Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Peptide Sequence-Dominated Enzyme-Responsive Nanoplatform for Anticancer Drug Delivery

Author(s): Yanan Li, Liping Du, Chunsheng Wu, Bin Yu, Hui Zhang* and Feifei An*

Volume 19, Issue 1, 2019

Page: [74 - 97] Pages: 24

DOI: 10.2174/1568026619666190125144621

Price: $65

Abstract

Enzymatic dysregulation in tumor and intracellular microenvironments has made this property a tremendously promising responsive element for efficient diagnostics, carrier targeting, and drug release. When combined with nanotechnology, enzyme-responsive drug delivery systems (DDSs) have achieved substantial advancements. In the first part of this tutorial review, changes in tumor and intracellular microenvironmental factors, particularly the enzymatic index, are described. Subsequently, the peptide sequences of various enzyme-triggered nanomaterials are summarized for their uses in various drug delivery applications. Then, some other enzyme responsive nanostructures are discussed. Finally, the future opportunities and challenges are discussed. In brief, this review can provide inspiration and impetus for exploiting more promising internal enzyme stimuli-responsive nanoDDSs for targeted tumor diagnosis and treatment.

Keywords: Tumor microenvironment, Enzyme-responsive, Peptide, Sequence, Targeted drug delivery, DDSs.

« Previous
Graphical Abstract

[1]
Jemal, A.; Ward, E.M.; Johnson, C.J.; Cronin, K.A.; Ma, J.; Ryerson, B.; Mariotto, A.; Lake, A.J.; Wilson, R.; Sherman, R.L.; Anderson, R.N.; Henley, S.J.; Kohler, B.A.; Penberthy, L.; Feuer, E.J.; Weir, H.K. Annual report to the nation on the status of cancer, 1975-2014, Featuring survival. J. Natl. Cancer Inst., 2017, 109(9), djx030.
[http://dx.doi.org/10.1093/jnci/djx030] [PMID: 28376154]
[2]
Li, Y.; Yang, Y.; An, F.; Liu, Z.; Zhang, X.; Zhang, X. Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform. Nanotechnology, 2013, 24(1), 015103.
[http://dx.doi.org/10.1088/0957-4484/24/1/015103] [PMID: 23221098]
[3]
Li, Y.; Chang, Y.; Lian, X.; Zhou, L.; Yu, Z.; Wang, H.; An, F. Silver nanoparticles for enhanced cancer theranostics: In Vitro and In Vivo perspectives. J. Biomed. Nanotechnol., 2018, 14(9), 1515-1542.
[http://dx.doi.org/10.1166/jbn.2018.2614] [PMID: 29958548]
[4]
Wang, H.; Zhou, L.; Xie, K.; Wu, J.; Song, P.; Xie, H.; Zhou, L.; Liu, J.; Xu, X.; Shen, Y.; Zheng, S. Polylactide-tethered prodrugs in polymeric nanoparticles as reliable nanomedicines for the efficient eradication of patient-derived hepatocellular carcinoma. Theranostics, 2018, 8(14), 3949-3963.
[http://dx.doi.org/10.7150/thno.26161] [PMID: 30083272]
[5]
Qu, Y.; Wang, B.; Chu, B.; Liu, C.; Rong, X.; Chen, H.; Peng, J.; Qian, Z. Injectable and thermosensitive hydrogel and PDLLA electrospun nanofiber membrane composites for guided spinal fusion. ACS Appl. Mater. Interfaces, 2018, 10(5), 4462-4470.
[http://dx.doi.org/ dx.doi.org/10.1021/acsami.7b17020] [PMID: 29338185]
[6]
Hu, D.; Chen, L.; Qu, Y.; Peng, J.; Chu, B.; Shi, K.; Hao, Y.; Zhong, L.; Wang, M.; Qian, Z. Oxygen-generating hybrid polymeric nanoparticles with encapsulated doxorubicin and chlorin e6 for trimodal imaging-guided combined chemo-photodynamic therapy. Theranostics, 2018, 8(6), 1558-1574.
[http://dx.doi.org/10.7150/thno.22989] [PMID: 29556341]
[7]
An, F.F.; Cao, W.; Liang, X.J. Nanostructural systems developed with positive charge generation to drug delivery. Adv. Healthc. Mater., 2014, 3(8), 1162-1181.
[http://dx.doi.org/10.1002/adhm. 201300600] [PMID: 24550201]
[8]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616 808]
[9]
Xu, L.; Xu, S.; Wang, H.; Zhang, J.; Chen, Z.; Pan, L.; Wang, J.; Wei, X.; Xie, H.; Zhou, L.; Zheng, S.; Xu, X. Enhancing the efficacy and safety of doxorubicin against hepatocellular carcinoma through a modular assembly approach: The combination of polymeric prodrug design, nanoparticle encapsulation, and cancer cell-specific drug targeting. ACS Appl. Mater. Interfaces, 2018, 10(4), 3229-3240.
[http://dx.doi.org/10.1021/acsami.7b14496] [PMID: 29313660]
[10]
Yang, Q.; Peng, J.; Xiao, Y.; Li, W.; Tan, L.; Xu, X.; Qian, Z. Porous Au@Pt Nanoparticles: Therapeutic platform for tumor chemo-photothermal co-therapy and alleviating doxorubicin-induced oxidative damage. ACS Appl. Mater. Interfaces, 2018, 10(1), 150-164.
[http://dx.doi.org/10.1021/acsami.7b14705] [PMID: 29251910]
[11]
Qiao, Y.; Wan, J.; Zhou, L.; Ma, W.; Yang, Y.; Luo, W.; Yu, Z.; Wang, H. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2019, 11(1), e1527.
[http://dx.doi.org/ 10.1002/wnan.1527] [PMID: 29726115]
[12]
An, F.F.; Li, Y.; Zhang, J. Carrier-free photosensitizer nanocrystal for photodynamic therapy. Mater. Lett., 2014, 122(5), 323-326.
[http://dx.doi.org/10.1016/j.matlet.2014.02.067]
[13]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[14]
Yatvin, M.B.; Weinstein, J.N.; Dennis, W.H.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science, 1978, 202(4374), 1290-1293.
[http://dx.doi.org/ 10.1126/science.364652] [PMID: 364652]
[15]
An, F.F.; Zhang, X.H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics, 2017, 7(15), 3667-3689.
[http://dx.doi.org/10.7150/thno.19365] [PMID: 29109768]
[16]
Lv, R.; Yang, P.; He, F.; Gai, S.; Li, C.; Dai, Y.; Yang, G.; Lin, J. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano, 2015, 9(2), 1630-1647.
[http://dx.doi.org/10.1021/nn5063-613] [PMID: 25581331]
[17]
Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol., 2017, 13(12), 1581-1597.
[http://dx.doi.org/10.1166/jbn.2017.2474] [PMID: 29490749]
[18]
Lu, Z.; Li, T.; Ren, L.; Zhou, L.; Wan, J.; Wu, J.; Qiao, Y.; Xie, H.; Zheng, S.; Wang, H. Chemical derivatization of the anticancer agent cabazitaxel using a polyunsaturated fatty acid for safe drug delivery In Vivo. J. Biomed. Nanotechnol., 2018, 14(11), 1853-1865.
[http://dx.doi.org/10.1166/jbn.2018.2625] [PMID: 30165923]
[19]
Qu, Y.; Chu, B.; Shi, K.; Peng, J.; Qian, Z. Recent progress in functional micellar carriers with intrinsic Therapeutic activities for anticancer drug delivery. J. Biomed. Nanotechnol., 2017, 13(12), 1598-1618.
[http://dx.doi.org/10.1166/jbn.2017.2475] [PMID: 29490750]
[20]
Gou, M.; Men, K.; Zhang, J.; Li, Y.; Song, J.; Luo, S.; Shi, H.; Wen, Y.; Guo, G.; Huang, M.; Zhao, X.; Qian, Z.; Wei, Y. Efficient inhibition of C-26 colon carcinoma by VSVMP gene delivered by biodegradable cationic nanogel derived from polyethyleneimine. ACS Nano, 2010, 4(10), 5573-5584.
[http://dx.doi.org/ 10.1021/nn1005599] [PMID: 20839784]
[21]
Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer-Doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthc. Mater., 2014, 3(8), 1299-1308.
[http://dx.doi.org/ 10.1002/adhm.201300601] [PMID: 24706635]
[22]
Secret, E.; Kelly, S.J.; Crannell, K.E.; Andrew, J.S. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery. ACS Appl. Mater. Interfaces, 2014, 6(13), 10313-10321.
[http://dx.doi.org/10.1021/am501754s] [PMID: 24926532]
[23]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[24]
Park, J.; Yun, H.S.; Lee, K.H.; Lee, K.T.; Lee, J.K.; Lee, S.Y. Discovery and validation of biomarkers that distinguish mucinous and nonmucinous pancreatic cysts. Cancer Res., 2015, 75(16), 3227-3235.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2896] [PMID: 26122842]
[25]
Roy, R.; Yang, J.; Moses, M.A. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol., 2009, 27(31), 5287-5297.
[http://dx.doi.org/ 10.1200/JCO.2009.23.5556] [PMID: 19738110]
[26]
Turk, V.; Kos, J.; Turk, B. Cysteine cathepsins (proteases)-on the main stage of cancer? Cancer Cell, 2004, 5(5), 409-410.
[http://dx.doi.org/10.1016/S1535-6108(04)00117-5] [PMID: 15144947]
[27]
Peng, J.; Yang, Q.; Li, W.; Tan, L.; Xiao, Y.; Chen, L.; Hao, Y.; Qian, Z. Erythrocyte-membrane-coated prussian blue/manganese dioxide nanoparticles as h2o2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(51), 44410-44422.
[http://dx.doi.org/ 10.1021/acsami.7b17022] [PMID: 29210279]
[28]
Choi, Y.R.; Lee, B.; Park, J.; Namkung, W.; Jeong, K.S. Enzyme-responsive procarriers capable of transporting chloride ions across lipid and cellular membranes. J. Am. Chem. Soc., 2016, 138(47), 15319-15322.
[http://dx.doi.org/10.1021/jacs.6b10592] [PMID: 27933933]
[29]
Qiao, Y.; Li, T.; Zheng, S.; Wang, H. The Hippo pathway as a drug target in gastric cancer. Cancer Lett., 2018, 420, 14-25.
[http://dx.doi.org/10.1016/j.canlet.2018.01.062] [PMID: 29408652]
[30]
Harris, T.J.; von Maltzahn, G.; Lord, M.E.; Park, J.H.; Agrawal, A.; Min, D.H.; Sailor, M.J.; Bhatia, S.N. Protease-triggered unveiling of bioactive nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 2008, 4(9), 1307-1312.
[http://dx.doi.org/10.1002/smll. 200701319]
[31]
Zhu, L.; Kate, P.; Torchilin, V.P. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano, 2012, 6(4), 3491-3498.
[http://dx.doi.org/ dx.doi.org/10.1021/nn300524f] [PMID: 22409425]
[32]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[33]
Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci., 2012, 125(Pt 23), 5591-5596.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[34]
Konopleva, M.Y.; Jordan, C.T. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J. Clin. Oncol., 2011, 29(5), 591-599.
[http://dx.doi.org/10.1200/JCO.2010.31.0904] [PMID: 21220598]
[35]
Fang, T.; Ye, Z.; Wu, J.; Wang, H. Reprogramming axial ligands facilitates the self-assembly of a platinum(iv) prodrug: overcoming drug resistance and safer in vivo delivery of cisplatin. Chem. Commun. (Camb.), 2018, 54(66), 9167-9170.
[36]
Hao, Y.; Dong, M.; Zhang, T.; Peng, J.; Jia, Y.; Cao, Y.; Qian, Z. Novel approach of using near-infrared responsive pegylated gold nanorod coated poly(l-lactide) microneedles to enhance the antitumor efficiency of docetaxel-loaded mpeg-pdlla micelles for treating an A431 tumor. ACS Appl. Mater. Interfaces, 2017, 9(18), 15317-15327.
[http://dx.doi.org/10.1021/acsami.7b03604] [PMID: 28418236]
[37]
Hui, L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett., 2015, 368(1), 7-13.
[http://dx.doi.org/10.1016/j.canlet.2015.07.039] [PMID: 26276713]
[38]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[39]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[40]
Barber, G.N. STING: infection, inflammation and cancer. Nat. Rev. Immunol., 2015, 15(12), 760-770.
[http://dx.doi.org/10.1038/nri3921] [PMID: 26603901]
[41]
Shiao, S.L.; Ganesan, A.P.; Rugo, H.S.; Coussens, L.M. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev., 2011, 25(24), 2559-2572.
[http://dx.doi.org/10.1101/gad.169029.111] [PMID: 22190457]
[42]
Cook, J.; Hagemann, T. Tumour-associated macrophages and cancer. Curr. Opin. Pharmacol., 2013, 13(4), 595-601.
[http://dx.doi.org/ dx.doi.org/10.1016/j.coph.2013.05.017] [PMID: 23773801]
[43]
Wan, L.; Pantel, K.; Kang, Y. Tumor metastasis: moving new biological insights into the clinic. Nat. Med., 2013, 19(11), 1450-1464.
[http://dx.doi.org/10.1038/nm.3391] [PMID: 24202397]
[44]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[45]
Soysal, S.D.; Tzankov, A.; Muenst, S.E. Role of the tumor microenvironment in breast cancer. Pathobiology, 2015, 82(3-4), 142-152.
[http://dx.doi.org/10.1159/000430499] [PMID: 26330355]
[46]
Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov., 2011, 10(6), 417-427.
[http://dx.doi.org/ 10.1038/nrd3455] [PMID: 21629292]
[47]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[48]
Zhang, J.; Li, Y.; An, F.F.; Zhang, X.; Chen, X.; Lee, C.S. Preparation and size control of sub-100 nm pure nanodrugs. Nano Lett., 2015, 15(1), 313-318.
[http://dx.doi.org/10.1021/nl503598u] [PMID: 25514014]
[49]
Wang, X.; Zhang, Q.; Nam, C.; Hickner, M.; Mahoney, M.; Meyerhoff, M.E. An ionophore-based anion-selective optode printed on cellulose paper. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11826-11830.
[http://dx.doi.org/10.1002/anie.201706147] [PMID: 28715617]
[50]
An, F.F.; Ye, J.; Zhang, J.F.; Yang, Y.L.; Zheng, C.J.; Zhang, X.J.; Liu, Z.; Lee, C.S.; Zhang, X.H. Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(25), 3144-3151.
[http://dx.doi.org/10.1039/c3tb20271b]
[51]
Han, W.; Shi, L.; Ren, L.; Zhou, L.; Li, T.; Qiao, Y.; Wang, H. A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct. Target. Ther., 2018, 3, 16.
[http://dx.doi.org/ dx.doi.org/10.1038/s41392-018-0019-4] [PMID: 29942660]
[52]
Chen, G.; Chen, J.; Qiao, Y.; Shi, Y.; Liu, W.; Zeng, Q.; Xie, H.; Shi, X.; Sun, Y.; Liu, X.; Li, T.; Zhou, L.; Wan, J.; Xie, T.; Wang, H.; Wang, F. ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair. Nucleic Acids Res., 2018, 46(3), 1266-1279.
[http://dx.doi.org/10.1093/nar/gkx1258] [PMID: 29244158]
[53]
Qu, Y.; Chu, B.Y.; Peng, J.R.; Liao, J.F.; Qi, T.T.; Shi, K.; Zhang, X.N.; Wei, Y.Q.; Qian, Z.Y. A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater., 2015, 7(8), e207.
[http://dx.doi.org/10.1038/am.2015.83]
[54]
Gong, C.; Wang, C.; Wang, Y.; Wu, Q.; Zhang, D.; Luo, F.; Qian, Z. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites. Nanoscale, 2012, 4(10), 3095-3104.
[http://dx.doi.org/ 10.1039/c2nr30278k] [PMID: 22535210]
[55]
Fu, S.; Ni, P.; Wang, B.; Chu, B.; Zheng, L.; Luo, F.; Luo, J.; Qian, Z. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials, 2012, 33(19), 4801-4809.
[http://dx.doi.org/ 10.1016/j.biomaterials.2012.03.040] [PMID: 22463934]
[56]
Gong, C.; Shi, S.; Wu, L.; Gou, M.; Yin, Q.; Guo, Q.; Dong, P.; Zhang, F.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL-PEG-PCL hydrogel. Part 2: sol-gel-sol transition and drug delivery behavior. Acta Biomater., 2009, 5(9), 3358-3370.
[http://dx.doi.org/10.1016/j.actbio.2009.05.025] [PMID: 19470411]
[57]
Peng, J.; Qi, T.; Liao, J.; Chu, B.; Yang, Q.; Li, W.; Qu, Y.; Luo, F.; Qian, Z. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Biomaterials, 2013, 34(34), 8726-8740.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.092] [PMID: 23948167]
[58]
Cairns, R.; Papandreou, I.; Denko, N. Overcoming physiologic barriers to cancer treatment by molecularly targeting the tumor microenvironment. Mol. Cancer Res., 2006, 4(2), 61-70.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0002] [PMID: 16513837]
[59]
Murphy, G.; Nagase, H. Progress in matrix metalloproteinase research. Mol. Aspects Med., 2008, 29(5), 290-308.
[http://dx.doi.org/ 10.1016/j.mam.2008.05.002] [PMID: 18619669]
[60]
Inestrosa, N.C.; Alvarez, A.; Pérez, C.A.; Moreno, R.D.; Vicente, M.; Linker, C.; Casanueva, O.I.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron, 1996, 16(4), 881-891.
[http://dx.doi.org/10.1016/S0896-6273(00)80108-7] [PMID: 8608006]
[61]
McAtee, C.O.; Barycki, J.J.; Simpson, M.A. Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv. Cancer Res., 2014, 123, 1-34.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00001-0] [PMID: 25081524]
[62]
Quach, N.D.; Arnold, R.D.; Cummings, B.S. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem. Pharmacol., 2014, 90(4), 338-348.
[http://dx.doi.org/dx.doi. org/10.1016/j.bcp.2014.05.022] [PMID: 24907600]
[63]
López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem., 2008, 283(45), 30433-30437.
[http://dx.doi.org/10.1074/jbc.R800035200] [PMID: 18650443]
[64]
de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[65]
Andresen, T.L.; Thompson, D.H.; Kaasgaard, T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol. Membr. Biol., 2010, 27(7), 353-363.
[http://dx.doi.org/10.3109/09687688.2010.515950] [PMID: 20939771]
[66]
López-Otín, C.; Hunter, T. The regulatory crosstalk between kinases and proteases in cancer. Nat. Rev. Cancer, 2010, 10(4), 278-292.
[http://dx.doi.org/10.1038/nrc2823] [PMID: 20300104]
[67]
López-Otín, C.; Matrisian, L.M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer, 2007, 7(10), 800-808.
[http://dx.doi.org/10.1038/nrc2228] [PMID: 17851543]
[68]
Gabriel, D.; Zuluaga, M.F.; van den Bergh, H.; Gurny, R.; Lange, N. It is all about proteases: From drug delivery to in vivo imaging and photomedicine. Curr. Med. Chem., 2011, 18(12), 1785-1805.
[http://dx.doi.org/10.2174/092986711795496782] [PMID: 21466472]
[69]
Foged, C.; Nielsen, H.M.; Frokjaer, S. Phospholipase A2 sensitive liposomes for delivery of small interfering RNA (siRNA). J. Liposome Res., 2007, 17(3-4), 191-196.
[http://dx.doi.org/ 10.1080/08982100701530373] [PMID: 18027239]
[70]
Park, C.; Kim, H.; Kim, S.; Kim, C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. J. Am. Chem. Soc., 2009, 131(46), 16614-16615.
[http://dx.doi.org/10.1021/ja9061085] [PMID: 19919132]
[71]
Kaasgaard, T.; Andresen, T.L.; Jensen, S.S.; Holte, R.O.; Jensen, L.T.; Jørgensen, K. Liposomes containing alkylated methotrexate analogues for phospholipase A(2) mediated tumor targeted drug delivery. Chem. Phys. Lipids, 2009, 157(2), 94-103.
[http://dx.doi.org/dx.doi. org/10.1016/j.chemphyslip.2008.11.005] [PMID: 19094974]
[72]
Jiang, J.; Neubauer, B.L.; Graff, J.R.; Chedid, M.; Thomas, J.E.; Roehm, N.W.; Zhang, S.; Eckert, G.J.; Koch, M.O.; Eble, J.N.; Cheng, L. Expression of group IIA secretory phospholipase A2 is elevated in prostatic intraepithelial neoplasia and adenocarcinoma. Am. J. Pathol., 2002, 160(2), 667-671.
[http://dx.doi.org/ 10.1016/S0002-9440(10)64886-9] [PMID: 11839587]
[73]
Lee, C.S.; Park, W.; Park, S.J.; Na, K. Endolysosomal environment-responsive photodynamic nanocarrier to enhance cytosolic drug delivery via photosensitizer-mediated membrane disruption. Biomaterials, 2013, 34(36), 9227-9236.
[http://dx.doi.org/ 10.1016/j.biomaterials.2013.08.037] [PMID: 24008035]
[74]
Henrissat, B.; Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol., 1997, 7(5), 637-644.
[http://dx.doi.org/10.1016/S0959-440X(97)80072-3] [PMID: 9345621]
[75]
Bourne, Y.; Henrissat, B. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol., 2001, 11(5), 593-600.
[http://dx.doi.org/10.1016/S0959-440X(00) 00253-0] [PMID: 11785761]
[76]
Stern, R. Hyaluronidases in cancer biology. Semin. Cancer Biol., 2008, 18(4), 275-280.
[http://dx.doi.org/10.1016/j.semcancer. 2008.03.017] [PMID: 18485730]
[77]
Ueki, N.; Lee, S.; Sampson, N.S.; Hayman, M.J. Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat. Commun., 2013, 4, 2735.
[http://dx.doi.org/10.1038/ncomms3735] [PMID: 24193185]
[78]
Yu, J.E.; Han, S.Y.; Wolfson, B.; Zhou, Q. The role of endothelial lipase in lipid metabolism, inflammation, and cancer. Histol. Histopathol., 2018, 33(1), 1-10.
[PMID: 28540715]
[79]
Park, J.B.; Lee, C.S.; Jang, J.H.; Ghim, J.; Kim, Y.J.; You, S.; Hwang, D.; Suh, P.G.; Ryu, S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer, 2012, 12(11), 782-792.
[http://dx.doi.org/10.1038/nrc3379] [PMID: 23076158]
[80]
Li, Z.; Qu, M.; Sun, Y.; Wan, H.; Chai, F.; Liu, L.; Zhang, P. Blockage of cytosolic phospholipase A2 alpha sensitizes aggressive breast cancer to doxorubicin through suppressing ERK and mTOR kinases. Biochem. Biophys. Res. Commun., 2018, 496(1), 153-158.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.016] [PMID: 29307829]
[81]
Brglez, V.; Pucer, A.; Pungerčar, J.; Lambeau, G.; Petan, T. Secreted phospholipases A2are differentially expressed and epigenetically silenced in human breast cancer cells. Biochem. Biophys. Res. Commun., 2014, 445(1), 230-235.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.182] [PMID: 24508801]
[82]
Cummings, B.S. Phospholipase A2 as targets for anti-cancer drugs. Biochem. Pharmacol., 2007, 74(7), 949-959.
[http://dx.doi.org/dx. doi.org/10.1016/j.bcp.2007.04.021] [PMID: 17531957]
[83]
Laye, J.P.; Gill, J.H. Phospholipase A2 expression in tumours: A target for therapeutic intervention? Drug Discov. Today, 2003, 8(15), 710-716.
[http://dx.doi.org/10.1016/S1359-6446(03)02754-5] [PMID: 12927514]
[84]
Liu, N.K.; Deng, L.X.; Zhang, Y.P.; Lu, Q.B.; Wang, X.F.; Hu, J.G.; Oakes, E.; Bonventre, J.V.; Shields, C.B.; Xu, X.M. Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Ann. Neurol., 2014, 75(5), 644-658.
[http://dx.doi.org/ dx.doi.org/10.1002/ana.24134] [PMID: 24623140]
[85]
Thamphiwatana, S.; Gao, W.; Pornpattananangkul, D.; Zhang, Q.; Fu, V.; Li, J.; Li, J.; Obonyo, M.; Zhang, L. Phospholipase A2-responsive antibiotic delivery via nanoparticle-stabilized liposomes for the treatment of bacterial infection. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8201-8207.
[http://dx.doi.org/ 10.1039/C4TB01110D] [PMID: 25544886]
[86]
Wong, K.S.; Cheung, M.K.; Au, C.H.; Kwan, H.S. A novel Lentinula edodes laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS One, 2013, 8(6), e66426.
[http://dx.doi.org/10.1371/journal.pone. 0066426] [PMID: 23799101]
[87]
Woycechowsky, K.J.; Vamvaca, K.; Hilvert, D. Novel enzymes through design and evolution. Adv. Enzymol. Relat. Areas Mol. Biol., 2007, 75(75), 241-294. [xiii.
[PMID: 17124869]
[88]
Defour, J.P.; Itaya, M.; Gryshkova, V.; Brett, I.C.; Pecquet, C.; Sato, T.; Smith, S.O.; Constantinescu, S.N. Tryptophan at the transmembrane-cytosolic junction modulates thrombopoietin receptor dimerization and activation. Proc. Natl. Acad. Sci. USA, 2013, 110(7), 2540-2545.
[http://dx.doi.org/10.1073/pnas.1211560110] [PMID: 23359689]
[89]
Baldissera, M.D.; Souza, C.F.; Doleski, P.H.; Santos, R.C.V.; Raffin, R.P.; Baldisserotto, B. Involvement of xanthine oxidase inhibition with the antioxidant property of nanoencapsulated Melaleuca alternifolia essential oil in fish experimentally infected with Pseudomonas aeruginosa. J. Fish Dis., 2018, 41(5), 791-796.
[http://dx.doi.org/10.1111/jfd.12779] [PMID: 29350421]
[90]
Saiki, J.P.; Cao, H.; Van Wassenhove, L.D.; Viswanathan, V.; Bloomstein, J.; Nambiar, D.K.; Mattingly, A.J.; Jiang, D.; Chen, C.H.; Stevens, M.C.; Simmons, A.L.; Park, H.S.; von Eyben, R.; Kool, E.T.; Sirjani, D.; Knox, S.M.; Le, Q.T.; Mochly-Rosen, D. Aldehyde dehydrogenase 3A1 activation prevents radiation-induced xerostomia by protecting salivary stem cells from toxic aldehydes. Proc. Natl. Acad. Sci. USA, 2018, 115(24), 6279-6284.
[http://dx.doi.org/10.1073/pnas.1802184115] [PMID: 29794221]
[91]
Edvardsson, M.; Sund-Levander, M.; Milberg, A.; Wressle, E.; Marcusson, J.; Grodzinsky, E. Differences in levels of albumin, ALT, AST, γ-GT and creatinine in frail, moderately healthy and healthy elderly individuals. Clin. Chem. Lab. Med., 2018, 56(3), 471-478.
[http://dx.doi.org/10.1515/cclm-2017-0311] [PMID: 28988219]
[92]
Hofmann, J. Protein kinase C isozymes as potential targets for anticancer therapy. Curr. Cancer Drug Targets, 2004, 4(2), 125-146.
[http://dx.doi.org/10.2174/1568009043481579] [PMID: 15032665]
[93]
de la Rica, R.; Velders, A.H. Supramolecular au nanoparticle assemblies as optical probes for enzyme-linked immunoassays. Small, 2011, 7(1), 66-69.
[http://dx.doi.org/10.1002/smll. 201001340]
[94]
Harnoy, A.J.; Rosenbaum, I.; Tirosh, E.; Ebenstein, Y.; Shaharabani, R.; Beck, R.; Amir, R.J. Enzyme-responsive amphiphilic PEG-dendron hybrids and their assembly into smart micellar nanocarriers. J. Am. Chem. Soc., 2014, 136(21), 7531-7534.
[http://dx.doi.org/dx. doi.org/10.1021/ja413036q] [PMID: 24568366]
[95]
Rao, J.; Khan, A. Enzyme sensitive synthetic polymer micelles based on the azobenzene motif. J. Am. Chem. Soc., 2013, 135(38), 14056-14059.
[http://dx.doi.org/10.1021/ja407514z] [PMID: 24033317]
[96]
Kelkar, S.S.; Reineke, T.M. Theranostics: Combining imaging and therapy. Bioconjug. Chem., 2011, 22(10), 1879-1903.
[http://dx.doi.org/dx. doi.org/10.1021/bc200151q] [PMID: 21830812]
[97]
Lim, E.K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.M.; Lee, K. Nanomaterials for theranostics: Recent advances and future challenges. Chem. Rev., 2015, 115(1), 327-394.
[http://dx.doi.org/10.1021/cr300213b] [PMID: 25423180]
[98]
Ryu, J.H.; Lee, S.; Son, S.; Kim, S.H.; Leary, J.F.; Choi, K.; Kwon, I.C. Theranostic nanoparticles for future personalized medicine. J. Control. Release, 2014, 190, 477-484.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.027]
[99]
Liang, G.; Ren, H.; Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem., 2010, 2(1), 54-60.
[http://dx.doi.org/10.1038/nchem.480] [PMID: 21124381]
[100]
Gao, M.; Tang, B.Z. Aggregation-induced emission probes for cancer theranostics. Drug Discov. Today, 2017, 22(9), 1288-1294.
[http://dx.doi.org/10.1016/j.drudis.2017.07.004] [PMID: 287130 54]
[101]
Razgulin, A.; Ma, N.; Rao, J. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem. Soc. Rev., 2011, 40(7), 4186-4216.
[http://dx.doi.org/10.1039/c1cs150-35a] [PMID: 21552609]
[102]
Hu, Q.; Katti, P.S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale, 2014, 6(21), 12273-12286.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[103]
de la Rica, R.; Aili, D.; Stevens, M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev., 2012, 64(11), 967-978.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[104]
Gu, X.; Qiu, M.; Sun, H.; Zhang, J.; Cheng, L.; Deng, C.; Zhong, Z. Polytyrosine nanoparticles enable ultra-high loading of doxorubicin and rapid enzyme-responsive drug release. Biomater. Sci., 2018, 6(6), 1526-1534.
[http://dx.doi.org/10.1039/C8BM00243F] [PMID: 29666858]
[105]
Chien, M.P.; Carlini, A.S.; Hu, D.; Barback, C.V.; Rush, A.M.; Hall, D.J.; Orr, G.; Gianneschi, N.C. Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J. Am. Chem. Soc., 2013, 135(50), 18710-18713.
[http://dx.doi.org/10. 1021/ja408182p] [PMID: 24308273]
[106]
Wang, Z.; Li, Y.; Huang, Y.; Thompson, M.P.; LeGuyader, C.L.; Sahu, S.; Gianneschi, N.C. Enzyme-regulated topology of a cyclic peptide brush polymer for tuning assembly. Chem. Commun. (Cambridge, England), 2015, 51(96), 17108-17111.
[http://dx.doi.org/10.1039/C5CC05653E]
[107]
Hu, J.; Zhang, G.; Liu, S. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem. Soc. Rev., 2012, 41(18), 5933-5949.
[http://dx.doi.org/10.1039/c2cs35103j] [PMID: 22695880]
[108]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[109]
Hu, J.; Liu, S. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications. Acc. Chem. Res., 2014, 47(7), 2084-2095.
[http://dx.doi.org/10.1021/ar5001007] [PMID: 24742049]
[110]
Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J. Am. Chem. Soc., 2014, 136(20), 7492-7497.
[http://dx.doi.org/10.1021/ja5030832] [PMID: 24786176]
[111]
Li, Y.; Liu, G.; Wang, X.; Hu, J.; Liu, S. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angew. Chem. Int. Ed. Engl., 2016, 55(5), 1760-1764.
[http://dx.doi.org/10.1002/anie.201509401] [PMID: 26694087]
[112]
Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. “Click” chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. J. Control. Release, 2018, 273, 160-179.
[113]
Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18), 4969-4985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.001] [PMID: 24674460]
[114]
Zhu, Y.; Wang, X.; Chen, J.; Zhang, J.; Meng, F.; Deng, C.; Cheng, R.; Feijen, J.; Zhong, Z. Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. J. Control. Rel, 2016, 244, (Pt B), 229-239.
[115]
Callmann, C.E.; Barback, C.V.; Thompson, M.P.; Hall, D.J.; Mattrey, R.F.; Gianneschi, N.C. Therapeutic Enzyme-Responsive Nanoparticles for Targeted Delivery and Accumulation in Tumors. Advanced materials (Deerfield Beach, Fla), 2015, 27(31), 4611-4615.
[http://dx.doi.org/10.1002/adma.201501803]
[116]
Sun, H.; Cheng, R.; Deng, C.; Meng, F.; Dias, A.A.; Hendriks, M.; Feijen, J.; Zhong, Z. Enzymatically and reductively degradable α-amino acid-based poly(ester amide)s: synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules, 2015, 16(2), 597-605.
[http://dx.doi.org/10.1021/bm501652d] [PMID: 25555025]
[117]
Al-Jamal, W.T.; Kostarelos, K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc. Chem. Res., 2011, 44(10), 1094-1104.
[http://dx.doi.org/10.1021/ar200105p] [PMID: 21812415]
[118]
Jain, A.; Jain, S.K. Stimuli-responsive Smart Liposomes in Cancer Targeting. Curr. Drug Targets, 2018, 19(3), 259-270.
[http://dx.doi.org/10.2174/1389450117666160208144143] [PMID: 26853324]
[119]
Wan, Y.; Han, J.; Fan, G.; Zhang, Z.; Gong, T.; Sun, X. Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials, 2013, 34(12), 3020-3030.
[http://dx.doi.org/10.1016/j.biomaterials. 2012.12.051] [PMID: 23360783]
[120]
Ferrauto, G.; Di Gregorio, E.; Ruzza, M.; Catanzaro, V.; Padovan, S.; Aime, S. Enzyme-Responsive LipoCEST Agents: Assessment of MMP-2 Activity by Measuring the Intra-liposomal Water 1 H NMR Shift. Angew. Chem. Int. Ed. Engl., 2017, 56(40), 12170-12173.
[http://dx.doi.org/10.1002/anie.201706271] [PMID: 28746744]
[121]
Lyu, D.; Chen, S.; Guo, W. Liposome crosslinked polyacrylamide/ DNA hydrogel: A smart controlled-release system for small molecular pay-loads. In: Small (Weinheim an der Bergstrasse, Germany); , 2018; 14, p. (15)1704039.
[122]
Scomparin, A.; Florindo, H.F.; Tiram, G.; Ferguson, E.L.; Satchi-Fainaro, R. Two-step polymer-and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv. Drug Deliv. Rev., 2017, 118, 52-64.
[http://dx.doi.org/10.1016/j.addr.2017.09.011] [PMID: 28916497]
[123]
Baeza, A.; Ruiz-Molina, D.; Vallet-Regí, M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin. Drug Deliv., 2017, 14(6), 783-796.
[http://dx.doi.org/ 10.1080/17425247.2016.1229298] [PMID: 27575454]
[124]
Wen, J.; Yang, K.; Liu, F.; Li, H.; Xu, Y.; Sun, S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev., 2017, 46(19), 6024-6045.
[http://dx.doi.org/ 10.1039/C7CS00219J] [PMID: 28848978]
[125]
Vallet-Regí, M.; Colilla, M.; Izquierdo-Barba, I.; Manzano, M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules, 2017, 23(1), 47.
[http://dx.doi.org/10.3390/molecules23010047] [PMID: 29295564]
[126]
Song, Y.; Li, Y.; Xu, Q.; Liu, Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomedicine, 2016, 12, 87-110.
[http://dx.doi.org/10.2147/IJN.S117495] [PMID: 28053526]
[127]
Kumar, B.; Kulanthaivel, S.; Mondal, A.; Mishra, S.; Banerjee, B.; Bhaumik, A.; Banerjee, I.; Giri, S. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf. B Biointerfaces, 2017, 150, 352-361.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.049] [PMID: 27847225]
[128]
Hu, C.; Huang, P.; Zheng, Z.; Yang, Z.; Wang, X. A facile strategy to prepare an enzyme-responsive mussel mimetic coating for drug delivery based on mesoporous silica nanoparticles. Langmuir, 2017, 33(22), 5511-5518.
[http://dx.doi.org/10.1021/acs. langmuir.7b01316] [PMID: 28486810]
[129]
Yu, L.; Chen, Y.; Lin, H.; Du, W.; Chen, H.; Shi, J. Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials, 2018, 161, 292-305.
[http://dx.doi.org/dx.doi. org/10.1016/j.biomaterials.2018.01.046] [PMID: 29427925]
[130]
Wuttke, S.; Lismont, M.; Escudero, A.; Rungtaweevoranit, B.; Parak, W.J. Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.
[http://dx.doi.org/10.1016/j.biomaterials. 2017.01.025] [PMID: 28182958]
[131]
Huang, P.; Chen, Y.; Lin, H.; Yu, L.; Zhang, L.; Wang, L.; Zhu, Y.; Shi, J. Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.018] [PMID: 28226244]
[132]
Chen, H.; Chen, Z.; Kuang, Y.; Li, S.; Zhang, M.; Liu, J.; Sun, Z.; Jiang, B.; Chen, X.; Li, C. Stepwise-acid-active organic/inorganic hybrid drug delivery system for cancer therapy. Colloids Surf. B Biointerfaces, 2018, 167, 407-414.
[http://dx.doi.org/ 10.1016/j.colsurfb.2018.04.038] [PMID: 29704741]
[133]
He, Y.; Zeng, B.; Liang, S.; Long, M.; Xu, H. Synthesis of pH-Responsive Biodegradable Mesoporous Silica-Calcium Phosphate Hybrid Nanoparticles as a High Potential Drug Carrier. ACS Appl. Mater. Interfaces, 2017, 9(51), 44402-44409.
[http://dx.doi.org/10.1021/acsami.7b16787] [PMID: 29215868]
[134]
Fouladi, F.; Steffen, K.J.; Mallik, S. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjug. Chem., 2017, 28(4), 857-868.
[http://dx.doi.org/ 10.1021/acs.bioconjchem.6b00736] [PMID: 28201868]
[135]
Li, M.; He, P.; Li, S.; Wang, X.; Liu, L.; Lv, F.; Wang, S. Oligo(p-phenylenevinylene) Derivative-incorporated and enzyme-responsive hybrid hydrogel for tumor cell-specific imaging and activatable photodynamic therapy. ACS Biomater. Sci. Eng., 2018, 4(6), 2037-2045.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00610]
[136]
Turk, B. Targeting proteases: successes, failures and future prospects. Nat. Rev. Drug Discov., 2006, 5(9), 785-799.
[http://dx.doi.org/ dx.doi.org/10.1038/nrd2092] [PMID: 16955069]
[137]
West, J.L.; Hubbell, J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules, 1999, 32(1), 241-244.
[http://dx.doi.org/10.1021/ma981296k]
[138]
Yao, Q.; Kou, L.; Tu, Y.; Zhu, L. MMP-responsive ‘smart’ drug delivery and tumor targeting. Trends Pharmacol. Sci., 2018, 39(8), 766-781.
[http://dx.doi.org/10.1016/j.tips.2018.06.003] [PMID: 30032745]
[139]
Chien, M.P.; Thompson, M.P.; Barback, C.V.; Ku, T.H.; Hall, D.J.; Gianneschi, N.C. Enzyme-directed assembly of a nanoparticle probe in tumor tissue. Advanced materials (Deerfield Beach, Fla.), 2013, 25(26), 3599-3604.
[http://dx.doi.org/10.1002/adma. 201300823]
[140]
Ungerleider, J.L.; Kammeyer, J.K.; Braden, R.L.; Christman, K.L.; Gianneschi, N.C. Enzyme-targeted nanoparticles for delivery to ischemic skeletal muscle. Polym. Chem., 2017, 8(34), 5212-5219.
[http://dx.doi.org/10.1039/C7PY00568G] [PMID: 29098018]
[141]
Guo, F.; Wu, J.; Wu, W.; Huang, D.; Yan, Q.; Yang, Q.; Gao, Y.; Yang, G. PEGylated self-assembled enzyme-responsive nanoparticles for effective targeted therapy against lung tumors. J. Nanobiotechnology, 2018, 16(1), 57.
[http://dx.doi.org/10.1186/s12951-018-0384-8] [PMID: 30012166]
[142]
You, Y.; Xu, Z.; Chen, Y. Doxorubicin conjugated with a trastuzumab epitope and an MMP-2 sensitive peptide linker for the treatment of HER2-positive breast cancer. Drug Deliv., 2018, 25(1), 448-460.
[http://dx.doi.org/10.1080/10717544.2018. 1435746] [PMID: 29405790]
[143]
Li, E.; Yang, Y.; Hao, G.; Yi, X.; Zhang, S.; Pan, Y.; Xing, B.; Gao, M. Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and MR imaging. Nanotheranostics, 2018, 2(3), 233-242.
[http://dx.doi.org/10.7150/ntno.25565] [PMID: 29868348]
[144]
Wilson, A.N.; Guiseppi-Elie, A. Targeting homeostasis in drug delivery using bioresponsive hydrogel microforms. Int. J. Pharm., 2014, 461(1-2), 214-222.
[http://dx.doi.org/10.1016/j.ijpharm. 2013.11.061] [PMID: 24333901]
[145]
Bhunia, D.; Pradhan, K.; Das, G.; Ghosh, S.; Mondal, P.; Ghosh, S. Matrix metalloproteinase targeted peptide vesicles for delivering anticancer drugs. Chemical communications (Cambridge, England), 2018, 54(67), 9309-9312.
[http://dx.doi.org/10.1039/C8CC05687K]
[146]
Wang, X.; Chen, Q.; Zhang, X.; Ren, X.; Zhang, X.; Meng, L.; Liang, H.; Sha, X.; Fang, X. Matrix metalloproteinase 2/9-triggered-release micelles for inhaled drug delivery to treat lung cancer: Preparation and in vitro/in vivo studies. Int. J. Nanomedicine, 2018, 13, 4641-4659.
[http://dx.doi.org/10.2147/IJN. S166584] [PMID: 30147314]
[147]
Hsu, J.; Hoenicka, J.; Muro, S. Targeting, endocytosis, and lysosomal delivery of active enzymes to model human neurons by ICAM-1-targeted nanocarriers. Pharm. Res., 2015, 32(4), 1264-1278.
[http://dx.doi.org/10.1007/s11095-014-1531-z] [PMID: 25319100]
[148]
Wexselblatt, E.; Esko, J.D.; Tor, Y. GNeosomes: Highly lysosomotropic nanoassemblies for lysosomal delivery. ACS Nano, 2015, 9(4), 3961-3968.
[http://dx.doi.org/10.1021/nn507382n] [PMID: 25831231]
[149]
Kramer, L.; Turk, D.; Turk, B. The future of cysteine cathepsins in disease management. Trends Pharmacol. Sci., 2017, 38(10), 873-898.
[http://dx.doi.org/10.1016/j.tips.2017.06.003] [PMID: 28668224]
[150]
Wu, H.; Du, Q.; Dai, Q.; Ge, J.; Cheng, X. Cysteine protease cathepsins in atherosclerotic cardiovascular diseases. J. Atheroscler. Thromb., 2018, 25(2), 111-123.
[http://dx.doi.org/10.5551/jat.RV17016] [PMID: 28978867]
[151]
Gondi, C.S.; Rao, J.S. Cathepsin B as a cancer target. Expert Opin. Ther. Targets, 2013, 17(3), 281-291.
[http://dx.doi.org/10.1517/14728222.2013.740461] [PMID: 23293836]
[152]
Aggarwal, N.; Sloane, B.F.; Cathepsin, B.; Cathepsin, B. Multiple roles in cancer. Proteomics Clin. Appl., 2014, 8(5-6), 427-437.
[http://dx.doi.org/10.1002/prca.201300105] [PMID: 24677670]
[153]
Maniganda, S.; Sankar, V.; Nair, J.B.; Raghu, K.G.; Maiti, K.K. A lysosome-targeted drug delivery system based on sorbitol backbone towards efficient cancer therapy. Org. Biomol. Chem., 2014, 12(34), 6564-6569.
[http://dx.doi.org/10.1039/C4OB01153H] [PMID: 25062087]
[154]
Cheng, Y.J.; Luo, G.F.; Zhu, J.Y.; Xu, X.D.; Zeng, X.; Cheng, D.B.; Li, Y.M.; Wu, Y.; Zhang, X.Z.; Zhuo, R.X.; He, F. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(17), 9078-9087.
[http://dx.doi.org/10.1021/acsami.5b00752] [PMID: 25893819]
[155]
Huang, B.; Dong, W.J.; Yang, G.Y.; Wang, W.; Ji, C.H.; Zhou, F.N. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des. Devel. Ther., 2015, 9, 3867-3876.
[PMID: 26229447]
[156]
Kambhampati, S.P.; Kannan, R.M. Dendrimer nanoparticles for ocular drug delivery. J. Ocul. Pharmacol. Ther., 2013, 29(2), 151-165.
[http://dx.doi.org/10.1089/jop.2012.0232]
[157]
Mutalik, S.; Shetty, P.K.; Kumar, A.; Kalra, R.; Parekh, H.S. Enhancement in deposition and permeation of 5-fluorouracil through human epidermis assisted by peptide dendrimers. Drug Deliv., 2014, 21(1), 44-54.
[http://dx.doi.org/10.3109/10717544.2013. 845861] [PMID: 24134794]
[158]
Shah, N.D.; Parekh, H.S.; Steptoe, R.J. Asymmetric peptide dendrimers are effective linkers for antibody-mediated delivery of diverse payloads to b cells in vitro and in vivo. Pharm. Res., 2014, 31(11), 3150-3160.
[http://dx.doi.org/10.1007/s11095-014-1408-1] [PMID: 24848340]
[159]
Lee, S.J.; Jeong, Y.I.; Park, H.K.; Kang, D.H.; Oh, J.S.; Lee, S.G.; Lee, H.C. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery. Int. J. Nanomedicine, 2015, 10, 5489-5503.
[PMID: 26357473]
[160]
Zhang, C.; Pan, D.; Li, J.; Hu, J.; Bains, A.; Guys, N.; Zhu, H.; Li, X.; Luo, K.; Gong, Q.; Gu, Z. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater., 2017, 55, 153-162.
[http://dx.doi.org/10.1016/j.actbio.2017.02.047] [PMID: 28259838]
[161]
Ben-Nun, Y.; Fichman, G.; Adler-Abramovich, L.; Turk, B.; Gazit, E.; Blum, G. Cathepsin nanofiber substrates as potential agents for targeted drug delivery. J. Control. Release, 2017, 257, 60-67.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.028]
[162]
Khaliq, N.U.; Sandra, F.C.; Park, D.Y.; Lee, J.Y.; Oh, K.S.; Kim, D.; Byun, Y.; Kim, I.S.; Kwon, I.C.; Kim, S.Y.; Yuk, S.H. Doxorubicin/heparin composite nanoparticles for caspase-activated prodrug chemotherapy. Biomaterials, 2016, 101, 131-142.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.056] [PMID: 27286189]
[163]
Shen, B.; Jeon, J.; Palner, M.; Ye, D.; Shuhendler, A.; Chin, F.T.; Rao, J. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nanoaggregation probe. Angew. Chem. Int. Ed. Engl., 2013, 52(40), 10511-10514.
[http://dx.doi.org/10.1002/anie.201303422] [PMID: 23881906]
[164]
Yuan, Y.; Kwok, R.T.; Tang, B.Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc., 2014, 136(6), 2546-2554.
[http://dx.doi.org/10.1021/ja411811w] [PMID: 24437551]
[165]
Min, Y.; Li, J.; Liu, F.; Yeow, E.K.; Xing, B. Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. Engl., 2014, 53(4), 1012-1016.
[http://dx.doi.org/10.1002/anie.201308834] [PMID: 24311528]
[166]
Zhang, L.; Lei, J.; Ma, F.; Ling, P.; Liu, J.; Ju, H. A porphyrin photosensitized metal-organic framework for cancer cell apoptosis and caspase responsive theranostics. Chem. Commun. (Camb.), 2015, 51(54), 10831-10834.
[http://dx.doi.org/10.1039/C5CC03028E]
[167]
Zhao, N.; Wu, B.; Hu, X.; Xing, D. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles. Biomaterials, 2017, 141, 40-49.
[http://dx.doi.org/10.1016/j. biomaterials.2017.06.031] [PMID: 28666101]
[168]
Hildenbrand, R.; Allgayer, H.; Marx, A.; Stroebel, P. Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin. Investig. Drugs, 2010, 19(5), 641-652.
[http://dx.doi.org/10.1517/13543781003767400] [PMID: 20402-599]
[169]
Koudelka, S.; Mikulik, R.; Masek, J.; Raska, M.; Turanek Knotigova, P.; Miller, A.D.; Turanek, J. Liposomal nanocarriers for plasminogen activators. J. Control. Release, 2016, 227, 45-57.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.019]
[170]
Braun, G.B.; Sugahara, K.N.; Yu, O.M.; Kotamraju, V.R.; Molder, T.; Lowy, A.M.; Ruoslahti, E.; Teesalu, T. Urokinase-controlled tumor penetrating peptide. J. Control. Release, 2016, 232, 188-195.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.027]
[171]
Zhang, Y.; Kenny, H.A.; Swindell, E.P.; Mitra, A.K.; Hankins, P.L.; Ahn, R.W.; Gwin, K.; Mazar, A.P.; O’Halloran, T.V.; Lengyel, E. Urokinase plasminogen activator system-targeted delivery of nanobins as a novel ovarian cancer therapy. Mol. Cancer Ther., 2013, 12(12), 2628-2639.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0204] [PMID: 24061648]
[172]
Li, R.; Zheng, K.; Hu, P.; Chen, Z.; Zhou, S.; Chen, J.; Yuan, C.; Chen, S.; Zheng, W.; Ma, E.; Zhang, F.; Xue, J.; Chen, X.; Huang, M. A novel tumor targeting drug carrier for optical imaging and therapy. Theranostics, 2014, 4(6), 642-659.
[http://dx.doi.org/ 10.7150/thno.8527] [PMID: 24723985]
[173]
Chen, Z.; Xu, P.; Chen, J.; Chen, H.; Hu, P.; Chen, X.; Lin, L.; Huang, Y.; Zheng, K.; Zhou, S.; Li, R.; Chen, S.; Liu, J.; Xue, J.; Huang, M. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater., 2014, 10(10), 4257-4268.
[http://dx.doi.org/10.1016/j.actbio.2014.06.026] [PMID: 24969665]
[174]
Koetting, M.C.; Guido, J.F.; Gupta, M.; Zhang, A.; Peppas, N.A. pH-responsive and enzymatically-responsive hydrogel mi-croparticles for the oral delivery of therapeutic proteins: Ef-fects of protein size, crosslinking density, and hydrogel deg-radation on protein delivery. J. Control. Release, 2016, 221, 18-25.
[175]
Xiang, Y.; Li, Q.; Huang, D.; Tang, X.; Wang, L.; Shi, Y.; Zhang, W.; Yang, T.; Xiao, C.; Wang, J. Preparation and antitumor effect of a toxin-linked conjugate targeting vascular endothelial growth factor receptor and urokinase plasminogen activator. Exp. Biol. Med. (Maywood), 2015, 240(2), 160-168.
[http://dx.doi.org/ 10.1177/1535370214547154] [PMID: 25125500]
[176]
Segal, M.; Avinery, R.; Buzhor, M.; Shaharabani, R.; Harnoy, A.J.; Tirosh, E.; Beck, R.; Amir, R.J. Molecular precision and enzymatic degradation: From readily to undegradable polymeric micelles by minor structural changes. J. Am. Chem. Soc., 2017, 139(2), 803-810.
[http://dx.doi.org/10.1021/jacs.6b10624] [PMID: 27990807]
[177]
Rosenbaum, I.; Harnoy, A.J.; Tirosh, E.; Buzhor, M.; Segal, M.; Frid, L.; Shaharabani, R.; Avinery, R.; Beck, R.; Amir, R.J. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers. J. Am. Chem. Soc., 2015, 137(6), 2276-2284.
[http://dx.doi.org/10.1021/ja510085s] [PMID: 25607219]
[178]
Li, J.; Kuang, Y.; Shi, J.; Zhou, J.; Medina, J.E.; Zhou, R.; Yuan, D.; Yang, C.; Wang, H.; Yang, Z.; Liu, J.; Dinulescu, D.M.; Xu, B. Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew. Chem. Int. Ed. Engl., 2015, 54(45), 13307-13311.
[http://dx.doi.org/10.1002/anie.201507157] [PMID: 26365295]
[179]
Fu, J.; Qiu, L. Photo-crosslinked and esterase-sensitive polymersome for improved antitumor effect of water-soluble chemotherapeutics. Nanomedicine (Lond.), 2018, 13(16), 2051-2066.
[http://dx.doi.org/10.2217/nnm-2018-0048]
[180]
Pramanik, S.K.; Sreedharan, S.; Singh, H.; Khan, M.; Tiwari, K.; Shiras, A.; Smythe, C.; Thomas, J.A.; Das, A. Mitochondria targeting non-isocyanate-based polyurethane nanocapsules for enzyme-triggered drug release. Bioconjug. Chem., 2018, 29(11), 3532-3543.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00460] [PMID: 30036048]
[181]
Fernando, I.R.; Ferris, D.P.; Frasconi, M.; Malin, D.; Strekalova, E.; Yilmaz, M.D.; Ambrogio, M.W.; Algaradah, M.M.; Hong, M.P.; Chen, X.; Nassar, M.S.; Botros, Y.Y.; Cryns, V.L.; Stoddart, J.F. Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery. Nanoscale, 2015, 7(16), 7178-7183.
[http://dx.doi.org/10.1039/C4NR07443B] [PMID: 25820516]
[182]
Hong, S.H.; Patel, T.; Ip, S.; Garg, S.; Oh, J.K. Microfluidic assembly to synthesize dual enzyme/oxidation-responsive polyester-based nanoparticulates with controlled sizes for drug delivery. Langmuir, 2018, 34(10), 3316-3325.
[http://dx.doi.org/10.1021/acs.langmuir.8b00338] [PMID: 29485889]
[183]
Liu, X.; Li, Y.; Tan, X.; Rao, R.; Ren, Y.; Liu, L.; Yang, X.; Liu, W. Multifunctional hybrid micelles with tunable active targeting and acid/phosphatase-stimulated drug release for enhanced tumor suppression. Biomaterials, 2018, 157, 136-148.
[http://dx.doi.org/dx. doi.org/10. 1016/j.biomaterials.2017.12.006] [PMID: 29268144]
[184]
Lajud, S.A.; Han, Z.; Chi, F.L.; Gu, R.; Nagda, D.A.; Bezpalko, O.; Sanyal, S.; Bur, A.; Han, Z.; O’Malley, B.W., Jr; Li, D. A regulated delivery system for inner ear drug application. J. Control. Release, 2013, 166(3), 268-276.
[http://dx.doi.org/10.1016/j. jconrel.2012.12.031]
[185]
Jianping, Z.; Jianfeng, G.; Yao, Z.; Jiao, Y. Preparation and characterization of cross-linked microspheres C(Dex-g-PSSS) and their drug-carrying and colon-specific drug delivery properties. J. Biomater. Sci. Polym. Ed., 2014, 25(16), 1828-1841.
[http://dx.doi.org/ 10.1080/09205063.2014.951246] [PMID: 25162633]
[186]
Zheng, W. Sirtuins as emerging anti-parasitic targets. Eur. J. Med. Chem., 2013, 59, 132-140.
[http://dx.doi.org/10.1016/j. ejmech. 2012.11.014] [PMID: 23220641]
[187]
Freitag, M.; Schemies, J.; Larsen, T.; El Gaghlab, K.; Schulz, F.; Rumpf, T.; Jung, M.; Link, A. Synthesis and biological activity of splitomicin analogs targeted at human NAD(+)-dependent histone deacetylases (sirtuins). Bioorg. Med. Chem., 2011, 19(12), 3669-3677.
[http://dx.doi.org/10.1016/j.bmc.2011.01.026] [PMID: 21315612]
[188]
Enriquez, G.G.; Rizvi, S.A.; D’Souza, M.J.; Do, D.P. Formulation and evaluation of drug-loaded targeted magnetic microspheres for cancer therapy. Int. J. Nanomedicine, 2013, 8, 1393-1402.
[PMID: 23630421]
[189]
Wilson, P.M.; Labonte, M.J.; Martin, S.C.; Kuwahara, S.T.; El-Khoueiry, A.; Lenz, H.J.; Ladner, R.D. Sustained inhibition of deacetylases is required for the antitumor activity of the histone deactylase inhibitors panobinostat and vorinostat in models of colorectal cancer. Invest. New Drugs, 2013, 31(4), 845-857.
[http://dx.doi.org/10.1007/s10637-012-9914-7] [PMID: 23299388]
[190]
Staberg, M.; Michaelsen, S.R.; Rasmussen, R.D.; Villingshøj, M.; Poulsen, H.S.; Hamerlik, P. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine. Cell Oncol. (Dordr.), 2017, 40(1), 21-32.
[http://dx.doi.org/10.1007/s13402-016-0301-9] [PMID: 27766591]
[191]
Hansen, A.H.; Mouritsen, O.G.; Arouri, A. Enzymatic action of phospholipase A2 on liposomal drug delivery systems. Int. J. Pharm., 2015, 491(1-2), 49-57.
[http://dx.doi.org/10.1016/j. ijpharm.2015.06.005] [PMID: 26056930]
[192]
Madsen, J.J.; Fristrup, P.; Peters, G.H. Theoretical assessment of fluorinated phospholipids in the design of liposomal drug-delivery systems. J. Phys. Chem. B, 2016, 120(36), 9661-9671.
[http://dx.doi.org/10.1021/acs.jpcb.6b07206] [PMID: 27557037]
[193]
Tagami, T.; Ando, Y.; Ozeki, T. Fabrication of liposomal doxorubicin exhibiting ultrasensitivity against phospholipase A2 for efficient pulmonary drug delivery to lung cancers. Int. J. Pharm., 2017, 517(1-2), 35-41.
[http://dx.doi.org/10.1016/j. ijpharm.2016. 11.039] [PMID: 27865984]
[194]
Gowda, R.; Dinavahi, S.S.; Iyer, S.; Banerjee, S.; Neves, R.I.; Pameijer, C.R.; Robertson, G.P. Nanoliposomal delivery of cytosolic phospholipase A2 inhibitor arachidonyl trimethyl ketone for melanoma treatment. Nanomedicine (Lond.), 2018, 14(3), 863-873.
[http://dx.doi.org/10.1016/j.nano.2017.12.020] [PMID: 29317343]
[195]
Dahan, A.; Markovic, M.; Epstein, S.; Cohen, N.; Zimmermann, E.M.; Aponick, A.; Ben-Shabat, S. Phospholipid-drug conjugates as a novel oral drug targeting approach for the treatment of inflammatory bowel disease. Eur. J. Pharm. Sci., 2017, 108, 78-85.
[http://dx.doi.org/10.1016/j.ejps.2017.06.022]
[196]
Zuo, J.; Tong, L.; Du, L.; Yang, M.; Jin, Y. Biomimetic nanoassemblies of 1-O-octodecyl-2-conjugated linoleoyl-sn-glycero-3-phosphatidyl gemcitabine with phospholipase A2-triggered degradation for the treatment of cancer. Colloids Surf. B Biointerfaces, 2017, 152, 467-474.
[http://dx.doi.org/10.1016/j.colsurfb.2017. 02.001] [PMID: 28187380]
[197]
Tao, X.; Jia, N.; Cheng, N.; Ren, Y.; Cao, X.; Liu, M.; Wei, D.; Wang, F.Q. Design and evaluation of a phospholipase D based drug delivery strategy of novel phosphatidyl-prodrug. Biomaterials, 2017, 131, 1-14.
[http://dx.doi.org/10.1016/j. biomaterials.2017. 03.045] [PMID: 28365224]
[198]
Lee, Y.Y.; Lee, S.Y.; Park, S.Y.; Choi, H.J.; Kim, E.G.; Han, J.S. Therapeutic potential of a phospholipase D1 inhibitory peptide fused with a cell-penetrating peptide as a novel anti-asthmatic drug in a Der f 2-induced airway inflammation model. Exp. Mol. Med., 2018, 50(5), 55.
[http://dx.doi.org/10.1038/s12276-018-0083-4] [PMID: 29717122]
[199]
Patra, S.K.; Sengupta, D.; Deb, M.; Kar, S.; Kausar, C. Interaction of phospholipase C with liposome: A conformation transition of the enzyme is critical and specific to liposome composition for burst hydrolysis and fusion in concert. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 647-654.
[http://dx.doi.org/10.1016/j. saa.2016.10.016] [PMID: 27788468]
[200]
Wang, X.; Chen, S.; Wu, D.; Wu, Q.; Wei, Q.; He, B.; Lu, Q.; Wang, Q. Oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels: mechanism, molding, and applications. Adv. Mater., 2018, 30(17), e1705668.
[http://dx.doi.org/dx.doi. org/10.1002/adma.201705668] [PMID: 29504155]
[201]
Lee, S. Monocytes: A novel drug delivery system targeting atherosclerosis. J. Drug Target., 2014, 22(2), 138-145.
[http://dx.doi.org/ 10.3109/1061186X.2013.844158] [PMID: 24117054]
[202]
Kanzaki, S.; Watanabe, K.; Fujioka, M.; Shibata, S.; Nakamura, M.; Okano, H.J.; Okano, H.; Ogawa, K. Novel in vivo imaging analysis of an inner ear drug delivery system: Drug availability in inner ear following different dose of systemic drug injections. Hearing research, 2015, 330, (Pt A), 142-146.
[203]
Giancotti, F.G. Deregulation of cell signaling in cancer. FEBS Lett., 2014, 588(16), 2558-2570.
[http://dx.doi.org/10.1016/j. febslet.2014.02.005] [PMID: 24561200]
[204]
Jia, X.; Zhang, Y.; Zou, Y.; Wang, Y.; Niu, D.; He, Q.; Huang, Z.; Zhu, W.; Tian, H.; Shi, J.; Li, Y. Dual intratumoral redox/enzyme-responsive NO-releasing nanomedicine for the specific, high-efficacy, and low-toxic cancer therapy. Adv. Mater., 2018, 30(30), e1704490.
[http://dx.doi.org/10.1002/adma.201704490] [PMID: 29889325]
[205]
Ginn, S.L.; Alexander, I.E.; Edelstein, M.L.; Abedi, M.R.; Wixon, J. Gene therapy clinical trials worldwide to 2012 - An update. J. Gene Med., 2013, 15(2), 65-77.
[http://dx.doi.org/10. 1002/jgm.2698] [PMID: 23355455]
[206]
Robbins, P.F.; Morgan, R.A.; Feldman, S.A.; Yang, J.C.; Sherry, R.M.; Dudley, M.E.; Wunderlich, J.R.; Nahvi, A.V.; Helman, L.J.; Mackall, C.L.; Kammula, U.S.; Hughes, M.S.; Restifo, N.P.; Raffeld, M.; Lee, C.C.; Levy, C.L.; Li, Y.F.; El-Gamil, M.; Schwarz, S.L.; Laurencot, C.; Rosenberg, S.A. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol., 2011, 29(7), 917-924.
[http://dx.doi.org/10.1200/JCO.2010.32.2537] [PMID: 21282551]
[207]
Morgan, R.A.; Dudley, M.E.; Wunderlich, J.R.; Hughes, M.S.; Yang, J.C.; Sherry, R.M.; Royal, R.E.; Topalian, S.L.; Kammula, U.S.; Restifo, N.P.; Zheng, Z.; Nahvi, A.; de Vries, C.R.; Rogers-Freezer, L.J.; Mavroukakis, S.A.; Rosenberg, S.A. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 2006, 314(5796), 126-129.
[http://dx.doi.org/10. 1126/science.1129003] [PMID: 16946036]
[208]
Adair, J.E.; Beard, B.C.; Trobridge, G.D.; Neff, T.; Rockhill, J.K.; Silbergeld, D.L.; Mrugala, M.M.; Kiem, H.P. Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Sci. Transl. Med., 2012, 4(133), 133ra57.
[http://dx.doi.org/10.1126/scitranslmed.3003425] [PMID: 22572881]
[209]
Shen, Y.; Zhang, J.; Hao, W.; Wang, T.; Liu, J.; Xie, Y.; Xu, S.; Liu, H. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int. J. Nanomedicine, 2018, 13, 537-553.
[http://dx.doi.org/10.2147/IJN.S149942] [PMID: 29416334]
[210]
Tang, Q.; Onitsuka, M.; Tabata, A.; Tomoyasu, T.; Nagamune, H. Construction of Anti-HER2 recombinants as targeting modules for a drug-delivery system against HER2-positive Cells. Anticancer Res., 2018, 38(7), 4319-4325.
[http://dx.doi.org/10.21873/anticanres.12731] [PMID: 29970568]
[211]
Leng, D.; Hu, J.; Huang, X.; He, W.; Wang, Y.; Liu, M. Promoted delivery of salinomycin to lung cancer through epidermal growth factor receptor aptamers coupled DSPE-PEG2000 nanomicelles. J. Nanosci. Nanotechnol., 2018, 18(8), 5242-5251.
[http://dx.doi.org/ 10.1166/jnn.2018.15424] [PMID: 29458573]
[212]
You, J.O.; Guo, P.; Auguste, D.T. A drug-delivery vehicle combining the targeting and thermal ablation of HER2+ breast-cancer cells with triggered drug release. Angew. Chem. Int. Ed. Engl., 2013, 52(15), 4141-4146.
[http://dx.doi.org/10.1002/anie.201209804] [PMID: 23494862]
[213]
Kala, S.; Mak, A.S.; Liu, X.; Posocco, P.; Pricl, S.; Peng, L.; Wong, A.S. Combination of dendrimer-nanovector-mediated small interfering RNA delivery to target Akt with the clinical anticancer drug paclitaxel for effective and potent anticancer activity in treating ovarian cancer. J. Med. Chem., 2014, 57(6), 2634-2642.
[http://dx.doi.org/10.1021/jm401907z] [PMID: 24592939]
[214]
Fujita, Y.; Kuwano, K.; Ochiya, T. Development of small RNA delivery systems for lung cancer therapy. Int. J. Mol. Sci., 2015, 16(3), 5254-5270.
[http://dx.doi.org/10.3390/ijms16035254] [PMID: 25756380]
[215]
Wang, Y.; Zhou, L.; Xiao, M.; Sun, Z.L.; Zhang, C.Y. Nanomedicine-based paclitaxel induced apoptotic signaling pathways in A562 leukemia cancer cells. Colloids Surf. B Biointerfaces, 2017, 149, 16-22.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.022] [PMID: 27716527]
[216]
Ren, X.; Chen, Y.; Peng, H.; Fang, X.; Zhang, X.; Chen, Q.; Wang, X.; Yang, W.; Sha, X. Blocking autophagic flux enhances iron oxide nanoparticle photothermal therapeutic efficiency in cancer treatment. ACS Appl. Mater. Interfaces, 2018, 10(33), 27701-27711.
[http://dx.doi.org/10.1021/acsami.8b10167] [PMID: 30048114]
[217]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[218]
Guimarães, P.P.G.; Gaglione, S.; Sewastianik, T.; Carrasco, R.D.; Langer, R.; Mitchell, M.J. Nanoparticles for immune cytokine TRAIL-based cancer therapy. ACS Nano, 2018, 12(2), 912-931.
[http://dx.doi.org/10.1021/acsnano.7b05876] [PMID: 29378114]
[219]
Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans. Front. Microbiol., 2018, 9, 1441.
[http://dx.doi.org/10.3389/fmicb.2018. 01441] [PMID: 30013539]
[220]
Mei, K-C.; Ghazaryan, A.; Teoh, E.Z.; Summers, H.D.; Li, Y.; Ballesteros, B.; Piasecka, J.; Walters, A.; Hider, R.C.; Mailänder, V.; Al-Jamal, K.T. Protein-Corona-by-Design in 2D: A reliable platform to decode bio-nano interactions for the next-generation quality-by-design nanomedicines. Adv. Mater., 2018, e1802732.
[http://dx.doi.org/10.1002/adma.201802732] [PMID: 30144166]
[221]
Rodríguez-Nogales, C.; González-Fernández, Y.; Aldaz, A.; Couvreur, P.; Blanco-Prieto, M.J. Nanomedicines for pediatric cancers. ACS Nano, 2018, 12(8), 7482-7496.
[http://dx.doi.org/ 10.1021/acsnano.8b03684] [PMID: 30071163]
[222]
Choi, V.N.; Park, S.K.; Hwang, B.J. Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification. BMB Rep., 2013, 46(4), 219-224.
[http://dx.doi.org/10.5483/BMBRep.2013.46.4.269] [PMID: 23615264]
[223]
DeLisi, C.; Marchetti, F. A theory of measurement error and its implications for spatial and temporal gradient sensing during chemotaxis. II. The effects of non-equilibrated ligand binding. Cell Biophys., 1983, 5(4), 237-253.
[http://dx.doi.org/10.1007/BF02788623] [PMID: 6202410]
[224]
Pappu, V.; Bagchi, P. 3D computational modeling and simulation of leukocyte rolling adhesion and deformation. Comput. Biol. Med., 2008, 38(6), 738-753.
[http://dx.doi.org/10.1016/j.compbiomed. 2008.04.002] [PMID: 18499093]
[225]
Nag, A.; Monine, M.I.; Faeder, J.R.; Goldstein, B. Aggregation of membrane proteins by cytosolic cross-linkers: theory and simulation of the LAT-Grb2-SOS1 system. Biophys. J., 2009, 96(7), 2604-2623.
[http://dx.doi.org/10.1016/j.bpj.2009.01.019] [PMID: 19348745]
[226]
Bell, I.R.; Sarter, B.; Standish, L.J.; Banerji, P.; Banerji, P. Low doses of traditional nanophytomedicines for clinical treatment: Manufacturing processes and nonlinear response patterns. J. Nanosci. Nanotechnol., 2015, 15(6), 4021-4038.
[http://dx.doi.org/ 10.1166/jnn.2015.9481] [PMID: 26369009]
[227]
Choi, J.; Jang, B.N.; Park, B.J.; Joung, Y.K.; Han, D.K. Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid). Langmuir, 2014, 30(33), 10098-10106.
[http://dx.doi.org/10.1021/la500452h] [PMID: 25090045]
[228]
Casalini, T.; Rossi, F.; Lazzari, S.; Perale, G.; Masi, M. Mathematical modeling of PLGA microparticles: from polymer degradation to drug release. Mol. Pharm., 2014, 11(11), 4036-4048.
[http://dx.doi.org/10.1021/mp500078u] [PMID: 25230105]
[229]
Danyuo, Y.; Obayemi, J.D.; Dozie-Nwachukwu, S.; Ani, C.J.; Odusanya, O.S.; Oni, Y.; Anuku, N.; Malatesta, K.; Soboyejo, W.O. Prodigiosin release from an implantable biomedical device: kinetics of localized cancer drug release. Mater. Sci. Eng. C, 2014, 42, 734-745.
[http://dx.doi.org/10.1016/j.msec.2014.06.008] [PMID: 25063175]
[230]
Kabay, G.; Demirci, C.; Kaleli Can, G.; Meydan, A.E.; Daşan, B.G.; Mutlu, M. A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. Int. J. Biol. Macromol., 2018, 114, 989-997.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.182] [PMID: 29621503]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy