[1]
Gleiter, R.; Werz, D.B. Alkynes between main group elements: From dumbbells via rods to squares and tubes. Chem. Rev., 2010, 110(7), 4447-4488.
[2]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[3]
Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev., 2012, 113(1), 813-853.
[4]
Trost, B.M.; Li, C-J. Modern alkyne chemistry: Catalytic and atom-economic transformations; John Wiley & Sons, 2014.
[5]
Stang, P.J.; Diederich, F. Modern acetylene chemistry; John Wiley & Sons, 2008.
[6]
Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev., 2013, 114(3), 1743-1760.
[7]
Trotuş, I-T.; Zimmermann, T.; Schüth, F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem. Rev., 2013, 114(3), 1761-1782.
[8]
Chinchilla, R.; Najera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev., 2013, 114(3), 1783-1826.
[9]
Sobenina, L.N.; Tomilin, D.N.; Trofimov, B.A. C-Ethynylpyrroles: synthesis and reactivity. Russ. Chem. Rev., 2014, 83(6), 475.
[10]
Salvio, R.; Moliterno, M.; Bella, M. Alkynes in organocatalysis. Asian J. Org. Chem., 2014, 3(4), 340-351.
[11]
Heravi, M.M.; Asadi, S.; Nazari, N.; Malekzadeh Lashkariani, B. Developments of Corey-Fuchs reaction in organic and total synthesis of natural products. Curr. Org. Chem., 2015, 19(22), 2196-2219.
[12]
Seyferth, D.; Marmor, R.S.; Hilbert, P. Reactions of dimethylphosphono-substituted diazoalkanes.(MeO) 2P (O) CR transfer to olefins and 1, 3-dipolar additions of (MeO) 2P(O)C(N2) R. J. Org. Chem., 1971, 36(10), 1379-1386.
[13]
Gilbert, J.; Weerasooriya, U. Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem., 1982, 47(10), 1837-1845.
[14]
Fritsch, P. Fritsch-buttenberg-wiechell rearrangement. Liebigs Ann. Chem., 1894, 279, 319-324.
[15]
Buttenberg, W. Condensation des Dichloracetals mit Phenol und Toluol. Justus Liebigs Ann. Chem., 1894, 279(3), 324-337.
[16]
Wiechell, H. Condensation des dichloracetals mit anisol und phenetol. Justus Liebigs Ann. Chem., 1894, 279(3), 337-344.
[17]
Köbrich, G. Eliminations from olefins. Angew. Chem. Int. Ed., 1965, 4(1), 49-68.
[18]
Sonogashira, K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1-2), 46-49.
[19]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[20]
Siemsen, P.; Livingston, R.C.; Diederich, F. Acetylenic coupling: A powerful tool in molecular construction. Angew. Chem. Int. Ed., 2000, 39(15), 2632-2657.
[21]
Glaser, C. Untersuchungen über einige Derivate der Zimmtsäure. Justus Liebigs Ann. Chem., 1870, 154(2), 137-171.
[22]
Glaser, C. Beiträge zur kenntniss des acetenylbenzols. Ber. Deutsch. Chem. Ges., 1869, 2(1), 422-424.
[23]
Eglinton, G.; Galbraith, A. Macrocyclic acetylenic compounds. Part I. Cyclo tetradeca-1: 3-diyne and related compounds. J. Chem. Soc., 1959, 889-896.
[24]
Gore, P. The Friedel-Crafts acylation reaction and its application to polycyclic aromatic hydrocarbons. Chem. Rev., 1955, 55(2), 229-281.
[25]
McKay, C.S.; Kennedy, D.C.; Pezacki, J.P. Studies of multicomponent Kinugasa reactions in aqueous media. Tetrahedron Lett., 2009, 50(17), 1893-1896.
[26]
Engel, D.A.; Dudley, G.B. The Meyer–Schuster rearrangement for the synthesis of α, β-unsaturated carbonyl compounds. Org. Biomol. Chem., 2009, 7(20), 4149-4158.
[27]
Masson, G.; Housseman, C.; Zhu, J. The enantioselective Morita–Baylis–Hillman reaction and its aza counterpart. Angew. Chem. Int. Ed., 2007, 46(25), 4614-4628.
[28]
Kouznetsov, V.V. Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron, 2009, 14(65), 2721-2750.
[29]
Heravi, M.M.; Sadjadi, S. Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron, 2009, 37(65), 7761-7775.
[30]
Heravi, M.M.; Ghanbarian, M.; Ghalavand, N.; Nazari, N. Current applications of the sonogashira reaction in the synthesis of heterocyclic compounds: An update. Curr. Org. Chem., 2018, 22(14), 1420-1457.
[31]
Heravi, M.M.; Vavsari, V.F. Recent applications of intramolecular Diels–Alder reaction in total synthesis of natural products. RSC Advances, 2015, 5(63), 50890-50912.
[33]
Rutledge, T.F. Acetylenic Compounds; Preparation And Substitution Reactions; Van Nostromd Reinhold Inc.: US, 1968.
[34]
Rutledge, T.F. Acetylenes and Allenes: Addition, Cyclization, and Polymerization Reactions; Reinhold Book Corp: CA, US, 1969.
[35]
Viehe, H.G. Chemistry of Acetylenes; Marcel Dekker, New York, Vol. 51.. , 1969.
[36]
Brandsma, L. Preparative Acetylenic Chemistry; Elsevier: Amsterdam, Vol. 34.. , 2013.
[37]
Hickinbottom, W.J. Reactions of Organic Compounds; Longmans, Green, 1957.
[38]
Migrdichian, V. Organic Synthesis: Open-chain Saturated Compounds; Reinhold Publishing Corporation: London, Vol. 1. , 1957.
[39]
Buehler, C.; Pearson, D. Survey of Organic Syntheses; New Jersey, USA, Vol 1-2. , 1970.
[40]
Hilgetag, G.; Martini, A. Weygand/Hilgetag Preparative Organic Chemistry; John Wiley & Sons: Toronoto, Canada, 1972.
[41]
House, H.O. Modern Synthetic Reactions., 1972.
[42]
Seyferth, D. New Applications of Organometallic Reagents in Organic Synthesis; Elsevier Scientific Pub. Co., 1976.
[43]
Hudrlik, P.F.; Hudrlik, A.M. Applications of acetylenes in organic synthesis. The Carbon–Carbon Triple Bond (1978) Part 1 1978, 1 199-273
[44]
Gilmore, K.; Alabugin, I.V. Cyclizations of alkynes: Revisiting Baldwin’s rules for ring closure. Chem. Rev., 2011, 111(11), 6513-6556.
[46]
Heravi, M.M.; Ghalavand, N.; Ghanbarian, M.; Mohammadkhani, L. Applications of Mitsunobu Reaction in total synthesis of natural products. Appl. Organomet. Chem., 2018, 32(9), e4464.
[47]
Heravi, M.M.; Mohammadkhani, L. Recent applications of Stille reaction in total synthesis of natural products: An update. J. Organomet. Chem., 2018, 869.
[48]
Heravi, M.M.; Zadsirjan, V.; Malmir, M. Application of the Asymmetric Pictet–Spengler Reaction in the total synthesis of natural products and relevant biologically active compounds. Molecules, 2018, 23(4), 943.
[49]
Koshvandi, A.T.K.; Heravi, M.M.; Momeni, T. Current applications of suzuki–miyaura coupling reaction in the total synthesis of natural products: An update. Appl. Organomet. Chem., 2018, 32(3), e4210.
[50]
Heravi, M.M.; Lashaki, T.B.; Fattahi, B.; Zadsirjan, V. Application of asymmetric Sharpless aminohydroxylation in total synthesis of natural products and some synthetic complex bio-active molecules. RSC Advances, 2018, 8(12), 6634-6659.
[51]
Heravi, M.M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T.B. Applications of sharpless asymmetric dihydroxylation in the total synthesis of natural products. Tetrahedron Asymmetry, 2017, 28(8), 987-1043.
[52]
Heravi, M.M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Advances, 2017, 7(83), 52852-52887.
[53]
Heravi, M.M.; Zadsirjan, V.; Farajpour, B. Applications of oxazolidinones as chiral auxiliaries in the asymmetric alkylation reaction applied to total synthesis. RSC Advances, 2016, 6(36), 30498-30551.
[54]
Heravi, M.M.; Lashaki, T.B.; Poorahmad, N. Applications of sharpless asymmetric epoxidation in total synthesis. Tetrahedron Asymmetry, 2015, 26(8-9), 405-495.
[55]
Heravi, M.M.; Ahmadi, T.; Ghavidel, M.; Heideri, B.; Hamidi, H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Advances, 2015, 5(123), 101999-102075.
[56]
Heravi, M.M.; Nazari, N. Bischler-Napieralski reaction in total synthesis of isoquinoline-based natural products. An old reaction, a new application. Curr. Org. Chem., 2015, 19(24), 2358-2408.
[57]
Heravi, M.M.; Hashemi, E.; Azimian, F. Recent developments of the Stille reaction as a revolutionized method in total synthesis. Tetrahedron, 2014, 1(70), 7-21.
[58]
M, Heravi. M.; Zadsirjan, V.; Bozorgpour Savadjani, Z. Applications of Mannich reaction in total syntheses of natural products. Curr. Org. Chem., 2014, 18(22), 2857-2891.
[59]
Heravi, M.M.; Hashemi, E. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron, 2012, 45(68), 9145-9178.
[60]
Heravi, M.M.; Fazeli, A. Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds. Heterocycles, 2010, 81(9), 1979-2026.
[61]
Heravi, M.M.; Moradi, R.; Malmir, M. Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds: An update. Curr. Org. Chem., 2018, 22(2), 165-198.
[62]
Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: An update. Mol. Divers., 2018, 22(3), 751-767.
[63]
Heravi, M.M.; Hashemi, E. Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh. Chem., 2012, 143(6), 861-880.
[64]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Pd@ HNTs-CDNS-gC 3 N 4: A novel heterogeneous catalyst for promoting ligand and copper-free Sonogashira and Heck coupling reactions, benefits from halloysite and cyclodextrin chemistry and gC3N4 contribution to suppress Pd leaching. Carbohydr. Polym., 2018, 186, 25-34.
[65]
Sadjadi, S.; Heravi, M.M.; Raja, M. Combination of carbon nanotube and cyclodextrin nanosponge chemistry to develop a heterogeneous Pd-based catalyst for ligand and copper free C-C coupling reactions. Carbohydr. Polym., 2018, 185, 48-55.
[66]
Sadjadi, S.; Malmir, M.; Heravi, M.M.; Kahangi, F.G. Biocompatible starchhalloysite
hybrid: An efficient support for immobilizing Pd species and developing
a heterogeneous catalyst for ligand and copper free coupling reactions. Int. J. Biol. Macromol, 2018, 118 (Pt B), 1903-1911.
[67]
Sadjadi, S.; Heravi, M.M.; Kazemi, S.S. Ionic liquid decorated chitosan hybridized with clay: A novel support for immobilizing Pd nanoparticles. Carbohydr. Polym., 2018, 200, 183-190.
[68]
Sadjadi, S.; Lazzara, G.; Malmir, M.; Heravi, M.M. Pd nanoparticles immobilized on the poly-dopamine decorated halloysite nanotubes hybridized with N-doped porous carbon monolayer: A versatile catalyst for promoting Pd catalyzed reactions. J. Catal., 2018, 366, 245-257.
[69]
Heravi, M.M.; Hashemi, E.; Beheshtiha, Y.S.; Ahmadi, S.; Hosseinnejad, T. PdCl2 on modified poly (styrene-co-maleic anhydride): A highly active and recyclable catalyst for the Suzuki–Miyaura and Sonogashira reactions. J. Mol. Catal.A Chem., 2014, 394, 74-82.
[71]
Heravi, M.M.; Hamidi, H.; Zadsirjan, V. Recent applications of click reaction in the syntheses of 1, 2, 3-triazoles. Curr. Org. Synth., 2014, 11(5), 647-675.
[72]
Heravi, M.M.; Hajiabbasi, P. Recent advances in C-heteroatom bond forming by asymmetric Michael addition. Mol. Divers., 2014, 18(2), 411-439.
[73]
Heravi, M.M.; Hashemi, E.; Ghobadi, N. Development of recent total syntheses based on the Heck reaction. Curr. Org. Chem., 2013, 17(19), 2192-2224.
[74]
Heravi, M.M.; Faghihi, Z. McMurry coupling of aldehydes and ketones for the formation of heterocyles via olefination. Curr. Org. Chem., 2012, 16(18), 2097.
[75]
Heravi, M.M.; Asadi, S.; Azarakhshi, F. Recent applications of Doebner, Doebner-von Miller and Knoevenagel-Doebner reactions in organic syntheses. Curr. Org. Synth., 2014, 11(5), 701-731.
[76]
Heravi, M.M.; Bakhtiari, A.; Faghihi, Z. Applications of Barton-McCombie reaction in total syntheses. Curr. Org. Synth., 2014, 11(6), 787-823.
[77]
Heravi, M.M.; Khaghaninejad, S.; Mostofi, M. Pechmann reaction in the synthesis of coumarin derivatives. In: Advances in Heterocyclic Chemistry; Elsevier, 2014; pp. 1-50.
[78]
Huisgen, R.; Szeimies, G.; Möbius, L. 1.3‐Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC‐Mehrfachbin-dungen. Chem. Ber., 1967, 100(8), 2494-2507.
[79]
Wang, Q.; Chittaboina, S.; Barnhill, H.N. Highlights in organic chemistry advances in 1, 3-dipolar cycloaddition reaction of azides and alkynes-a prototype of “click” chemistry. Lett. Org. Chem., 2005, 2(4), 293-301.
[82]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., 2002, 114(14), 2708-2711.
[84]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[85]
Rodionov, V.O.; Fokin, V.V.; Finn, M. Mechanism of the ligand‐free cui‐catalyzed azide–alkyne cycloaddition reaction. Angew. Chem., 2005, 117(15), 2250-2255.
[86]
Lewis, W.G.; Magallon, F.G.; Fokin, V.V.; Finn, M. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc., 2004, 126(30), 9152-9153.
[87]
Heravi, M.M.; Bakavoli, M. Synthesis of a novel heterocyclic system, thiazolo [3, 2-d][1, 2, 4] triazine. 1995, J. Chem. Res. Synopses, (11), 1995, 480- 481
[88]
Hotha, S.; Anegundi, R.I.; Natu, A.A. Expedient synthesis of 1, 2, 3-triazole-fused tetracyclic compounds by intramolecular Huisgen (‘click’) reactions on carbohydrate-derived azido-alkynes. Tetrahedron Lett., 2005, 46(27), 4585-4588.
[89]
Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, A.A. Click chemistry reactions in medicinal chemistry: Applications of the 1, 3‐dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 2008, 28(2), 278-308.
[90]
Caramella, P.; Grunanger, P. 1, 3-Dipolar Cycloaddition Chemistry; Padwa, A. New York: Wiley:. , 1984. Vol. 1.
[91]
Sarkar, A.; Mukherjee, T.; Kapoor, S. PVP-stabilized copper nanoparticles: A reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J. Phys. Chem. C, 2008, 112(9), 3334-3340.
[92]
Borah, B.J.; Dutta, D.; Saikia, P.P.; Barua, N.C.; Dutta, D.K. Stabilization of Cu (0)-nanoparticles into the nanopores of modified montmorillonite: An implication on the catalytic approach for “Click” reaction between azides and terminal alkynes. Green Chem., 2011, 13(12), 3453-3460.
[93]
Heravi, M.M.; Beheshtiha, Y.S.; Nami, N.; Ghassemzadeh, M. A simple and efficient method for the unusual regioselective synthesis of thiazolopyrimidines. Phosphorus Sulfur Silicon Relat. Elem., 2000, 161(1), 71-74.
[94]
Nakamura, T.; Terashima, T.; Ogata, K.; Fukuzawa, S-I. Copper (I) 1, 2, 3-triazol-5-ylidene complexes as efficient catalysts for click reactions of azides with alkynes. Org. Lett., 2011, 13(4), 620-623.
[95]
Liang, L.; Ruiz, J.; Astruc, D. The efficient Copper (I)(hexabenzyl) tren catalyst and dendritic analogues for green “click” reactions between azides and alkynes in organic solvent and in water: positive dendritic effects and monometallic mechanism. Adv. Synth. Catal., 2011, 353(18), 3434-3450.
[96]
Wrona-Piotrowicz, A.; Plażuk, D.; Domagała, S.; Zakrzewski, J. Synthesis of ferrocenyl-and pyrenyl-thioimidates of terminal acetylenes.” Click” reaction with 3-azido-3-deoxythymidine affording redox-active and fluorescent thymidine conjugates. ARKIVOC, 2012, 412-420.
[97]
Kónya, K.; Fekete, S.; Ábrahám, A.; Patonay, T. α-Azido ketones. Part 7: synthesis of 1, 4-disubstituted triazoles by the “click” reaction of various terminal acetylenes with phenacyl azides or α-azidobenzo (hetera) cyclanones. Mol. Divers., 2012, 16(1), 91-102.
[98]
Liu, J.; Liu, M.; Yue, Y.; Yao, M.; Zhuo, K. Environmental friendly azide‐alkyne cycloaddition reaction of azides, alkynes, and organic halides or epoxides in water: efficient” Click” synthesis of 1, 2, 3‐triazole derivatives by Cu catalyst. Chin. J. Chem., 2012, 30(3), 644-650.
[99]
Evangelio, E.; Rath, N.P.; Mirica, L.M. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: An inorganic click reaction for metalloenzyme inhibitor synthesis. Dalton Trans., 2012, 41(26), 8010-8021.
[100]
Kemmerich, T.; Nelson, J.H.; Takach, N.E.; Boebme, H.; Jablonski, B.; Beck, W. 1, 3-Dipolar cycloadditions to coordinated azide in cobalt chelate complexes of the type LCo (chelate) N3. Inorg. Chem., 1982, 21(3), 1226-1232.
[101]
Bing-tai, H.; Nelson, J.H.; Milosavljević, E.B.; Beck, W.; Kemmerich, T. Kinetics of 1, 3-dipolar cycloadditions of dimethylacetylenedicarboxylate to LCo (AcAc) 2N3. Inorg. Chim. Acta, 1987, 133(2), 267-274.
[102]
Paul, P.; Nag, K. Sulfur-nitrogen-bonded metal chelates. 18. 1, 3-Dipolar cycloadditions to coordinated azide in nickel (II) complexes of the types [Ni (SNN)(N3)] and [SNN) Ni (N3) Ni (NNS)](ClO4. Inorg. Chem., 1987, 26(18), 2969-2974.
[103]
Herberhold, M.; Goller, A.; Milius, W. Pentamethylcyclopentadienyl‐tantal (V)‐Komplexe (Cp* Ta) mit 1, 2, 3‐Triazolato‐Liganden. Z. Anorg. Allg. Chem., 2003, 629(7‐8), 1162-1168.
[104]
Chang, C-W.; Lee, G-H. Synthesis of ruthenium triazolato and tetrazolato complexes by 1, 3-dipolar cycloadditions of ruthenium azido complex with alkynes and alkenes and regiospecific alkylation of triazolates. Organometallics, 2003, 22(15), 3107-3116.
[105]
Busetto, L.; Marchetti, F.; Zacchini, S.; Zanotti, V. Diiron and diruthenium aminocarbyne complexes containing pseudohalides: Stereochemistry and reactivity. Inorg. Chim. Acta, 2005, 358(4), 1204-1216.
[106]
Singh, K.S.; Svitlyk, V.; Mozharivskyj, Y. Mono and dinuclear areneruthenium (II) triazoles by 1, 3-dipolar cycloadditions to a coordinated azide in ruthenium (II) compounds. Dalton Trans., 2011, 40(5), 1020-1023.
[107]
Bauer, J.A.K.; Becker, T.M.; Orchin, M. The preparation and crystal structures of some tricarbonylmanganese (I) octahedral complexes containing the 1, 1-dimethylamino-2, 2-diphenylphosphinoethane ligand. J. Chem. Crystallogr., 2004, 34(12), 843-849.
[110]
Pachhunga, K.; Carroll, P.J.; Rao, K.M. Reactivity study of cyclopentadienyl osmium (II) bisphosphine azido complexes with activated alkynes and nitriles: Isolation of osmium triazolato and tetrazolato complexes by 1, 3-dipolar addition. Inorg. Chim. Acta, 2008, 361(7), 2025-2031.
[112]
Del Castillo, T.J.; Sarkar, S.; Abboud, K.A.; Veige, A.S. 1, 3-Dipolar cycloaddition between a metal–azide (Ph3PAuN3) and a metal–acetylide (Ph3PAuC [triple bond, length as m-dash] CPh): An inorganic version of a click reaction. Dalton Trans., 2011, 40(32), 8140-8144.
[113]
Grapperhaus, C.A.; Mienert, B.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Mononuclear (nitrido) iron (V) and (oxo) iron (IV) complexes via photolysis of [(cyclam-acetato) FeIII (N3)]+ and ozonolysis of [(cyclam-acetato) FeIII (O3SCF3)]+ in water/acetone mixtures. Inorg. Chem., 2000, 39(23), 5306-5317.
[114]
Meza-Aviña, M.E.; Patel, M.K.; Lee, C.B.; Dietz, T.J.; Croatt, M.P. Selective formation of 1, 5-substituted sulfonyl triazoles using acetylides and sulfonyl azides. Org. Lett., 2011, 13(12), 2984-2987.
[115]
Hyatt, I.D.; Meza-Aviña, M.E.; Croatt, M.P. Alkynes and azides: Not just for click reactions. Synlett, 2012, 23(20), 2869.
[116]
Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.
[117]
Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1, 5-disubstituted-4-magnesio-1, 2, 3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.
[118]
Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-metal-free catalytic synthesis of 1, 5-diaryl-1, 2, 3-triazoles. Org. Lett., 2010, 12(19), 4217-4219.
[119]
Cassidy, M.P.; Raushel, J.; Fokin, V.V. Practical synthesis of amides from in situ generated copper (I) acetylides and sulfonyl azides. Angew. Chem., 2006, 118(19), 3226-3229.
[120]
Yoo, E.J.; Ahlquist, M.R.; Bae, I.; Sharpless, K.B.; Fokin, V.V.; Chang, S. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway. J. Org. Chem., 2008, 73(14), 5520-5528.
[121]
Yoo, E.J.; Chang, S. A new route to indolines by the Cu-catalyzed cyclization reaction of 2-ethynylanilines with sulfonyl azides. Org. Lett., 2008, 10(6), 1163-1166.
[122]
Yamauchi, M.; Miura, T.; Murakami, M. Preparation of 2-sulfonyl-1, 2, 3-triazoles by base-promoted 1, 2-rearrangement of a sulfonyl group. Heterocycles, 2010, 80(1), 177-181.
[123]
Loren, J.C.; Sharpless, K.B. The banert cascade: A synthetic sequence to polyfunctional NH-1, 2, 3-triazoles. Synthesis, 2005, 2005(09), 1514-1520.
[124]
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1, 2, 3-triazole derivatives by the ‘Click’reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15(2), 389-397.
[125]
Fazeli, A.; Oskooie, H.A.; Beheshtiha, Y.S.; Heravi, M.M.; Moghaddam, F.M.; Foroushani, B.K. Synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from aromatic a-bromoketones, sodium azide and terminal acetylenes via cu/cu (otf) 2-catalyzed click reaction under microwave irradiation. Z. Naturforsch. B, 2013, 68(4), 391-396.
[126]
Kolb, H.C.; Finn, M.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[127]
Siemeling, U.; Rother, D. Evaluation of heterocumulenic ferrocene derivatives for “click” chemistry type reactions. J. Organomet. Chem., 2009, 694(7-8), 1055-1058.
[129]
Casarrubios, L.; de la Torre, M.C.; Sierra, M.A. The “Click” reaction involving metal azides, metal alkynes, or both: An exploration into multimetal structures. Chem. Eur. J, 2013, 19(11), 3534-3541.
[130]
Pellico, D.; Gómez‐Gallego, M.; Ramírez‐López, P.; Mancheño, M.J.; Sierra, M.A.; Torres, M.R. The sequential building of chiral macrocyclic bis‐β‐lactams by double Staudinger–Cu‐catalyzed azide–alkyne cycloadditions. Chem. Eur. J., 2010, 16(5), 1592-1600.
[131]
Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Nishiyama, H.; Itoh, K. Synthesis of benzo-fused lactams and lactones via Ru (II)-catalyzed cycloaddition of amide-and ester-tethered α, ω-diynes with terminal alkynes: electronic directing effect of internal conjugated carbonyl group. Org. Biomol. Chem., 2004, 2(9), 1287-1294.
[132]
Gauthier, S.; Weisbach, N.; Bhuvanesh, N.; Gladysz, J.A. “Click” Chemistry in metal coordination spheres: Copper (I)-catalyzed 3+ 2 cycloadditions of benzyl azide and platinum polyynyl complexes trans-(C6F5)(p-tol3P)2Pt (C=C)n H(n= 2-6). Organometallics, 2009, 28(19), 5597-5599.
[133]
Gao, M.; He, C.; Chen, H.; Bai, R.; Cheng, B.; Lei, A. Synthesis of pyrroles by Click reaction: Silver‐catalyzed cycloaddition of terminal alkynes with isocyanides. Angew. Chem., 2013, 125(27), 7096-7099.
[134]
Yoshida, S.; Hatakeyama, Y.; Johmoto, K.; Uekusa, H.; Hosoya, T. Transient protection of strained alkynes from Click reaction via complexation with copper. J. Am. Chem. Soc., 2014, 136(39), 13590-13593.
[135]
Rodionov, V.O.; Presolski, S.I.; Díaz Díaz, D.; Fokin, V.V.; Finn, M. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: A mechanistic report. J. Am. Chem. Soc., 2007, 129(42), 12705-12712.
[136]
Wang, X.; Hu, H.; Wang, W.; Qin, A.; Sun, J.Z.; Tang, B.Z. A throughway to functional poly (disubstituted acetylenes): a combination of the activated ester strategy with click reaction. Polym. Chem., 2015, 6(46), 7958-7963.
[137]
Tong, L.; Qin, A.; Zhang, X.; Mao, Y.; Sun, J.; Tang, B.Z. Post-functionalization of disubstituted polyacetylenes via click chemistry. Sci. China Chem., 2011, 54(12), 1948-1954.
[138]
Elamari, H.; Jlalia, I.; Louet, C.; Herscovici, J.; Meganem, F.; Girard, C. On the reactivity of activated alkynes in copper and solvent-free Huisgen’s reaction. Tetrahedron Asymmetry, 2010, 21(9-10), 1179-1183.
[139]
Wang, M.; Zhu, R.; Fan, Z.; Fu, Y.; Feng, L.; Yao, J.; Maggiani, A.; Xia, Y.; Qu, F.; Peng, L. Bitriazolyl acyclonucleosides synthesized via Huisgen reaction using internal alkynes show antiviral activity against tobacco mosaic virus. Bioorg. Med. Chem. Lett., 2011, 21(1), 354-357.
[140]
Zhu, R.; Wang, M.; Xia, Y.; Qu, F.; Neyts, J.; Peng, L. Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorg. Med. Chem. Lett., 2008, 18(11), 3321-3327.
[141]
Wang, M.; Xia, Y.; Fan, Y.; Rocchi, P.; Qu, F.; Iovanna, J.L.; Peng, L. A novel arylethynyltriazole acyclonucleoside inhibits proliferation of drug-resistant pancreatic cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(20), 5979-5983.
[142]
Hohloch, S.; Scheiffele, D.; Sarkar, B. Activating azides and alkynes for the Click reaction with [Cu(aNHC)2I] or [Cu(aNHC)2]+(aNHC = Triazole‐Derived Abnormal Carbenes): Structural characterization and catalytic properties. Eur. J. Inorg. Chem., 2013, 2013(22‐23), 3956-3965.
[143]
Chakraborty, A.; Dey, S.; Sawoo, S.; Adarsh, N.; Sarkar, A. Regioselective 1, 3-dipolar cycloaddition reaction of azides with alkoxy alkynyl fischer carbene complexes. Organometallics, 2010, 29(23), 6619-6622.
[144]
Suzuki, N.; Yasaki, S.; Yasuhara, A.; Sakamoto, T. Convenient indole synthesis from 2-iodoanilines and terminal alkynes by the sequential Sonogashira reaction and the cyclization reaction promoted by tetrabutylammonium fluoride (TBAF). Chem. Pharm. Bull., 2003, 51(10), 1170-1173.
[145]
Miao, H.; Yang, Z. Regiospecific carbonylative annulation of iodophenol acetates and acetylenes to construct the flavones by a new catalyst of palladium-thiourea-dppp complex. Org. Lett., 2000, 2(12), 1765-1768.
[146]
Feuerstein, M.; Doucet, H.; Santelli, M. Sonogashira reaction of heteroaryl halides with alkynes catalysed by a palladium-tetraphosphine complex. J. Mol. Catal.A Chem., 2006, 256(1-2), 75-84.
[147]
Luo, Y.; Wu, J. Copper-free Sonogashira reactions of 4-hydroxycoumarins with alkynes. Tetrahedron, 2009, 65(34), 6810-6814.
[148]
Wu, J.; Liao, Y.; Yang, Z. Synthesis of 4-substituted coumarins via the palladium-catalyzed cross-couplings of 4-tosylcoumarins with terminal acetylenes and organozinc reagents. J. Org. Chem., 2001, 66(10), 3642-3645.
[149]
Gelman, D.; Buchwald, S.L. Efficient palladium‐catalyzed coupling of aryl chlorides and tosylates with terminal alkynes: Use of a copper cocatalyst inhibits the reaction. Angew. Chem., 2003, 115(48), 6175-6178.
[150]
Tougerti, A.; Negri, S.; Jutand, A. Mechanism of the copper‐free palladium‐catalyzed Sonagashira reactions: multiple role of amines. Chem. Eur. J., 2007, 13(2), 666-676.
[151]
Tougerti, A.; S , Negri.; A, Jutand. Mechanism of the Copper‐Free Palladium‐Catalyzed Sonagashira Reactions: Multiple Role of Amines. Chem.–A Eur. J., 2007, 13(2), 666-676.
[152]
Alves, D.; dos Reis, J.S.; Luchese, C.; Nogueira, C.W.; Zeni, G. Synthesis of 3‐alkynylselenophene derivatives by a copper‐free Sonogashira cross‐coupling reaction. Eur. J. Org. Chem., 2008, 2008(2), 377-382.
[153]
Ren, T.; Zhang, Y.; Zhu, W.; Zhou, J. Copper‐free, efficient, palladium (II)‐catalyzed coupling of unactivated aryl iodides with terminal alkynes. Synth. Commun., 2007, 37(19), 3279-3290.
[154]
Wu, Y.; Xing, Y.; Wang, J.; Sun, Q.; Kong, W.; Suzenet, F. Palladium-catalyzed desulfurative Sonogashira cross-coupling reaction of 3-cyano assisted thioamide-type quinolone derivatives with alkynes. RSC Advances, 2015, 5(60), 48558-48562.
[155]
Jones, R.C.; Canty, A.J.; Caradoc-Davies, T.; Davies, N.W.; Gardiner, M.G.; Marriott, P.J.; Rühle, C.P.; Tolhurst, V-A. A new mechanistic pathway under Sonogashira reaction protocol involving multiple acetylene insertions. Dalton Trans., 2010, 39(16), 3799-3801.
[156]
Kloetzel, M.C. The Diels-Alder reactions with maleic anhydride. Org. React., 1948, 4, 1-59.
[157]
Holmes, H. The D iels‐A lder reaction ethylenic and acetylenic dienophiles. Org. React., 2004, 4, 60-173.
[158]
Roush, W.R. Intramolecular Diels–Alder Reactions; Pergamon Press: Oxford, 1991.
[159]
Greico, P.; Larsen, S. Iminium ion based Diels-Alder reactions: N-Benzyl-2-Azanorbornene. Org. Synth., 1993, 8(31), 1990.
[160]
Zweifel, G.S.; Nantz, M.H.; Somfai, P. Modern organic synthesis: An introduction; John Wiley & Sons, 2017.
[161]
Sarel, S.; Breuer, E. A novel conjugative 1,5-addition reaction involving the vinylcyclopropane system. J. Am. Chem. Soc., 1959, 81(24), 6522-6523.
[163]
Hilt, G.; Korn, T.J. An efficient cobalt catalyst for the neutral Diels–Alder reaction of acyclic 1, 3-dienes with internal alkynes. Tetrahedron Lett., 2001, 42(15), 2783-2785.
[164]
Birch, A.J. The Birch reduction in organic synthesis. Pure Appl. Chem., 1996, 68(3), 553-556.
[165]
Rabideau, P.W. The metal-ammonia reduction of aromatic compounds. Tetrahedron, 1989, 45(6), 1579-1603.
[166]
Hilt, G.; Smolko, K.I.; Lotsch, B.V. Cobalt (I)-catalyzed neutral Diels-Alder reactions of oxygen-functionalized acyclic 1, 3-dienes with alkynes. Synlett, 2002, 2002(07), 1081-1084.
[167]
Hilt, G.; Smolko, K.I. Cobalt (I)-catalyzed neutral Diels-Alder reactions of 1, 3-diynes with acyclic 1, 3-dienes Synthesis, 2002, 2002 (05), 0686-0692.
[168]
Makin, S.; Kruglikova, R.; Shavrygina, O.; Chernyshev, A.; Popova, T.; Nguen, F. Chemistry of Enol Ethers. 55. The synthesis and stereochemistry of trimethylsilyloxy-1, 3-dienes, using H-1 And C-13 nuclear magnetic-resonance spectroscopy methods. Zh. Org. Khim., 1982, 18(2), 287-292.
[171]
Shiotsuki, M.; Suzuki, T.; Kondo, T.; Wada, K.; Mitsudo, T-A. Reaction of Ru (1− 6-η-cyclooctatriene)(η2-dimethyl fumarate) 2 with monodentate and bidentate phosphines: A model reaction of catalytic dimerization of alkenes. Organometallics, 2000, 19(26), 5733-5743.
[172]
Kranjc, K.; Kočevar, M. Diels–Alder reaction of highly substituted 2H-pyran-2-ones with alkynes: Reactivity and regioselectivity. New J. Chem., 2005, 29(8), 1027-1034.
[173]
Kepe, V.; Kocevar, M.; Polanc, S.; Verc̈ek, B.; Tis̈ler, M. A simple and general one-pot synthesis of some 2H-pyran-2-ones and fused pyran-2-ones. Tetrahedron, 1990, 46(6), 2081-2088.
[174]
Vraničar, L.; Polanc, S.; Kočevar, M. 2H-Pyran-2-ones as synthons for (E)-α, β-didehydroamino acid derivatives. Tetrahedron, 1999, 55(1), 271-278.
[175]
Kranjc, K.; Kočevar, M. Intensification of a reaction by the addition of a minor amount of solvent: Diels-Alder reaction of 2H-pyran-2-ones with alkynes. Collect. Czech. Chem. Commun., 2006, 71(5), 667-678.
[176]
Pearson, A.J.; Zhou, Y. Diels-Alder reactions of cyclopentadienones with aryl alkynes to form biaryl compounds. J. Org. Chem., 2009, 74(11), 4242-4245.
[177]
Hilt, G.; Janikowski, J. Regiocontrolled cobalt-catalyzed Diels-Alder reactions of silicon-functionalized, terminal, and internal alkynes. Org. Lett., 2009, 11(3), 773-776.
[178]
Fringuelli, F.; Taticchi, A. The Diels-Alder reaction: Selected practical methods; John Wiley & Sons, 2002.
[179]
Nicolaou, K.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G.E. Die Diels‐Alder‐Reaktion in der totalsynthese. Angew. Chem., 2002, 114(10), 1742-1773.
[180]
Lipshutz, B.H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev., 1986, 86(5), 795-819.
[181]
Kappe, C.O.; Murphree, S.S.; Padwa, A. Synthetic applications of furan Diels-Alder chemistry. Tetrahedron, 1997, 53(42), 14179-14233.
[182]
Padwa, A.; Zhang, H. Synthesis of some members of the hydroxylated phenanthridone subclass of the amaryllidaceae alkaloid family. J. Org. Chem., 2007, 72(7), 2570-2582.
[184]
Wang, Q.; Padwa, A. Rh (I)-catalyzed ring opening of an IMDAF-derived oxabicyclo cycloadduct as the key step in the synthesis of (±)-epi-zephyranthine. Org. Lett., 2004, 6(13), 2189-2192.
[185]
Wolkenberg, S.E.; Boger, D.L. Total synthesis of anhydrolycorinone utilizing sequential intramolecular Diels-Alder reactions of a 1,3,4-oxadiazole. J. Org. Chem., 2002, 67(21), 7361-7364.
[186]
Hashmi, A.S.K.; Rudolph, M.; Huck, J.; Frey, W.; Bats, J.W.; Hamzić, M. Gold‐Katalyse: Umlenken des reaktionspfades der furan‐alkin‐cyclisierung. Angew. Chem., 2009, 121(32), 5962-5966.
[187]
Chen, Y.; Lu, Y.; Li, G.; Liu, Y. Gold-catalyzed cascade Friedel-Crafts/furan-alkyne cycloisomerizations for the highly efficient synthesis of arylated (Z)-enones or-enals. Org. Lett., 2009, 11(17), 3838-3841.
[188]
Chen, Y.; Li, G.; Liu, Y. Gold‐catalyzed cascade Friedel–Crafts/furan‐Yne cyclization/heteroenyne metathesis for the highly efficient construction of phenanthrene derivatives. Adv. Synth. Catal., 2011, 353(2‐3), 392-400.
[189]
Martín-Matute, B.; Nevado, C.; Cárdenas, D.J.; Echavarren, A.M. Intramolecular reactions of alkynes with furans and electron rich arenes catalyzed by PtCl2: The role of platinum carbenes as intermediates. J. Am. Chem. Soc., 2003, 125(19), 5757-5766.
[191]
Wu, H-J.; Ying, F-H.; Shao, W-D. Study on the reaction mechanism of the base-catalyzed intramolecular Diels-Alder reaction of furfuryl propargyl ethers. J. Org. Chem., 1995, 60(19), 6168-6172.
[192]
Wu, H-J.; Shao, W-D.; Ying, F-H. Intramolecular Diels-Alder reaction of furans with allenyl ethers followed by methylthio group 1, 4-rearrangement. Tetrahedron Lett., 1994, 35(5), 729-732.
[193]
Chen, Y.; Wang, L.; Liu, Y.; Li, Y. Grignard reagent acceleration of the intramolecular Diels-Alder reaction of furans with unactivated alkynes: towards structurally complex oxabicyclic alkenes. Chem. Eur. J, 2011, 17(45), 12582-12586.
[195]
Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaeker, A. Cycloaddition of keteniminium with terminal alkynes toward cyclobuteniminium and their use in Diels–Alder reactions. Tetrahedron Lett., 2014, 55(37), 5147-5150.
[196]
Falmagne, J.B.; Escudero, J.; Taleb‐Sahraoui, S.; Ghosez, L. Cyclobutanone and cyclobutenone derivatives by reaction of tertiary amides with alkenes or alkynes. Angew. Chem. Int. Ed., 1981, 20(10), 879-880.
[197]
Hoornaert, C.; Hesbain‐Frisque, A.; Ghosez, L. Cyclobutenylideneammonium salts from the cycloadditions of keteniminium salts to acetylenes. Angew. Chem. Int. Ed., 1975, 14(8), 569-570.
[198]
Zhang, M-X.; Shan, W.; Chen, Z.; Yin, J.; Yu, G.A.; Liu, S.H. Diels–Alder reactions of arynes in situ generated from DA reaction between bis-1, 3-diynes and alkynes. Tetrahedron Lett., 2015, 56(49), 6833-6838.
[199]
Willoughby, P.H.; Niu, D.; Wang, T.; Haj, M.K.; Cramer, C.J.; Hoye, T.R. Mechanism of the reactions of alcohols with o-benzynes. J. Am. Chem. Soc., 2014, 136(39), 13657-13665.
[200]
Ikawa, T.; Tokiwa, H.; Akai, S. Experimental and theoretical studies on regiocontrol of benzyne reactions using silyl and boryl directing groups. J. Synth. Org. Chem. Jpn., 2012, 70(11), 1123-1133.
[201]
Djeghaba, Z.; Jousseaume, B.; Ratier, M.; Duboudin, J.G. Sulfones organostanniques: synthese et reactivite des trialkystannyl-1 para-toluenesulfonyl-2 acetylenes. J. Organomet. Chem., 1986, 304(1-2), 115-125.
[202]
Williams, R.V.; Chauhan, K.; Gadgil, V.R. 1-Benzenesulfonyl-2-trimethylsilylacetylene: a new acetylene equivalent for the Diels-Alder reaction. J. Chem. Soc. Chem. Commun., 1994, 1994(15), 1739-1740.
[203]
Barbero, A.; Pulido, F.J. Isoxazoles as latent siloxybutadienes: An easy entry to polyfunctionalized benzene systems via Diels-Alder reaction with acetylenes. Synthesis, 2004, 2004(03), 401-404.
[205]
Kranjc, K.; Kočevar, M. Ethyl vinyl ether as a synthetic equivalent of acetylene in a DABCO-catalyzed microwave-assisted Diels-Alder-elimination reaction sequence starting from 2H-pyran-2-ones. Synlett, 2008, 2008(17), 2613-2616.
[206]
Pozgan, F.; Krejan, M.; Polanc, S. 5-Acyl-2H-pyran-2-ones in the Schmidt reaction: Migration of the pyran-2-one ring. Heterocycles, 2006, 69, 123-132.
[207]
Singh, M.D.; Ningombam, A. Diels-Alder reaction of 9-anthracenemethanol and dimethylacetylene-dicarboxylate; potential route for the synthesis of regiospecific products of 9-substituted anthracene with unsymmetrical acetylenes. Indian J. Chem. Sect. B Org. incl. Med, 2010, 49(1), 77-83.
[208]
Khatri, A.I.; Samant, S.D. Facile, diversity-oriented, normal-electron-demand Diels–Alder reactions of 6-amino-2H-pyran-2-ones with diethyl acetylenedicarboxylate, 1,4-naphthoquinone, and N-phenylmaleimide. Synthesis, 2015, 47(03), 343-350.
[211]
Hossaini, Z.; Rostami-Charati, F.; Sheikholeslami-Farahani, F.; Ghasemian, M. Synthesis of functionalized benzene using Diels–Alder reaction of activated acetylenes with synthesized phosphoryl-2-oxo-2H-pyran. Z. Naturforsch. B, 2015, 70(5), 355-360.
[212]
Hilt, G.; du Mesnil, F-X. An improved cobalt catalyst for homo Diels–Alder reactions of acyclic 1, 3-dienes with alkynes. Tetrahedron Lett., 2000, 41(35), 6757-6761.
[213]
Brunner, H.; Reimer, A. Enantioselective catalysis 107: new optically active deltacyclenes as building blocks for the synthesis of expanded phosphanes. Bull. Soc. Chim. Fr., 1997, 3(134), 307-314.
[214]
Rhyoo, H-Y.; Lee, B.Y.; Yu, H.K.B.; Chung, Y.K. Study of the reactivity of ClCo(PPh3)3. J. Mol. Catal., 1994, 92(1), 41-49.
[215]
Tenaglia, A.; Giordano, L. Ruthenium (II)-catalyzed homo-Diels–Alder reactions of disubstituted alkynes and norbornadiene. Tetrahedron Lett., 2004, 45(1), 171-174.
[216]
Fletcher, M.D.; Hurst, T.E.; Miles, T.J.; Moody, C.J. Synthesis of highly-functionalised pyridines via hetero-Diels–Alder methodology: Reaction of 3-siloxy-1-aza-1, 3-butadienes with electron deficient acetylenes. Tetrahedron, 2006, 62(23), 5454-5463.
[217]
Correa, Jr, I.R.; Moran, P.J. Diastereoselective reduction of E and Z α-alkoxyimino-β-ketoesters by sodium borohydride. Tetrahedron, 1999, 55(50), 14221-14232.
[218]
Manley, J.M.; Kalman, M.J.; Conway, B.G.; Ball, C.C.; Havens, J.L.; Vaidyanathan, R. Early amidation approach to 3-[(4-amido) pyrrol-2-yl]-2-indolinones. J. Org. Chem., 2003, 68(16), 6447-6450.
[219]
Igarashi, J-E.; Kawakami, Y.; Kinoshita, T.; Furukawa, S. Correlations between carbon-13 nuclear magnetic resonance chemical shifts and reactivities of siloxybutadienes and siloxyazabutadienes in the Diels-Alder reaction with dimethyl acetylenedicarboxylate. Chem. Pharm. Bull., 1990, 38(7), 1832-1835.
[220]
Tödter, C.; Lackner, H. Synthesis of Azabenzisochromanquinone Antibiotics, I. Hetero Diels‐Alder Reactions of Isochromanquinones with 1‐Aza‐1, 3‐dienes. Liebigs Ann., 1996, 1996(9), 1385-1394.
[221]
Allock, S.J.; Gilchrist, T.L.; King, F.D. Diels-alder cycloaddition reactions of αβ-unsaturated aldehyde acylhydrazones. Tetrahedron Lett., 1991, 32(1), 125-128.
[222]
Allcock, S.J.; Gilchrist, T.L.; Shuttleworth, S.J.; King, F.D. Intramolecular and intermolecular diels-alder reactions of acylhydrazones derived from methacrolein and ethylacrolein. Tetrahedron, 1991, 47(48), 10053-10064.
[223]
Zaky, H. Action of Amines and Grignard reagents on some new narylideneaminophthalimides. Heterocycl. Commun., 2002, 8(4), 355-360.