G.G. Persistence of intestinal parasitic infections during the national De-worming campaign in schoolchildren of Northwestern Mexico: A cross-sectional study. Ann. Gastroenterol., 2012, 25, 57-60.
[2]
Goyal, N.; Rishi, P.; Shukla, G. Lactobacillus Rhamnosus GG antagonizes giardia intestinalis induced oxidative stress and intestinal disaccharidases: An experimental study. World J. Microbiol. Biotechnol., 2013, 29, 1049-1057.
[3]
Coelho, C.H.; Durigan, M.; Leal, D.A.G.; Schneider, A.B.; Franco, R.M.B.; Singer, S.M. Giardiasis as a neglected disease in Brazil: Systematic review of 20 years of publications. PLoS Negl. Trop. Dis., 2017, 11, e0006005.
[4]
Adam, R.D. Biology of Giardia lamblia. Clin. Microbiol. Rev., 2001, 14, 447-475.
[5]
Lujan, H.D.; Touz, M.C. Protein trafficking in Giardia lamblia. Cell. Microbiol., 2003, 5, 427-434.
[6]
Reece, S.E.; Pollitt, L.C.; Colegrave, N.; Gardner, A. The meaning of death: Evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog., 2011, 7, e1002320.
[7]
Ghosh, E.; Ghosh, A.; Ghosh, A.N.; Nozaki, T.; Ganguly, S. Oxidative stress-induced cell cycle blockage and a protease-independent programmed cell death in microaerophilic giardia lamblia. Drug Des. Devel. Ther., 2009, 3, 103-110.
[8]
Correa, G.; Vilela, R.; Menna-Barreto, R.F.; Midlej, V.; Benchimol, M. Cell death induction in giardia lamblia: Effect of beta-lapachone and starvation. Parasitol. Int., 2009, 58, 424-437.
[9]
Turk, B.; Stoka, V. Protease signalling in cell death: Caspases versus cysteine cathepsins. FEBS Lett., 2007, 581, 2761-2767.
[10]
Repnik, U.; Hafner Cesen, M.; Turk, B. . Lysosomal membrane permeabilization in cell death: Concepts and challenges. Mitochondrion 2014. 19 Pt A, 49-57
[11]
DuBois, K.N.; Abodeely, M.; Sakanari, J.; Craik, C.S.; Lee, M.; McKerrow, J.H.; Sajid, M. Identification of the major cysteine protease of giardia and its role in encystation. J. Biol. Chem., 2008, 283, 18024-18031.
[12]
Ch’ng, J.H.; Kotturi, S.R.; Chong, A.G.; Lear, M.J.; Tan, K.S. A programmed cell death pathway in the malaria parasite Plasmodium falciparum has general features of mammalian apoptosis but is mediated by clan CA cysteine proteases. Cell Death Dis., 2010, 1, e26.
[13]
El-Fadili, A.K.; Zangger, H.; Desponds, C.; Gonzalez, I.J.; Zalila, H.; Schaff, C.; Ives, A.; Masina, S.; Mottram, J.C.; Fasel, N. Cathepsin B-like and cell death in the unicellular human pathogen Leishmania. Cell Death Dis., 2010, 1, e71.
[14]
Johansson, A.C.; Appelqvist, H.; Nilsson, C.; Kagedal, K.; Roberg, K.; Ollinger, K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis, 2010, 15, 527-540.
[15]
Chen, Q.Y.; Shi, J.G.; Yao, Q.H.; Jiao, D.M.; Wang, Y.Y.; Hu, H.Z.; Wu, Y.Q.; Song, J.; Yan, J.; Wu, L.J. Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells. Mol. Cell. Biochem., 2012, 359, 389-398.
[16]
Perez-Arriaga, L.; Mendoza-Magana, M.L.; Cortes-Zarate, R.; Corona-Rivera, A.; Bobadilla-Morales, L.; Troyo-Sanroman, R.; Ramirez-Herrera, M.A. Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop., 2006, 98, 152-161.
[17]
de Paula Aguiar, D.; Brunetto Moreira Moscardini, M.; Rezende Morais, E.; Graciano de Paula, R.; Ferreira, P.M.; Afonso, A.; Belo, S.; Tomie Ouchida, A.; Curti, C.; Cunha, W.R.; Rodrigues, V.; Magalhaes, L.G. Curcumin generates oxidative stress and induces apoptosis in adult Schistosoma mansoni worms. PLoS One, 2016, 11, e0167135.
[18]
Nayak, A.; Gayen, P.; Saini, P.; Mukherjee, N.; Babu, S.P. Molecular evidence of curcumin-induced apoptosis in the filarial worm setaria cervi. Parasitol. Res., 2012, 111, 1173-1186.
[19]
Zimmermann, L.; Stephens, A.; Nam, S-Z.; Rau, D.; Kubler, J.; Lozajic, M.; Gabler, F.; Soding, J.; Lupas, A.N.; Alva, V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol., 2018, 430, 2237-2243.
[21]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[22]
Bowie, J.U.; Luthy, R.; Eisenberg, D. A method to identify protein sequences that fold into a known three-dimensional structure. Science, 1991, 253(5016), 164-170.
[23]
Luthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimensional profiles. Nature, 1992, 356, 83-85.
[24]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35, W407-W410.
[25]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17, 355-362.
[26]
Zhou, H.; Skolnick, J. FINDSITE(comb): A threading/structure-based, proteomic-scale virtual ligand screening approach. J. Chem. Inf. Model., 2013, 53, 230-240.
[27]
Keister, D.B. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans. R. Soc. Trop. Med. Hyg., 1983, 77, 487-488.
[28]
Minina, E.A.; Coll, N.S.; Tuominen, H.; Bozhkov, P.V. Metacaspases versus caspases in development and cell fate regulation. Cell Death Differ., 2017, 24, 1314-1325.
[29]
Artus, C.; Maquarre, E.; Moubarak, R.S.; Delettre, C.; Jasmin, C.; Susin, S.A.; Robert-Lézénès, J. CD44 ligation induces caspase-independent cell death via a novel calpain/AIF pathway in human erythroleukemia cells. Oncogene, 2006, 25, 5741-5751.
[30]
Bagchi, S.; Oniku, A.E.; Topping, K.; Mamhoud, Z.N.; Paget, T.A. Programmed cell death in giardia. Parasitology, 2012, 139, 894-903.
[31]
John, B.; Sali, A. comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res., 2003, 31, 3982-3992.
[32]
Sali, A.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
[33]
Li, Y.Y.; Fang, J.; Ao, G.Z. Cathepsin B and L inhibitors: A patent review (2010 - present). Expert Opin. Ther. Pat., 2017, 27, 643-656.
[34]
Reich, M.; Wieczerzak, E.; Jankowska, E.; Palesch, D.; Boehm, B.O.; Burster, T. Specific cathepsin B inhibitor is cell-permeable and activates presentation of TTC in primary human dendritic cells. Immunol. Lett., 2009, 123, 155-159.
[35]
Matsumoto, K.; Mizoue, K.; Kitamura, K.; Tse, W.C.; Huber, C.P.; Ishida, T. Structural basis of inhibition of cysteine proteases by E-64 and its derivatives. Biopolymers, 1999, 51, 99-107.
[36]
Mendoza-Palomares, C.; Biteau, N.; Giroud, C.; Coustou, V.; Coetzer, T.; Authie, E.; Boulange, A.; Baltz, T. Molecular and biochemical characterization of a cathepsin B-like protease family unique to Trypanosoma congolense. Eukaryot. Cell, 2008, 7, 684-697.
[37]
Malagon, D.; Diaz-Lopez, M.; Benitez, R.; Adroher, F.J. Cathepsin B- and L-like cysteine protease activities during the in vitro development of Hysterothylacium aduncum (nematoda: Anisakidae), a worldwide fish parasite. Parasitol. Int., 2010, 59, 89-92.
[38]
Vancompernolle, K.; Van Herreweghe, F.; Pynaert, G.; Van de Craen, M.; De Vos, K.; Totty, N.; Sterling, A.; Fiers, W.; Vandenabeele, P.; Grooten, J. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett., 1998, 438, 150-158.
[39]
Rico, E.; Alzate, J.F.; Arias, A.A.; Moreno, D.; Clos, J.; Gago, F.; Moreno, I.; Dominguez, M.; Jimenez-Ruiz, A. Leishmania infantum expresses a mitochondrial nuclease homologous to EndoG that migrates to the nucleus in response to an apoptotic stimulus. Mol. Biochem. Parasitol., 2009, 163, 28-38.
[40]
Cai, Y.M.; Yu, J.; Ge, Y.; Mironov, A.; Gallois, P. Two proteases with caspase-3-like activity, cathepsin B and proteasome, antagonistically control ER-stress-induced programmed cell death in Arabidopsis. New Phytol., 2018, 218, 1143-1155.