Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Green Synthesis, in-vitro Antimicrobial Evaluation, Docking, and SAR Studies of Potent Quinoline-4-Carboxylic Acids

Author(s): Badvel Pallavi, Rajnish Prakash Singh, Prabhat Nath Jha, Subhash Chander, Sankaranarayanan Murugesan, Prachi Sharma and Paritosh Shukla*

Volume 16, Issue 11, 2019

Page: [874 - 883] Pages: 10

DOI: 10.2174/1570178616666190123121506

Price: $65

Abstract

The paper describes the synthesis of quinoline-4-carboxylic acid derivatives employing completely green methods such as the use of water as solvent and of microwave irradiation for heating. The prepared molecules were examined for bactericidal and antifungal behavior and two of the tested compounds showed reasonably good antimicrobial activity. The biological activity results were further corroborated by fluorescence microscopy and by evaluating their time-dependent bactericidal behavior. Two of the most potent compounds were then subjected to docking against DNA gyrase protein (PDB ID: 2XCT) showing possible interactions responsible for the potency of these compounds. Also, an SAR analysis was proposed based on the results obtained.

Keywords: Quinoline-4-carboxylic acids, green chemistry, microwave irradiation, in-vitro, in-silico studies, SAR analysis.

Graphical Abstract

[1]
Morimoto, Y.; Matsuda, F.; Shirahama, H. Synlett, 1991, 1991, 202-203.
[2]
Woodward, R.B.; Doering, W.V. J. Am. Chem. Soc., 1945, 67, 860-874.
[3]
Wang, Y.; Tian, H.; Huang, F.; Long, W.; Zhang, Q.; Wang, J.; Zhu, Y.; Wu, X.; Chen, G.; Zhao, L.; Bakken, L.R.; Frostegard, A.; Zhang, A. Sci. Rep., 2017, 7, 14778-14789.
[4]
Strigáčová, J.; Hudecova, D.; Lásiková, A.; Végh, D. Folia Microbiol., 2000, 45, 305-309.
[5]
Abdellatif, K.R.; Abdelall, E.K.; Abdelgawad, M.A.; Amin, D.M.; Omar, H.A. Med. Chem. Res., 2017, 26, 929-939.
[6]
Stemp, G.; Ashmeade, T.; Branch, C.L.; Hadley, M.S.; Hunter, A.J.; Johnson, C.N.; Nash, D.J.; Thewlis, K.M.; Vong, A.K.; Austin, N.E.; Jeffrey, P. J. Med. Chem., 2000, 43, 1878-1885.
[7]
Bénard, C.; Zouhiri, F.; Normand-Bayle, M.; Danet, M.; Desmaële, D.; Leh, H.; Mouscadet, J.F.; Mbemba, G.; Thomas, C.M.; Bonnenfant, S.; Le Bret, M. Bioorg. Med. Chem. Lett., 2004, 14, 2473-2476.
[8]
Arrested, P.; Pawlowski, M.; Tonnaire, T.; Sicsic, S.; Dumy, P.; de Rosny, E.; Reboud-Ravaux, M.; Fulcrand, P.; Martinez, J. Eur. J. Med. Chem., 1998, 33, 423-436.
[9]
Desrivot, J.; Herrenknecht, C.; Ponchel, G.; Garbi, N.; Prina, E.; Fournet, A.; Bories, C.; Figadere, B.; Hocquemiller, R.; Loiseau, P.M. Biomed. Pharmacother., 2007, 61, 441-450.
[10]
Borioni, A.; Mustazza, C.; Sestili, I.; Sbraccia, M.; Turchetto, L.; Del Giudice, M.R. Arch. Pharm., 2007, 340, 17-25.
[11]
Fallah-Mehrjardi, M. Mini Rev. Org. Chem., 2017, 14, 187-196.
[12]
Liberto, N.A.; Simões, J.B.; de Paiva Silva, S.; da Silva, C.J.; Modolo, L.V.; de Fátima, Â.; Silva, L.M.; Derita, M.; Zacchino, S.; Zuñiga, O.M.; Romanelli, G.P.; Fernandes, S.A. Bioorg. Med. Chem., 2017, 25, 1153-1162.
[13]
Pfitzinger, W. Adv. Synth. Catal., 1886, 33, 100-100.
[14]
More, P.A.; Shankarling, G.S. New J. Chem., 2017, 41, 12380-12383.
[15]
Madak, J.T.; Cuthbertson, C.R.; Chen, W.; Showalter, H.D.; Neamati, N. Chem. Eur. J., 2017, 23, 13875-13878.
[16]
Kumar, A.; Khan, S.; Ahmed, Q.N. Org. Lett., 2017, 19, 4730-4733.
[17]
Zhang, X.; Kumata, K.; Yamasaki, T.; Cheng, R.; Hatori, A.; Ma, L.; Zhang, Y.; Xie, L.; Wang, L.; Kang, H.J.; Sheffler, D.J. ACS Chem. Neurosci., 2017, 8, 1937-1948.
[18]
Duvelleroy, D.; Perrio, C.; Parisel, O.; Lasne, M.C. Org. Biomol. Chem., 2005, 3, 3794-3804.
[19]
Lu, L.; Zhou, P.; Hu, B.; Li, X.; Huang, R.; Yu, F. Tetrahedron Lett., 2017, 58, 3658-3661.
[20]
El Ashry, E.S.; Ramadan, E.S.; Abdel Hamid, H.; Hagar, M. Synth. Commun., 2005, 35, 2243-2250.
[21]
Zhu, H.; Yang, R.F.; Yun, L.H.; Li, J. Chin. Chem. Lett., 2010, 21, 35-38.
[22]
Ramann, G.A.; Cowen, B.J. Molecules, 2016, 21, 986.
[23]
Lalezari, I.; Ghabgharan, F.; Maghsoudi, R. J. Med. Chem., 1971, 14, 465-465.
[24]
Khan, I.; Shah, S.J.; Ejaz, S.A.; Ibrar, A.; Hameed, S.; Lecka, J.; Millán, J.L.; Sévigny, J.; Iqbal, J. RSC Adv, 2015, 5, 64404-64413.
[25]
Yeh, J.Y.; Coumar, M.S.; Shiao, H.Y.; Lin, T.J.; Lee, Y.C.; Hung, H.C.; Ko, S.; Kuo, F.M.; Fang, M.Y.; Huang, Y.L.; Hsu, J.T. ChemMedChem, 2012, 7, 1546-1550.
[26]
Wu, Y.; Chen, Z.; Liu, Y.; Yu, L.; Zhou, L.; Yang, S.; Lai, L. Bioorg. Med. Chem., 2011, 19, 3361-3366.
[27]
Muscia, G.C.; Carnevale, J.P.; Bollini, M.; Asis, S.E. J. Heterocycl. Chem., 2008, 45, 611-614.
[28]
Sarkis, G.Y. J. Chem. Eng. Data, 1972, 17, 388-391.
[29]
Li, S.; Huang, Q.; Liu, Y.; Zhang, X.; Liu, S.; He, C.; Gong, P. Eur. J. Med. Chem., 2013, 64, 62-73.
[30]
Strigáčová, J.; Hudecova, D.; Lásiková, A.; Végh, D. Folia Microbiol., 2000, 45, 305-309.
[31]
Beletskaya, I.P.; Kashin, A.N.; Khotina, I.A.; Khokhlov, A.R. Synlett, 2008, 2008, 1547-1552.
[32]
Kowsari, E.; Mallakmohammadi, M. Ultrason. Sonochem., 2011, 18, 447-454.
[33]
Druzhinina, T.V.; Kondrashova, N.N.; Shvekhgeimer, M.G. Fibre Chem., 2004, 36, 7-11.
[34]
Palmer, M.H.; McIntyre, P.S. J. Chem. Soc. B, 1969, 1969, 539-543.
[35]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Biochem., 2014, 53, 1565-1574.
[36]
Wang, J.C. Annu. Rev. Biochem., 2009, 78, 31-54.
[37]
Schoeffler, A.J.; Berger, J.M. Q. Rev. Biophys., 2008, 41, 41-101.
[38]
Tse-Dinh, Y.C. Infect. Disord. Drug Targets, 2007, 7, 3-9.
[39]
Champoux, J.J. Annu. Rev. Biochem., 2001, 70, 369-413.
[40]
Collin, F.; Karkare, S.; Maxwell, A. Appl. Microbiol. Biotechnol., 2011, 92, 479-497.
[41]
Glide version 5.9. (2013). Schrödinger, LLC, New York
[42]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. J. Am. Chem. Soc., 1996, 118, 11225-11236.
[43]
Lig-prep version 2.6 (2013). Schrödinger LLC, New York.
[44]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. J. Med. Chem., 2006, 49, 6177-6196.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy