General Review Article

当前抗炎治疗方法和分泌型磷脂酶A2抑制剂在新型抗炎药物设计中的潜力:2012 - 2018年综述

卷 27, 期 3, 2020

页: [477 - 497] 页: 21

弟呕挨: 10.2174/0929867326666190201120646

价格: $65

摘要

炎症过程是机体对损伤因子的一种自然自卫反应,其作用机制涉及一系列复杂的反应。然而,在某些情况下,这个过程会变成慢性的,对身体造成很大的伤害。因此,近年来,许多抗炎药物被开发出来,旨在降低机体内炎症介质的浓度,这是控制这些异常连锁反应的一种方法。传统抗炎药物的主要作用靶点是环氧化酶(COX),但其使用存在多种副作用。因此,基于这些局限性,人们进行了许多研究,旨在创造具有新的作用机制的新药。从这个意义上说,磷脂酶A2 (PLA2)酶是最突出的。在所有现有的亚型中,分泌型PLA2是抑制剂开发的主要目标,因为许多研究已经证明这种酶参与各种炎症状态,如癌症、阿尔茨海默病和关节炎。最后,为了开发作为sPLA2抑制剂的抗炎药物,已经设计了许多分子。因此,本研究综述了炎症过程和介质、现有的抗炎药物,并简要介绍了PLA2酶,以及作为生产新抗炎药物可能靶点的最新的sPLA2抑制剂的多种结构阵列。

关键词: 磷脂酶A,炎症,新药设计,酶抑制剂,抗炎药,最新的专利。

« Previous
[1]
Karmarkar, D. Modulators of the acute inflammatory response: a dissertation.. 2013.
[2]
Joshi, V.; Umashankara, M.; Ramakrishnan, C.; Nanjaraj Urs, A.N.; Suvilesh, K.N.; Velmurugan, D.; Rangappa, K.S.; Vishwanath, B.S. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase. Arch. Biochem. Biophys., 2016, 598, 28-39.
[http://dx.doi.org/10.1016/j.abb.2016.04.003] [PMID: 27060751]
[3]
Rafaniello, C.; Ferrajolo, C.; Sullo, M.G.; Sessa, M.; Sportiello, L.; Balzano, A.; Manguso, F.; Aiezza, M.L.; Rossi, F.; Scarpignato, C.; Capuano, A. Risk of gastrointestinal complications associated to NSAIDs, low-dose aspirin and their combinations: Results of a pharmacovigilance reporting system. Pharmacol. Res., 2016, 104, 108-114.
[http://dx.doi.org/10.1016/j.phrs.2015.12.026] [PMID: 26739516]
[4]
Ahmadi, A.; Khalili, M.; Olama, Z.; Karami, S.; Nahri-Niknafs, B. Synthesis and study of analgesic and anti-inflammatory activities of amide derivatives of ibuprofen. Mini Rev. Med. Chem., 2017, 17(9), 799-804.
[http://dx.doi.org/10.2174/1389557516666161226155951] [PMID: 28029080]
[5]
Cronstein, B.N.; Weissmann, G. Targets for antiinflammatory drugs. Annu. Rev. Pharmacol. Toxicol., 1995, 35, 449-462.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.002313] [PMID: 7598502]
[6]
Yousefpour, A.; Amjad Iranagh, S.; Nademi, Y.; Modarress, H. Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane. Int. J. Quantum Chem., 2013, 113(15), 1919-1930.
[http://dx.doi.org/10.1002/qua.24415]
[7]
Marnett, L.J. The COXIB experience: a look in the rearview mirror. Annu. Rev. Pharmacol. Toxicol., 2009, 49(1), 265-290.
[http://dx.doi.org/10.1146/annurev.pharmtox.011008.145638] [PMID: 18851701]
[8]
Ramalho, T.C.; Rocha, M.; da Cunha, E.F.F.; Freitas, M.P. The search for new COX-2 inhibitors: a review of 2002 - 2008 patents. Expert Opin. Ther. Pat., 2009, 19(9), 1193-1228.
[http://dx.doi.org/10.1517/13543770903059125] [PMID: 19563267]
[9]
Cannon, C.P.; Cannon, P. J. Physiology. COX-2 inhibitors and cardiovascular risk. Science, 2012, 336(6087), 1386-1387.
[http://dx.doi.org/10.1126/science.1224398] [PMID: 22700906]
[10]
Reid, R.C. Inhibitors of secretory phospholipase A2 group IIA. Curr. Med. Chem., 2005, 12(25), 3011-3026.
[http://dx.doi.org/10.2174/092986705774462860] [PMID: 16378502]
[11]
Quach, N.D.; Arnold, R.D.; Cummings, B.S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem. Pharmacol., 2014, 90(4), 338-348.
[http://dx.doi.org/10.1016/j.bcp.2014.05.022] [PMID: 24907600]
[12]
Medzhitov, R. Inflammation 2010: new adventures of an old flame. Cell, 2010, 140(6), 771-776.
[http://dx.doi.org/10.1016/j.cell.2010.03.006] [PMID: 20303867]
[13]
Allen, J.; Sun, Y.; Woods, J.A. Exercise and the regulation of inflammatory responses. Prog. Mol. Biol. Transl. Sci., 2015, 135, 337-354.
[http://dx.doi.org/10.1016/bs.pmbts.2015.07.003] [PMID: 26477921]
[14]
Zweifach, B.W.; Grant, L.; McCluskey, R.T. The Inflammatory Process; Elsevier Science, 2014.
[15]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[16]
Agarwal, S.; Reddy, G.V.; Reddanna, P. Eicosanoids in inflammation and cancer: the role of COX-2. Expert Rev. Clin. Immunol., 2009, 5(2), 145-165.
[http://dx.doi.org/10.1586/1744666X.5.2.145] [PMID: 20477063]
[17]
Khanapure, S.P.; Garvey, D.S.; Janero, D.R.; Letts, L.G. Eicosanoids in inflammation: biosynthesis, pharmacology, and therapeutic frontiers. Curr. Top. Med. Chem., 2007, 7(3), 311-340.
[http://dx.doi.org/10.2174/156802607779941314] [PMID: 17305573]
[18]
Berry, E.; Liu, Y.; Chen, L.; Guo, A.M. Eicosanoids: Emerging contributors in stem cell-mediated wound healing. Prostaglandins Other Lipid Mediat., 2017, 132, 17-24.
[http://dx.doi.org/10.1016/j.prostaglandins.2016.11.001] [PMID: 27825971]
[19]
Balietti, M.; Giuli, C.; Fattoretti, P.; Fabbietti, P.; Postacchini, D.; Conti, F. Cognitive stimulation modulates platelet total phospholipases A2 activity in subjects with mild cognitive impairment. J. Alzheimers Dis., 2016, 50(4), 957-962.
[http://dx.doi.org/10.3233/JAD-150714] [PMID: 26836161]
[20]
Burke, J.E.; Dennis, E.A. Phospholipase A2 biochemistry. Cardiovasc. Drugs Ther., 2009, 23(1), 49-59.
[http://dx.doi.org/10.1007/s10557-008-6132-9] [PMID: 18931897]
[21]
Ong, W-Y.; Farooqui, T.; Kokotos, G.; Farooqui, A.A. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem. Neurosci., 2015, 6(6), 814-831.
[http://dx.doi.org/10.1021/acschemneuro.5b00073] [PMID: 25891385]
[22]
Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids: Mechanisms of action in health and disease. Rheum. Dis. Clin. North Am., 2016, 42(1), 15-31 [vii..
[http://dx.doi.org/10.1016/j.rdc.2015.08.002] [PMID: 26611548]
[23]
Riedemann, T.; Patchev, A.V.; Cho, K.; Almeida, O.F. Corticosteroids: Way upstream the protagonists and their roles. Mol. Brain, 2010, 3(2)
[http://dx.doi.org/10.1186/1756-6606-3-2] [PMID: 20180948]
[24]
Cata, J.P.; Guerra, C.E.; Chang, G.J.; Gottumukkala, V.; Joshi, G.P. Non-steroidal anti-inflammatory drugs in the oncological surgical population: beneficial or harmful? A systematic review of the literature. Br. J. Anaesth., 2017, 119(4), 750-764.
[http://dx.doi.org/10.1093/bja/aex225] [PMID: 29121285]
[25]
He, B.S.; Wang, J.; Liu, J.; Hu, X.M. Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs: Necessity and opportunities. Chemosphere, 2017, 181, 178-189.
[http://dx.doi.org/10.1016/j.chemosphere.2017.04.084] [PMID: 28437743]
[26]
Boggara, M.B.; Mihailescu, M.; Krishnamoorti, R. Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes. J. Am. Chem. Soc., 2012, 134(48), 19669-19676.
[http://dx.doi.org/10.1021/ja3064342] [PMID: 23134450]
[27]
Badri, W.; Miladi, K.; Nazari, Q.A.; Greige-Gerges, H.; Fessi, H.; Elaissari, A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int. J. Pharm., 2016, 515(1-2), 757-773.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.002] [PMID: 27829170]
[28]
Anelli, M.G.; Scioscia, C.; Grattagliano, I.; Lapadula, G. Old and new antirheumatic drugs and the risk of hepatotoxicity. Ther. Drug Monit., 2012, 34(6), 622-628.
[http://dx.doi.org/10.1097/FTD.0b013e31826a6306] [PMID: 23128910]
[29]
Blanca-Lopez, N.; Perez-Alzate, D.; Canto, G.; Blanca, M. Practical approach to the treatment of NSAID hypersensitivity. Expert Rev. Clin. Immunol., 2017, 13(11), 1017-1027.
[http://dx.doi.org/10.1080/1744666X.2017.1377072] [PMID: 28893093]
[30]
Gaddipati, R.S.; Raikundalia, G.K.; Mathai, M.L. Dual and selective lipid inhibitors of cyclooxygenases and lipoxygenase: A molecular docking study. Med. Chem. Res., 2014, 23(7), 3389-3402.
[http://dx.doi.org/10.1007/s00044-014-0919-y]
[31]
Pyasi, K.; Tufvesson, E.; Moitra, S. Evaluating the role of leukotriene-modifying drugs in asthma management: Are their benefits ‘losing in translation’? Pulm. Pharmacol. Ther., 2016, 41, 52-59.
[http://dx.doi.org/10.1016/j.pupt.2016.09.006] [PMID: 27651322]
[32]
Patrono, C. Cardiovascular effects of nonsteroidal anti-inflammatory drugs. Curr. Cardiol. Rep., 2016, 18(3), 25.
[http://dx.doi.org/10.1007/s11886-016-0702-4] [PMID: 26841787]
[33]
Moodley, I. Review of the cardiovascular safety of COXIBs compared to NSAIDS. Cardiovasc. J. Afr., 2008, 19(2), 102-107.
[PMID: 18516356]
[34]
Ozbakir, B.; Crielaard, B.J.; Metselaar, J.M.; Storm, G.; Lammers, T. Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J. Control. Release, 2014, 190, 624-636.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.039] [PMID: 24878183]
[35]
Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs. N. Engl. J. Med., 2005, 353(16), 1711-1723.
[http://dx.doi.org/10.1056/NEJMra050541] [PMID: 16236742]
[36]
Smoak, K.A.; Cidlowski, J.A. Mechanisms of glucocorticoid receptor signaling during inflammation. Mech. Ageing Dev., 2004, 125(10-11), 697-706.
[http://dx.doi.org/10.1016/j.mad.2004.06.010] [PMID: 15541765]
[37]
Buttgereit, F.; Straub, R.H.; Wehling, M.; Burmester, G-R. Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum., 2004, 50(11), 3408-3417.
[http://dx.doi.org/10.1002/art.20583] [PMID: 15529366]
[38]
Dan, P.; Rosenblat, G.; Yedgar, S. Phospholipase A2 activities in skin physiology and pathology. Eur. J. Pharmacol., 2012, 691(1-3), 1-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.023] [PMID: 22819703]
[39]
Scott, K.F.; Sajinovic, M.; Hein, J.; Nixdorf, S.; Galettis, P.; Liauw, W.; de Souza, P.; Dong, Q.; Graham, G.G.; Russell, P.J. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie, 2010, 92(6), 601-610.
[http://dx.doi.org/10.1016/j.biochi.2010.03.019] [PMID: 20362028]
[40]
Wang, H.; Klein, M.G.; Snell, G.; Lane, W.; Zou, H.; Levin, I.; Li, K.; Sang, B.C. Structure of human GIVD cytosolic phospholipase A2 reveals insights into substrate recognition. J. Mol. Biol., 2016, 428(13), 2769-2779.
[http://dx.doi.org/10.1016/j.jmb.2016.05.012] [PMID: 27220631]
[41]
Kramer, R.M.; Checani, G.C.; Deykin, A.; Pritzker, C.R.; Deykin, D. Solubilization and properties of Ca2+-dependent human platelet phospholipase A2. Biochim. Biophys. Acta, 1986, 878(3), 394-403.
[http://dx.doi.org/10.1016/0005-2760(86)90248-1] [PMID: 3756201]
[42]
Malley, K.R.; Koroleva, O.; Miller, I.; Sanishvili, R.; Jenkins, C.M.; Gross, R.W.; Korolev, S. The structure of IPLA 2 β reveals dimeric active sites and suggests mechanisms of regulation and localization. Nat. Commun., 2018, 9(1), 765.
[http://dx.doi.org/10.1038/s41467-018-03193-0] [PMID: 29472584]
[43]
Mouchlis, V.D.; Limnios, D.; Kokotou, M.G.; Barbayianni, E.; Kokotos, G.; McCammon, J.A.; Dennis, E.A. Development of potent and selective inhibitors for group via calcium-independent phospholipase A2 guided by molecular dynamics and structure-activity relationships. J. Med. Chem., 2016, 59(9), 4403-4414.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00377] [PMID: 27087127]
[44]
Murakami, M.; Taketomi, Y.; Miki, Y.; Sato, H.; Hirabayashi, T.; Yamamoto, K. Recent progress in phospholipase A2 research: from cells to animals to humans. Prog. Lipid Res., 2011, 50(2), 152-192.
[http://dx.doi.org/10.1016/j.plipres.2010.12.001] [PMID: 21185866]
[45]
Hiraoka, M.; Abe, A.; Lu, Y.; Yang, K.; Han, X.; Gross, R.W.; Shayman, J.A. Lysosomal phospholipase A2 and phospholipidosis. Mol. Cell. Biol., 2006, 26(16), 6139-6148.
[http://dx.doi.org/10.1128/MCB.00627-06] [PMID: 16880524]
[46]
Duncan, R.E.; Sarkadi-Nagy, E.; Jaworski, K.; Ahmadian, M.; Sul, H.S. Identification and functional characterization of adipose-specific phospholipase A2 (AdPLA). J. Biol. Chem., 2008, 283(37), 25428-25436.
[http://dx.doi.org/10.1074/jbc.M804146200] [PMID: 18614531]
[47]
Murakami, M.; Taketomi, Y.; Sato, H.; Yamamoto, K. Secreted phospholipase A2 revisited. J. Biochem., 2011, 150(3), 233-255.
[http://dx.doi.org/10.1093/jb/mvr088] [PMID: 21746768]
[48]
Mouchlis, V.D.; Chen, Y.; McCammon, J.A.; Dennis, E.A. Membrane allostery and unique hydrophobic sites promote enzyme substrate specificity. J. Am. Chem. Soc., 2018, 140(9), 3285-3291.
[http://dx.doi.org/10.1021/jacs.7b12045] [PMID: 29342349]
[49]
Murakami, M.; Taketomi, Y. Secreted phospholipase A2 and mast cells. Allergol. Int., 2015, 64(1), 4-10.
[http://dx.doi.org/10.1016/j.alit.2014.07.005] [PMID: 25572553]
[50]
Leistad, L.; Feuerherm, A.J.; Faxvaag, A.; Johansen, B. Multiple phospholipase A2 enzymes participate in the inflammatory process in osteoarthritic cartilage. Scand. J. Rheumatol., 2011, 40(4), 308-316.
[http://dx.doi.org/10.3109/03009742.2010.547872] [PMID: 21417548]
[51]
De Luca, D.; Lopez-Rodriguez, E.; Minucci, A.; Vendittelli, F.; Gentile, L.; Stival, E.; Conti, G.; Piastra, M.; Antonelli, M.; Echaide, M.; Perez-Gil, J.; Capoluongo, E.D. Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants. Crit. Care, 2013, 17(4), R163.
[http://dx.doi.org/10.1186/cc12842] [PMID: 23883784]
[52]
Yamamoto, K.; Isogai, Y.; Sato, H.; Taketomi, Y.; Murakami, M. Secreted phospholipase A2, lipoprotein hydrolysis, and atherosclerosis: integration with lipidomics. Anal. Bioanal. Chem., 2011, 400(7), 1829-1842.
[http://dx.doi.org/10.1007/s00216-011-4864-z] [PMID: 21445663]
[53]
Yedgar, S.; Cohen, Y.; Shoseyov, D. Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim. Biophys. Acta, 2006, 1761(11), 1373-1382.
[http://dx.doi.org/10.1016/j.bbalip.2006.08.003] [PMID: 16978919]
[54]
Dennis, E.A. Introduction to thematic review series: Phospholipases: Central role in lipid signaling and disease. J. Lipid Res., 2015, 56(7), 1245-1247.
[http://dx.doi.org/10.1194/jlr.E061101] [PMID: 26031662]
[55]
Margarucci, L.; Monti, M.C.; Chini, M.G.; Tosco, A.; Riccio, R.; Bifulco, G.; Casapullo, A. The inactivation mechanism of human group IIA phospholipase A(2) by Scalaradial. ChemBioChem, 2012, 13(15), 2259-2264.
[http://dx.doi.org/10.1002/cbic.201200453] [PMID: 23008213]
[56]
Jiang, J.; Neubauer, B.L.; Graff, J.R.; Chedid, M.; Thomas, J.E.; Roehm, N.W.; Zhang, S.; Eckert, G.J.; Koch, M.O.; Eble, J.N.; Cheng, L. Expression of group IIA secretory phospholipase A2 is elevated in prostatic intraepithelial neoplasia and adenocarcinoma. Am. J. Pathol., 2002, 160(2), 667-671.
[http://dx.doi.org/10.1016/S0002-9440(10)64886-9] [PMID: 11839587]
[57]
Pucer, A.; Brglez, V.; Payré, C.; Pungerčar, J.; Lambeau, G.; Petan, T.; Group, X. Group X secreted phospholipase A(2) induces lipid droplet formation and prolongs breast cancer cell survival. Mol. Cancer, 2013, 12(1), 111.
[http://dx.doi.org/10.1186/1476-4598-12-111] [PMID: 24070020]
[58]
Yagami, T.; Yamamoto, Y.; Koma, H. The role of secretory phospholipase A2 in the central nervous system and neurological diseases. Mol. Neurobiol., 2014, 49(2), 863-876.
[http://dx.doi.org/10.1007/s12035-013-8565-9] [PMID: 24113843]
[59]
Yamashita, S.; Yamashita, J.; Ogawa, M. Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br. J. Cancer, 1994, 69(6), 1166-1170.
[http://dx.doi.org/10.1038/bjc.1994.229] [PMID: 8198986]
[60]
Novo Belchor, M.; Hessel Gaeta, H.; Fabri Bittencourt Rodrigues, C.; Ramos da Cruz Costa, C.; de Oliveira Toyama, D.; Domingues Passero, L.F.; Dalastra Laurenti, M.; Hikari Toyama, M. Evaluation of rhamnetin as an inhibitor of the pharmacological effect of secretory phospholipase A2. Molecules, 2017, 22(9), 1441.
[http://dx.doi.org/10.3390/molecules22091441] [PMID: 28858248]
[61]
Sales, T.A.; Marcussi, S.; da Cunha, E.F.F.; Kuca, K.; Ramalho, T.C. Can inhibitors of snake venom phospholipases A2 lead to new insights into anti-inflammatory therapy in humans? a theoretical study. Toxins (Basel), 2017, 9(11), 341.
[http://dx.doi.org/10.3390/toxins9110341] [PMID: 29068410]
[62]
Ku, S-K.; Yang, E-J.; Kang, H.; Jung, B.; Bae, J-S. Inhibitory effect of polyozellin on secretory group IIA phospholipase A2. Arch. Pharm. Res., 2016, 39(2), 271-278.
[http://dx.doi.org/10.1007/s12272-015-0694-4] [PMID: 26659873]
[63]
Ku, S-K.; Lee, H.G.; Bae, J-S. Inhibitory effect of baicalin, baicalein and wogonin on secretory group IIA phospholipase A2. Arch. Pharm. Res., 2015, 38(10), 1865-1872.
[http://dx.doi.org/10.1007/s12272-014-0540-0] [PMID: 25564337]
[64]
Lee, I-C.; Bae, J-S. Inhibitory effect of vicenin-2 and scolymoside on secretory group IIA phospholipase A 2. Animal Cells Syst. (Seoul), 2015, 19(5), 305-311.
[http://dx.doi.org/10.1080/19768354.2015.1087428]
[65]
Lee, W.; Kwak, S.; Lee, H-S.; Na, D.H.; Lee, Y-M.; Bae, J-S. Inhibitory effect of exendin-4 on secretory group IIA phospholipase A2. Biochem. Biophys. Res. Commun., 2015, 459(4), 650-654.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.165] [PMID: 25757907]
[66]
Bukhari, S.N.A.; Lauro, G.; Jantan, I.; Fei Chee, C.; Amjad, M.W.; Bifulco, G.; Sher, H.; Abdullah, I.; Rahman, N.A. Anti-inflammatory trends of new benzimidazole derivatives. Future Med. Chem., 2016, 8(16), 1953-1967.
[http://dx.doi.org/10.4155/fmc-2016-0062] [PMID: 27654499]
[67]
Jung, B.; Kim, J.; Bae, J-S. Dabrafenib, as a novel insight into drug repositioning against secretory group IIa phospholipase A2. Int. J. Pharmacol., 2016, 12(4), 415-421.
[http://dx.doi.org/10.3923/ijp.2016.415.421]
[68]
Gao, X.; Gong, H.; Men, P.; Zhou, L.; Ye, D. Design, synthesis, and biological evaluation of novel dual inhibitors of secretory phospholipase A2 and sphingomyelin synthase. Chin. J. Chem., 2013, 31(9), 1164-1170.
[http://dx.doi.org/10.1002/cjoc.201300079]
[69]
Dileep, K.V.; Remya, C.; Tintu, I.; Haridas, M.; Sadasivan, C. Interactions of selected indole derivatives with phospholipase A2: in silico and in vitro analysis. J. Mol. Model., 2013, 19(4), 1811-1817.
[http://dx.doi.org/10.1007/s00894-012-1741-4] [PMID: 23315198]
[70]
Vasilakaki, S.; Barbayianni, E.; Magrioti, V.; Pastukhov, O.; Constantinou-Kokotou, V.; Huwiler, A.; Kokotos, G. Inhibitors of secreted phospholipase A2 suppress the release of PGE2 in renal mesangial cells. Bioorg. Med. Chem., 2016, 24(13), 3029-3034.
[http://dx.doi.org/10.1016/j.bmc.2016.05.017] [PMID: 27234891]
[71]
Vasilakaki, S.; Pastukhov, O.; Mavromoustakos, T.; Huwiler, A.; Kokotos, G. Small peptides able to suppress prostaglandin E2 generation in renal mesangial cells. Molecules, 2018, 23(1), 158.
[http://dx.doi.org/10.3390/molecules23010158] [PMID: 29342835]
[72]
Mouchlis, V.D.; Magrioti, V.; Barbayianni, E.; Cermak, N.; Oslund, R.C.; Mavromoustakos, T.M.; Gelb, M.H.; Kokotos, G. Inhibition of secreted phospholipases A2 by 2-oxoamides based on α-amino acids: Synthesis, in vitro evaluation and molecular docking calculations. Bioorg. Med. Chem., 2011, 19(2), 735-743.
[http://dx.doi.org/10.1016/j.bmc.2010.12.030] [PMID: 21216150]
[73]
Mahalka, A.K.; Kinnunen, P.K. Class specific peptide inhibitors for secretory phospholipases A2. Biochem. Biophys. Res. Commun., 2013, 436(2), 349-353.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.110] [PMID: 23747420]
[74]
Ye, L.; Dickerson, T.; Kaur, H.; Takada, Y.K.; Fujita, M.; Liu, R.; Knapp, J.M.; Lam, K.S.; Schore, N.E.; Kurth, M.J.; Takada, Y. Identification of inhibitors against interaction between pro-inflammatory sPLA2-IIA protein and integrin αvβ3. Bioorg. Med. Chem. Lett., 2013, 23(1), 340-345.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.080] [PMID: 23164706]
[75]
Liao, C.; Sitzmann, M.; Pugliese, A.; Nicklaus, M.C. Software and resources for computational medicinal chemistry. Future Med. Chem., 2011, 3(8), 1057-1085.
[http://dx.doi.org/10.4155/fmc.11.63] [PMID: 21707404]
[76]
Rabal, O.; Urbano-Cuadrado, M.; Oyarzabal, J. Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Med. Chem., 2011, 3(1), 95-134.
[http://dx.doi.org/10.4155/fmc.10.277] [PMID: 21428828]
[77]
Draheim, S.E.; Bach, N.J.; Dillard, R.D.; Berry, D.R.; Carlson, D.G.; Chirgadze, N.Y.; Clawson, D.K.; Hartley, L.W.; Johnson, L.M.; Jones, N.D.; McKinney, E.R.; Mihelich, E.D.; Olkowski, J.L.; Schevitz, R.W.; Smith, A.C.; Snyder, D.W.; Sommers, C.D.; Wery, J.P. Indole inhibitors of human nonpancreatic secretory phospholipase A2. 3. Indole-3-glyoxamides. J. Med. Chem., 1996, 39(26), 5159-5175.
[http://dx.doi.org/10.1021/jm960487f] [PMID: 8978844]
[78]
Kokotou, M.G.; Limnios, D.; Nikolaou, A.; Psarra, A.; Kokotos, G. Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016). Expert Opin. Ther. Pat., 2017, 27(2), 217-225.
[http://dx.doi.org/10.1080/13543776.2017.1246540] [PMID: 27718763]
[79]
Holmes, M.V.; Simon, T.; Exeter, H.J.; Folkersen, L.; Asselbergs, F.W.; Guardiola, M.; Cooper, J.A.; Palmen, J.; Hubacek, J.A.; Carruthers, K.F.; Horne, B.D.; Brunisholz, K.D.; Mega, J.L.; van Iperen, E.P.A.; Li, M.; Leusink, M.; Trompet, S.; Verschuren, J.J.W.; Hovingh, G.K.; Dehghan, A.; Nelson, C.P.; Kotti, S.; Danchin, N.; Scholz, M.; Haase, C.L.; Rothenbacher, D.; Swerdlow, D.I.; Kuchenbaecker, K.B.; Staines-Urias, E.; Goel, A.; van ’t Hooft, F.; Gertow, K.; de Faire, U.; Panayiotou, A.G.; Tremoli, E.; Baldassarre, D.; Veglia, F.; Holdt, L.M.; Beutner, F.; Gansevoort, R.T.; Navis, G.J.; Mateo Leach, I.; Breitling, L.P.; Brenner, H.; Thiery, J.; Dallmeier, D.; Franco-Cereceda, A.; Boer, J.M.A.; Stephens, J.W.; Hofker, M.H.; Tedgui, A.; Hofman, A.; Uitterlinden, A.G.; Adamkova, V.; Pitha, J.; Onland-Moret, N.C.; Cramer, M.J.; Nathoe, H.M.; Spiering, W.; Klungel, O.H.; Kumari, M.; Whincup, P.H.; Morrow, D.A.; Braund, P.S.; Hall, A.S.; Olsson, A.G.; Doevendans, P.A.; Trip, M.D.; Tobin, M.D.; Hamsten, A.; Watkins, H.; Koenig, W.; Nicolaides, A.N.; Teupser, D.; Day, I.N.M.; Carlquist, J.F.; Gaunt, T.R.; Ford, I.; Sattar, N.; Tsimikas, S.; Schwartz, G.G.; Lawlor, D.A.; Morris, R.W.; Sandhu, M.S.; Poledne, R.; Maitland-van der Zee, A.H.; Khaw, K.T.; Keating, B.J.; van der Harst, P.; Price, J.F.; Mehta, S.R.; Yusuf, S.; Witteman, J.C.M.; Franco, O.H.; Jukema, J.W.; de Knijff, P.; Tybjaerg-Hansen, A.; Rader, D.J.; Farrall, M.; Samani, N.J.; Kivimaki, M.; Fox, K.A.A.; Humphries, S.E.; Anderson, J.L.; Boekholdt, S.M.; Palmer, T.M.; Eriksson, P.; Paré, G.; Hingorani, A.D.; Sabatine, M.S.; Mallat, Z.; Casas, J.P.; Talmud, P.J. Secretory phospholipase A(2)-IIA and cardiovascular disease: a mendelian randomization study. J. Am. Coll. Cardiol., 2013, 62(21), 1966-1976.
[http://dx.doi.org/10.1016/j.jacc.2013.06.044] [PMID: 23916927]
[80]
Ridker, P.M.; Lüscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J., 2014, 35(27), 1782-1791.
[http://dx.doi.org/10.1093/eurheartj/ehu203] [PMID: 24864079]
[81]
Nicholls, S.J.; Kastelein, J.J.P.; Schwartz, G.G.; Bash, D.; Rosenson, R.S.; Cavender, M.A.; Brennan, D.M.; Koenig, W.; Jukema, J.W.; Nambi, V.; Wright, R.S.; Menon, V.; Lincoff, A.M.; Nissen, S.E. VISTA-16 investigators. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA, 2014, 311(3), 252-262.
[http://dx.doi.org/10.1001/jama.2013.282836] [PMID: 24247616]
[82]
Lombardino, J.G.; Lowe, J.A., III The role of the medicinal chemist in drug discovery--then and now. Nat. Rev. Drug Discov., 2004, 3(10), 853-862.
[http://dx.doi.org/10.1038/nrd1523] [PMID: 15459676]
[83]
Ramalho, T.C.; de Castro, A.A.; Silva, D.R.; Silva, M.C.; Franca, T.C.C.; Bennion, B.J.; Kuca, K. Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem., 2016, 23(10), 1041-1061.
[http://dx.doi.org/10.2174/0929867323666160222113504] [PMID: 26898655]
[84]
Wang, P.; Li, Y.; Shao, Q.; Zhou, W.; Wang, K. Targeting human secretory phospholipase A2 with designed peptide inhibitors for inflammatory therapy. J. Drug Target., 2015, 23(2), 140-146.
[http://dx.doi.org/10.3109/1061186X.2014.959019] [PMID: 25237841]
[85]
Tamarit, B.; Theze, J. Use of indole-based compounds to induce or stimulate immune response to treat AIDS in HIVinfected subject, and suppress or reverse HIV-mediated immunodeficiency and restore cluster of differentiation 4 T cell function. WO2017037041-A1, 2017.
[86]
Luo, Ruixue Application of pleurolactone to preparation of drugs for treating inflammations 2016. CN105213371 (A)
[87]
Mehendale, H. M. Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences (NIEHS), 2013. US 20130253060 A1
[88]
Dennis, E.A.; Kokotos, G.; Constantinou-kokotou, V.; David, S. Amides as inhibitors of human secreted phospholipase A2., 2014. US8759392B2.
[89]
Liu, J F Synthetic triterpenoid derivatives., 2012. WO2012027579-A1.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy