[1]
Thompson, L.G.; Yao, T.; Mosley-Thompson, E.; Davis, M.; Henderson, K.; Lin, P-N. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 2000, 289(5486), 1916-1919.
[2]
Peacock, A.J. ABC of oxygen: Oxygen at high altitude. British Med. J., 1998, 317(7165), 1063.
[3]
Cai, D-W.; Han, L.; Zhang, X-L.; Zhou, H.; Zhu, H. DNA analysis of archaeological sheep remains from China. J. Archaeol. Sci., 2007, 34(9), 1347-1355.
[4]
Wiener, G.; Han, J.; Long, R. The Yak., . 2nd Ed.; FAO regional office for Asia and the Pacific, Bankok, Thailand 2003, 476.
[5]
Long, R.; Apori, S.; Castro, F.; Ørskov, E. Feed value of native forages of the Tibetan Plateau of China. Anim. Feed Sci. Technol., 1999, 80(2), 101-113.
[6]
Simonson, T.S.; Yang, Y.; Huff, C.D.; Yun, H.; Qin, G.; Witherspoon, D.J.; Bai, Z.; Lorenzo, F.R.; Xing, J.; Jorde, L.B. Genetic evidence for high-altitude adaptation in Tibet. Science, 2010, 329(5987), 72-75.
[7]
Durmowicz, A.G.; Hofmeister, S.; Kadyraliev, T.; Aldashev, A.A.; Stenmark, K.R. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J. Appl. Physiol., 1993, 74(5), 2276-2285.
[8]
Gou, W.; Peng, J.; Wu, Q.; Zhang, Q.; Zhang, H.; Wu, C. Expression pattern of heme oxygenase 1 gene and hypoxic adaptation in chicken embryos. Comp. Biochem. Physiol. B, 2014, 174, 23-28.
[9]
Chaillou, T.; Koulmann, N.; Meunier, A.; Malgoyre, A.; Serrurier, B.; Beaudry, M.; Bigard, X. Effect of hypoxia exposure on the phenotypic adaptation in remodelling skeletal muscle submitted to functional overload. Acta Physiol. , 2013, 209(4), 272-282.
[10]
Kon, M.; Ohiwa, N.; Honda, A.; Matsubayashi, T.; Ikeda, T.; Akimoto, T.; Suzuki, Y.; Hirano, Y.; Russell, A.P. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep., 2014, 2(6), e12033.
[11]
Zhang, J.; Chen, L.; Long, K.; Mu, Z. Hypoxia-related gene expression in porcine skeletal muscle tissues at different altitude. Genet. Mol. Res., 2015, 14(3), 11587-11593.
[12]
Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M. The yak genome and adaptation to life at high altitude. Nat. Genet., 2012, 44(8), 946.
[13]
Ge, R-L.; Cai, Q.; Shen, Y-Y.; San, A.; Ma, L.; Zhang, Y.; Yi, X.; Chen, Y.; Yang, L.; Huang, Y. Draft genome sequence of the Tibetan antelope. Nat. Commun., 2013, 4, 1858.
[14]
Cho, Y.S.; Hu, L.; Hou, H.; Lee, H.; Xu, J.; Kwon, S.; Oh, S.; Kim, H-M.; Jho, S.; Kim, S. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun., 2013, 4, 1-7.
[15]
Li, M.; Tian, S.; Jin, L.; Zhou, G.; Li, Y.; Zhang, Y.; Wang, T.; Yeung, C.K.; Chen, L.; Ma, J. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet., 2013, 45(12), 1431.
[16]
Ge, R-L.; Simonson, T.S.; Cooksey, R.C.; Tanna, U.; Qin, G.; Huff, C.D.; Witherspoon, D.J.; Xing, J.; Zhengzhong, B.; Prchal, J.T. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol. Genet. Metab., 2012, 106(2), 244-247.
[17]
Graf, A.; Krebs, S.; Zakhartchenko, V.; Schwalb, B.; Blum, H.; Wolf, E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. , 2014, 111(11), 4139-4144.
[18]
Reed, R.D.; Papa, R.; Martin, A.; Hines, H.M.; Counterman, B.A.; Pardo-Diaz, C.; Jiggins, C.D.; Chamberlain, N.L.; Kronforst, M.R.; Chen, R. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333(6046), 1137-1141.
[19]
Petousi, N.; Robbins, P.A. Human adaptation to the hypoxia of high altitude: The Tibetan paradigm from the pregenomic to the postgenomic era. J. Appl. Physiol., 2013, 116(7), 875-884.
[20]
Ream, M.; Ray, A.M.; Chandra, R.; Chikaraishi, D.M. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(2), R583-R595.
[21]
Tintu, A.; Rouwet, E.; Verlohren, S.; Brinkmann, J.; Ahmad, S.; Crispi, F.; van Bilsen, M.; Carmeliet, P.; Staff, A.C.; Tjwa, M. Hypoxia induces dilated cardiomyopathy in the chick embryo: Mechanism, intervention, and long-term consequences. PLoS One, 2009, 4(4), e5155.
[22]
Cui, K.; Wang, B.; Zhang, N.; Tu, Y.; Ma, T.; Diao, Q. iTRAQ-based quantitative proteomic analysis of alterations in the intestine of Hu sheep under weaning stress. PLoS One, 2018, 13(7), e0200680.
[23]
Yu, S.; Cai, X.; Sun, L.; Zuo, Z.; Mipam, T.; Cao, S.; Shen, L.; Ren, Z.; Chen, X.; Yang, F. Comparative iTRAQ proteomics revealed proteins associated with spermatogenic arrest of cattle yak. J. Proteomics, 2016, 142, 102-113.
[24]
Wang, X.; Yang, R.; Zhou, Y.; Gu, Z. A comparative transcriptome and proteomics analysis reveals the positive effect of supplementary Ca2+ on soybean sprout yield and nutritional qualities. J. Proteomics, 2016, 143, 161-172.
[25]
Lee, R.C.H.; Chu, J.J.H. Proteomics profiling of chikungunya-infected Aedes albopictus C6/36 cells reveal important mosquito cell factors in virus replication. PLoS Negl. Trop. Dis., 2015, 9(3), e0003544.
[26]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45, D362-D368.
[27]
Ferguson, J.E.; Wu, Y.; Smith, K.; Charles, P.; Powers, K.; Wang, H.; Patterson, C. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol. Cell. Biol., 2007, 27(18), 6407-6419.
[28]
Soond, S.M.; Latchman, D.S.; Stephanou, A. STAT signalling in the heart and cardioprotection. Expert Rev. Mol. Med., 2006, 8(15), 1-16.
[29]
Shuai, K.; Liu, B. Regulation of JAK–STAT signaling in the immune system. Nat. Rev. Immunol., 2003, 3(11), 900.
[30]
Kassaar, O.; McMahon, S.A.; Thompson, R.; Botting, C.H.; Naismith, J.H.; Stewart, A.J. Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: Implications for angiogenic regulation. Blood, 2014, 123(12), 1948-1955.
[31]
Vu, T.T.; Zhou, J.; Leslie, B.A.; Stafford, A.R.; Fredenburgh, J.C.; Ni, R.; Qiao, S.; Vaezzadeh, N.; Jahnen-Dechent, W.; Monia, B.P. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein. Blood, 2015, 125(17), 2712-2719.
[32]
van Buul, J.D.; Geerts, D.; Huveneers, S. Rho GAPs and GEFs: Controling switches in endothelial cell adhesion. Cell Adhes. Migr., 2014, 8(2), 108-124.
[33]
Kutys, M.L.; Yamada, K.M. Rho GEFs and GAPs: Emerging integrators of extracellular matrix signaling. Small GTPases, 2015, 6(1), 16-19.
[34]
Cingolani, O.H.; Kirk, J.A.; Seo, K.; Koitabashi, N.; Lee, D-i.; Ramirez-Correa, G.; Bedja, D.; Barth, A.S.; Moens, A.L.; Kass, D.A. Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle. Circ. Res., 2011, 109(12), 1410-1414.
[35]
Frolova, E.G.; Sopko, N.; Blech, L.; Popović, Z.B.; Li, J.; Vasanji, A.; Drumm, C.; Krukovets, I.; Jain, M.K.; Penn, M.S. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J., 2012, 26(6), 2363-2373.
[36]
Dorn, G.W.; Vega, R.B.; Kelly, D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev., 2015, 29(19), 1981-1991.
[37]
Roe, C.R.; Cederbaum, S.D.; Roe, D.S.; Mardach, R.; Galindo, A.; Sweetman, L. Isolated isobutyryl-CoA dehydrogenase deficiency: an unrecognized defect in human valine metabolism. Mol. Genet. Metab. Rep., 1998, 65(4), 264-271.
[38]
Wanders, R.J.; Duran, M.; Loupatty, F.J. Enzymology of the branched-chain amino acid oxidation disorders: The valine pathway. J. Inherit. Metab. Dis., 2012, 35(1), 5-12.
[39]
Xu, Q-Q.; Xiao, F-J.; Sun, H-Y.; Shi, X-F.; Wang, H.; Yang, Y-F.; Li, Y-X.; Wang, L-S.; Ge, R-L. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells. Biochem. Biophys. Res. Commun., 2016, 471(4), 459-465.
[40]
Gomes, K.M.; Campos, J.C.; Bechara, L.R.; Queliconi, B.; Lima, V.M.; Disatnik, M-H.; Magno, P.; Chen, C-H.; Brum, P.C.; Kowaltowski, A.J. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc. Res., 2014, 103(4), 498-508.
[41]
Sun, A.; Zou, Y.; Wang, P.; Xu, D.; Gong, H.; Wang, S.; Qin, Y.; Zhang, P.; Chen, Y.; Harada, M. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J. Am. Heart Assoc., 2014, 3(5), e000779.
[42]
Mráček, T.; Drahota, Z.; Houštěk, J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta Bioenerget., 2013, 1827(3), 401-410.
[43]
Balaban, R.S. Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. Cell Physiol., 1990, 258(3), C377-C389.
[44]
Schultz, K.T.; Grieder, F. Structure and function of the immune system. Toxicol. Pathol., 1987, 15(3), 262-264.
[45]
Aly, H.; Hamed, Z.; Mohsen, L.; Ramy, N.; Arnaoot, H.; Lotfy, A. Serum amyloid A protein and hypoxic ischemic encephalopathy in the newborn. J. Perinatol., 2011, 31(4), 263.
[46]
Eklund, K.K.; Niemi, K.; Kovanen, P. Immune functions of serum amyloid A. Crit. Rev. Immunol., 2012, 32(4), 335-348.
[47]
Nebuloni, M.; Pasqualini, F.; Zerbi, P.; Lauri, E.; Mantovani, A.; Vago, L.; Garlanda, C. PTX3 expression in the heart tissues of patients with myocardial infarction and infectious myocarditis. Cardiovasc. Pathol., 2011, 20(1), e27-e35.
[48]
Graves, K.L.; Vigerust, D.J HP: An inflammatory indicator in cardiovascular disease. Future Cardiol., 2016, 12(4), 471-481.
[49]
Pągowska-Klimek, I.; Cedzyński, M. Mannan-binding lectin in cardiovascular disease. BioMed Res. Int., 2014, 2014, 13.
[50]
Busche, M.N.; Pavlov, V.; Takahashi, K.; Stahl, G.L. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-binding lectin. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(5), H1853-H1859.