[1]
Khoshnam SE, Winlow W, Farzaneh M. The interplay of micrornas in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol 2017; 76(7): 548-61.
[2]
Forouzanfar F, Hosseinzadeh H, Ebrahimzadeh Bideskan A, Sadeghnia HR. Aqueous and ethanolic extracts of Boswellia serrata protect against focal cerebral ischemia and reperfusion injury in rats. Phytother Res 2016; 30(12): 1954-67.
[3]
Beal CC. Gender and stroke symptoms: a review of the current literature. J Neurosci Nurs 2010; 42(2): 80-7.
[4]
Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, et al. Fibroblast growth factor type 1 [FGF1]-overexpressed adipose-derived mesenchaymal stem cells [AD-MSCFGF1] induce neuroprotection and functional recovery in a rat stroke model. Stem Cell Rev 2017; 13(5): 670-85.
[5]
Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med 2011; 17(11): 1391-401.
[6]
Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 2017; 55(3): 206-13.
[7]
Zhao L, Zhou XY, Zhou XG, Cheng R, Li Y, Qiu J. Role of miRNA-210 in hypoxic-ischemic brain edema in neonatal rats. Zhongguo Dang Dai Er Ke Za Zhi 2016; 18(8): 770-4.
[8]
Zhu F, Liu JL, Li JP, Xiao F, Zhang ZX, Zhang L. MicroRNA-124 [miR-124] regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J Mol Neurosci 2014; 52(1): 148-55.
[9]
Xiao S, Ma Y, Zhu H, Sun H, Yin Y, Feng G. miRNA functional synergistic network analysis of mice with ischemic stroke. Neurol Sci 2015; 36(1): 143-8.
[10]
Zhu R, Liu X, Zhu Y, He Z. MiRNAs: potential diagnostic and therapeutic targets for cerebral ischaemia. Neurol Res 2016; 38(1): 86-92.
[11]
Ouyang YB, Stary CM, Yang GY, Giffard R. microRNAs: innovative targets for cerebral ischemia and stroke. Curr Drug Targets 2013; 14(1): 90-101.
[12]
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008; 39(3): 959-66.
[13]
Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci 2011; 3: 1265-72.
[14]
Ekdahl C, Kokaia Z, Lindvall O. Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 2009; 158(3): 1021-9.
[15]
Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol 2006; 147(Suppl. 1): S232-40.
[16]
Bigham A, Shadkhast M, Hassanpour H, Lakzian A, Khalegi M, Asgharzade S. Nitric oxide metabolite levels during the ectopic osteoinduction in rats. Comp Clin Pathol 2009; 18(4): 377-81.
[17]
Shichita T, Sugiyama Y, Ooboshi H, et al. Pivotal role of cerebral interleukin-17–producing γδT cells in the delayed phase of ischemic brain injury. Nat Med 2009; 15(8): 946-50.
[18]
Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Leukoc Biol 2009; 17(7): 97.
[19]
Barone FC, Feuerstein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 1999; 19(8): 819-34.
[20]
Ferrarese C, Mascarucci P, Zoia C, et al. Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab 1999; 19(9): 1004-9.
[21]
Zhu Y, Yang G-Y, Ahlemeyer B, et al. Transforming growth factor-β1 increases bad phosphorylation and protects neurons against damage. J Neurosci 2002; 22(10): 3898-909.
[22]
Caso JR, Moro MA, Lorenzo P, Lizasoain I, Leza JC. Involvement of IL-1β in acute stress-induced worsening of cerebral ischaemia in rats. Eur Neuropsychopharmacol 2007; 17(9): 600-7.
[23]
Kim JS, Gautam SC, Chopp M, et al. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 1995; 56(2): 127-34.
[24]
Kumai Y, Ooboshi H, Takada J, et al. Anti—monocyte chemoattractant protein-1 gene therapy protects against focal brain ischemia in hypertensive rats. J Cereb Blood Flow Metab 2004; 24(12): 1359-68.
[25]
Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res 2008; 30(8): 783-93.
[26]
Zhang R, Chopp M, Zhang Z, Jiang N, Powers C. The expression of P-and E-selectins in three models of middle cerebral artery occlusion. Brain Res 1998; 785(2): 207-14.
[27]
Montaner J, Alvarez-Sabín J, Molina C, et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 2001; 32(8): 1759-66.
[28]
Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 2001; 21(19): 7724-32.
[29]
Park K-P, Rosell A, Foerch C, et al. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 2009; 40(8): 2836-42.
[30]
Bronisz A, Godlewski J, Wallace JA, et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 2011; 14(2): 159-67.
[31]
Philippe L, Alsaleh G, Suffert G, et al. TLR2 expression is regulated by microRNA miR-19 in rheumatoid fibroblast-like synoviocytes. J Immunol 2012; 188(1): 454-61.
[32]
Iyer A, Zurolo E, Prabowo A, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 2012; 7(9): e44789.
[33]
Khoshnam SE, Winlow W, Farzaneh M. The interplay of MicroRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol 2017; 76(7): 548-61.
[34]
Wang Z-k. Liu F-f, Wang Y, Jiang X-m, Yu X-f. Let-7a gene knockdown protects against cerebral ischemia/reperfusion injury. Neural Regen Res 2016; 11(2): 262.
[35]
Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU. 1 pathway. Nat Med 2011; 17(1): 64-70.
[36]
Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC. miR‐155 modulates microglia‐mediated immune response by down‐regulating SOCS‐1 and promoting cytokine and nitric oxide production. Immunology 2012; 135(1): 73-88.
[37]
Tian F, Yuan C, Hu L, Shan S. MicroRNA-93 inhibits inflammatory responses and cell apoptosis after cerebral ischemia reperfusion by targeting interleukin-1 receptor-associated kinase 4. Exp Ther Med 2017; 14(4): 2903-10.
[38]
Wang X, Chen S, Ni J, Cheng J, Jia J, Zhen X. miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis 2018; 9(1): 11.
[39]
Liu Y, Zhang J, Han R, Liu H, Sun D, Liu X. Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. J Clin Neurosci 2015; 22(2): 291-5.
[40]
Zhang L, Li YJ, Wu XY, Hong Z, Wei WS. Micro RNA‐181c negatively regulates the inflammatory response in oxygen‐glucose‐deprived microglia by targeting Toll‐like receptor 4. J Neurochem 2015; 132(6): 713-23.
[41]
Fredman G, Li Y, Dalli J, Chiang N, Serhan CN. Self-limited versus delayed resolution of acute inflammation: temporal regulation of pro-resolving mediators and microRNA. Sci Rep 2012; 2: 639.
[42]
Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J 2011; 25(2): 544-60.
[43]
Forouzanfar F, Afkhami Goli A, Asadpour E, Ghorbani A, Sadeghnia HR. Protective effect of Punica granatum L. against serum/glucose deprivation-induced PC12 cells injury. Evid Based Complement Alternat Med 2013; 13: 716-30.
[44]
Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011; 14(8): 1505-17.
[45]
Asgharzade S, Rabiei Z, Rafieian-Kopaei M. Effects of Matricaria chamomilla extract on motor coordination impairment induced by scopolamine in rats. Asian Pac J Trop Biomed 2015; 5(10): 829-33.
[46]
Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 2011; 18(10): 1628-39.
[47]
Varga ZV, Kupai K, Szűcs G, et al. MicroRNA-25-dependent up-regulation of NADPH oxidase 4 [NOX4] mediates hypercholesterolemia-induced oxidative/nitrative stress and subsequent dysfunction in the heart. J Mol Cell Cardiol 2013; 62: 111-21.
[48]
Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 2014; 1592: 65-72.
[49]
Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407(6805): 770-6.
[50]
Hu Y, Deng H, Xu S, Zhang J. MicroRNAs regulate mitochondrial function in cerebral ischemia-reperfusion injury. Int J Mol Sci 2015; 16(10): 24895-17.
[51]
Niizuma K, Endo H, Nito C, Myer DJ, Chan PH. Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia. Stroke 2009; 40(2): 618-25.
[52]
Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55(3): 310-8.
[53]
4Trapp T, Korhonen L, Besselmann M, Martinez R, Mercer EA, Lindholm D. Transgenic mice overexpressing XIAP in neurons show better outcome after transient cerebral ischemia. Mol Cell Neurosci 2003; 23(2): 302-13.
[54]
Su W, Hopkins S, Nesser NK, et al. The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol 2014; 192(1): 358-66.
[55]
Zhang C, Zhang J, Zhang A, et al. PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol 2010; 37(6): 1621-6.
[56]
Huang W, Liu X, Cao J, Meng F, Li M, Chen B, et al. miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J Mol Neurosci 2015; 55(4): 821-9.
[57]
Siegel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis [XIAP] contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci USA 2011; 108(28): 11662-7.
[58]
Ni J, Wang X, Chen S, et al. MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 2015; 49: 75-85.
[59]
Sun X, Ren Z, Pan Y, Zhang C. Antihypoxic effect of miR-24 in SH-SY5Y cells under hypoxia via downregulating expression of neurocan. Biochem Biophys Res Commun 2016; 477(4): 692-9.
[60]
Zhou X, Su S, Li S, et al. MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro. Brain Res 2016; 1648: 136-43.
[61]
Zhang JF, Shi LL, Zhang L, et al. MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through fas/fasl pathway. J Mol Neurosci 2016; 58(4): 507-16.
[62]
Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, et al. In Vivo Inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 2015; 35(36): 12446-64.
[63]
Chen F, Du Y, Esposito E, et al. Effects of focal cerebral ischemia on exosomal versus serum miR126. Transl Stroke Res 2015; 6(6): 478-84.
[64]
Chen SH, Sun H, Zhang YM, Xu H, Yang Y, Wang FM. Effects of acupuncture at Baihui [GV 20] and Zusanli [ST 36] on peripheral serum expression of MicroRNA 124, laminin and integrin beta1 in rats with cerebral ischemia reperfusion injury. Chin J Integr Med 2016; 22(1): 49-55.
[65]
Chi W, Meng F, Li Y, et al. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B. Neuroscience 2014; 277: 111-22.
[66]
Cui H, Yang L. Analysis of microRNA expression detected by microarray of the cerebral cortex after hypoxic-ischemic brain injury. J Craniofac Surg 2013; 24(6): 2147-52.
[67]
Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 2009; 29(4): 675-87.
[68]
Dhiraj DK, Chrysanthou E, Mallucci GR, Bushell M. miRNAs-19b, -29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke. PLoS One 2013; 8(12): e83717.
[69]
Ding X, Sun B, Huang J, et al. The role of miR-182 in regulating pineal CLOCK expression after hypoxia-ischemia brain injury in neonatal rats. Neurosci Lett 2015; 591: 75-80.
[70]
Garberg HT, Huun MU, Baumbusch LO, Asegg-Atneosen M, Solberg R, Saugstad OD. Temporal profile of circulating micrornas after global hypoxia-ischemia in newborn piglets. Neonatology 2017; 111(2): 133-9.
[71]
Gubern C, Camos S, Ballesteros I, et al. miRNA expression is modulated over time after focal ischaemia: up-regulation of miR-347 promotes neuronal apoptosis. FEBS J 2013; 280(23): 6233-46.
[72]
Gusar VA, Timofeeva AV, Zhanin IS, Shram SI, Pinelis VG. Estimation of time-dependent microRNA expression patterns in brain tissue, leukocytes, and blood plasma of rats under photochemically induced focal cerebral ischemia. Mol Biol 2017; 51(4): 683-95.
[73]
Han X, Ding X, Xu LX, Liu MH, Feng X. Expression profiles of miRNA-182 and Clock mRNA in the pineal gland of neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi 2016; 18(3): 270-6.
[74]
Herzog R, Zendedel A, Lammerding L, Beyer C, Slowik A. Impact of 17beta-estradiol and progesterone on inflammatory and apoptotic microRNA expression after ischemia in a rat model. J Steroid Biochem Mol Biol 2017; 167: 126-34.
[75]
Huang S, Lv Z, Guo Y, et al. Identification of Blood Let-7e-5p as a Biomarker for Ischemic Stroke. PLoS One 2016; 11(10): e0163951.
[76]
Huang W, Liu X, Cao J, et al. miR-134 regulates ischemia/reperfusion injury-induced neuronal cell death by regulating CREB signaling. J Mol Neurosci 2015; 55(4): 821-9.
[77]
Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008; 39(3): 959-66.
[78]
Lee ST, Chu K, Jung KH, et al. MicroRNAs induced during ischemic preconditioning. Stroke 2010; 41(8): 1646-51.
[79]
Li P, Teng F, Gao F, Zhang M, Wu J, Zhang C. Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 2015; 353: 433-47.
[80]
Li SH, Su SY, Liu JL. Differential regulation of microRNAs in patients with ischemic stroke. Curr Neurovasc Res 2015; 12(3): 214-21.
[81]
Liang TY, Lou JY. Increased expression of mir-34a-5p and clinical association in acute ischemic stroke patients and in a rat model. Med Sci Monit 2016; 22: 2950-5.
[82]
Liang Y, Xu J, Wang Y, et al. Inhibition of MiRNA-125b decreases cerebral ischemia/reperfusion injury by targeting CK2alpha/ NADPH oxidase signaling. Cell Physiol Biochem 2018; 45(5): 1818-26.
[83]
Liu FJ, Lim KY, Kaur P, et al. microRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One 2013; 8(6): e66393.
[84]
Liu XS, Chopp M, Zhang RL, et al. MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. PLoS One 2011; 6(8): e23461.
[85]
Ma Q, Zhao H, Tao Z, et al. MicroRNA-181c Exacerbates Brain Injury in Acute Ischemic Stroke. Aging Dis 2016; 7(6): 705-14.
[86]
Miao W, Bao TH, Han JH, et al. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression. Mol Med Rep 2016; 14(3): 2582-8.
[87]
Murphy SJ, Lusardi TA, Phillips JI, Saugstad JA. Sex differences in microRNA expression during development in rat cortex. Neurochem Int 2014; 77: 24-32.
[88]
Siegel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis [XIAP] contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci USA 2011; 108(28): 11662-7.
[89]
Sorensen SS, Nygaard AB, Nielsen MY, Jensen K, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl Stroke Res 2014; 5(6): 711-8.
[90]
Tao J, Liu W, Shang G, et al. MiR-207/352 regulates lysosomal-associated membrane proteins and enzymes following ischemic stroke. Neuroscience 2015; 305: 1-14.
[91]
Tian F, Yuan C, Hu L, Shan S. MicroRNA-93 inhibits inflammatory responses and cell apoptosis after cerebral ischemia reperfusion by targeting interleukin-1 receptor-associated kinase 4. Exp Ther Med 2017; 14(4): 2903-10.
[92]
Wang P, Zhang N, Liang J, Li J, Han S, Li J. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 2015; 93(11): 1756-68.