[1]
Gerlach, R.G.; Hensel, M. Protein secretion systems and adhesins: The molecular armory of Gram-negative pathogens. Int. J. Med. Microbiol., 2007, 297(6), 401-415.
[2]
Desvaux, M.; Hebraud, M.; Talon, R.; Henderson, I.R. Secretion and subcellular localizations of bacterial proteins: A semantic awareness issue. Trends Microbiol., 2009, 17(4), 139-145.
[3]
Desvaux, M.; Dumas, E.; Chafsey, I.; Hebraud, M. Protein cell surface display in Gram-positive bacteria: From single protein to macromolecular protein structure. FEMS Microbiol. Lett., 2006, 256(1), 1-15.
[4]
Rego, A.T.; Chandran, V.; Waksman, G. Two-step and one-step secretion mechanisms in Gram-negative bacteria: Contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem. J., 2010, 425(3), 475-488.
[5]
Costa, T.R.; Felisberto-Rodrigues, C.; Meir, A.; Prevost, M.S.; Redzej, A.; Trokter, M.; Waksman, G. Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol., 2015, 13(6), 343-359.
[6]
Rapisarda, C.; Tassinari, M.; Gubellini, F.; Fronzes, R. Using Cryo-EM to investigate bacterial secretion systems. Annu. Rev. Microbiol., 2018, 72, 231-254.
[7]
Papanikou, E.; Karamanou, S.; Economou, A. Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol., 2007, 5(11), 839-851.
[8]
Pukatzki, S.; Ma, A.T.; Sturtevant, D.; Krastins, B.; Sarracino, D.; Nelson, W.C.; Heidelberg, J.F.; Mekalanos, J.J. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1528-1533.
[9]
Mougous, J.D.; Cuff, M.E.; Raunser, S.; Shen, A.; Zhou, M.; Gifford, C.A.; Goodman, A.L.; Joachimiak, G.; Ordonez, C.L.; Lory, S.; Walz, T.; Joachimiak, A.; Mekalanos, J.J. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006, 312(5779), 1526-1530.
[10]
Shalom, G.; Shaw, J.G.; Thomas, M.S. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology, 2007, 153(Pt 8), 2689-2699.
[11]
Zoued, A.; Brunet, Y.R.; Durand, E.; Aschtgen, M.S.; Logger, L.; Douzi, B.; Journet, L.; Cambillau, C.; Cascales, E. Architecture and assembly of the Type VI secretion system. Biochim. Biophys. Acta, 2014, 1843(8), 1664-1673.
[12]
Durand, E.; Nguyen, V.S.; Zoued, A.; Logger, L.; Pehau-Arnaudet, G.; Aschtgen, M.S.; Spinelli, S.; Desmyter, A.; Bardiaux, B.; Dujeancourt, A.; Roussel, A.; Cambillau, C.; Cascales, E.; Fronzes, R. Biogenesis and structure of a type VI secretion membrane core complex. Nature, 2015, 523(7562), 555-560.
[13]
Cherrak, Y.; Rapisarda, C.; Pellarin, R.; Bouvier, G.; Bardiaux, B.; Allain, F.; Malosse, C.; Rey, M.; Chamot-Rooke, J.; Cascales, E.; Fronzes, R.; Durand, E. Biogenesis and structure of a type VI secretion baseplate. Nat. Microbiol., 2018, 3(12), 1404-1416.
[14]
Nazarov, S.; Schneider, J.P.; Brackmann, M.; Goldie, K.N.; Stahlberg, H.; Basler, M. Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end. EMBO J., 2018, 37(4), pii: e97103.
[15]
English, G.; Byron, O.; Cianfanelli, F.R.; Prescott, A.R.; Coulthurst, S.J. Biochemical analysis of TssK, a core component of the bacterial Type VI secretion system, reveals distinct oligomeric states of TssK and identifies a TssK-TssFG subcomplex. Biochem. J., 2014, 461(2), 291-304.
[16]
Dix, S.R.; Owen, H.J.; Sun, R.; Ahmad, A.; Shastri, S.; Spiewak, H.L.; Mosby, D.J.; Harris, M.J.; Batters, S.L.; Brooker, T.A.; Tzokov, S.B.; Sedelnikova, S.E.; Baker, P.J.; Bullough, P.A.; Rice, D.W.; Thomas, M.S. Structural insights into the function of type VI secretion system TssA subunits. Nat. Commun., 2018, 9(1), 4765.
[17]
Basler, M.; Pilhofer, M.; Henderson, G.P.; Jensen, G.J.; Mekalanos, J.J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483(7388), 182-186.
[18]
Kudryashev, M.; Wang, R.Y.; Brackmann, M.; Scherer, S.; Maier, T.; Baker, D.; DiMaio, F.; Stahlberg, H.; Egelman, E.H.; Basler, M. Structure of the type VI secretion system contractile sheath. Cell, 2015, 160(5), 952-962.
[19]
Shneider, M.M.; Buth, S.A.; Ho, B.T.; Basler, M.; Mekalanos, J.J.; Leiman, P.G. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature, 2013, 500(7462), 350-353.
[20]
Chang, Y.W.; Rettberg, L.A.; Ortega, D.R.; Jensen, G.J. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep., 2017, 18(7), 1090-1099.
[21]
Mougous, J.D.; Gifford, C.A.; Ramsdell, T.L.; Mekalanos, J.J. Threonine phosphorylation post-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat. Cell Biol., 2007, 9(7), 797-803.
[22]
Hsu, F.; Schwarz, S.; Mougous, J.D. TagR promotes PpkA-catalysed type VI secretion activation in Pseudomonas aeruginosa. Mol. Microbiol., 2009, 72(5), 1111-1125.
[23]
Silverman, J.M.; Austin, L.S.; Hsu, F.; Hicks, K.G.; Hood, R.D.; Mougous, J.D. Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol. Microbiol., 2011, 82(5), 1277-1290.
[24]
Boyer, F.; Fichant, G.; Berthod, J.; Vandenbrouck, Y.; Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics, 2009, 10, 104.
[25]
Lin, J.S.; Pissaridou, P.; Wu, H.H.; Tsai, M.D.; Filloux, A.; Lai, E.M. TagF-mediated repression of bacterial type VI secretion systems involves a direct interaction with the cytoplasmic protein Fha. J. Biol. Chem., 2018, 293(23), 8829-8842.
[26]
Ostrowski, A.; Cianfanelli, F.R.; Porter, M.; Mariano, G.; Peltier, J.; Wong, J.J.; Swedlow, J.R.; Trost, M.; Coulthurst, S.J. Killing with proficiency: Integrated post-translational regulation of an offensive Type VI secretion system. PLoS Pathog., 2018, 14(7), e1007230.
[27]
Ok, C.K.; Chang, J.H. Purification, crystallization and X-ray crystallographic analysis of the type VI secretion system accessory protein TagF from Pseudomonas aeruginosa. Biodesign, 2017, 5(3), 118-121.
[28]
Adams, P.D.; Afonine, P.V.; Bunkoczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; McCoy, A.J.; Moriarty, N.W.; Oeffner, R.; Read, R.J.; Richardson, D.C.; Richardson, J.S.; Terwilliger, T.C.; Zwart, P.H. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 2), 213-221.
[29]
Emsley, P.; Cowtan, K. Model-building tools for molecular
graphics. Acta Crystallogr. D Biol. Crystallogr, 2004, 60(Pt 12 Pt1), 2126-2132.
[30]
Holm, L.; Rosenstrom, P. Dali server: Conservation mapping in
3D. Nucleic Acids Res, 2010, 38, (Web Server issue), W545-549.
[31]
Chang, J.H.; Kim, Y.G. Crystal structure of the bacterial type VI secretion system component TssL from Vibrio cholerae. J. Microbiol., 2015, 53(1), 32-37.
[32]
Pacitto, A.; Ascher, D.B.; Wong, L.H.; Blaszczyk, B.K.; Nookala, R.K.; Zhang, N.; Dokudovskaya, S.; Levine, T.P.; Blundell, T.L. Lst4, the yeast Fnip1/2 orthologue, is a DENN-family protein. Open Biol., 2015, 5(12), 150174.
[33]
Menko, F.H.; van Steensel, M.A.; Giraud, S.; Friis-Hansen, L.; Richard, S.; Ungari, S.; Nordenskjold, M.; Hansen, T.V.; Solly, J.; Maher, E.R.; European, B.H.D.C. Birt-Hogg-Dube syndrome: Diagnosis and management. Lancet Oncol., 2009, 10(12), 1199-1206.
[34]
Baba, M.; Hong, S.B.; Sharma, N.; Warren, M.B.; Nickerson, M.L.; Iwamatsu, A.; Esposito, D.; Gillette, W.K.; Hopkins, R.F., 3rd; Hartley, J.L.; Furihata, M.; Oishi, S.; Zhen, W.; Burke, T.R., Jr; Linehan, W.M.; Schmidt, L.S.; Zbar, B. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc. Natl. Acad. Sci. USA, 2006, 103(42), 15552-15557.
[35]
Marat, A.L.; Dokainish, H.; McPherson, P.S. DENN domain proteins: Regulators of Rab GTPases. J. Biol. Chem., 2011, 286(16), 13791-13800.
[36]
De Franceschi, N.; Wild, K.; Schlacht, A.; Dacks, J.B.; Sinning, I.; Filippini, F.T. Longin and GAF domains: Structural evolution and adaptation to the subcellular trafficking machinery. Traffic, 2014, 15(1), 104-121.
[37]
Zhang, D.; Iyer, L.M.; He, F.; Aravind, L. Discovery of novel DENN proteins: Implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front. Genet., 2012, 3, 283.