[1]
WHO | Antimicrobial Resistance. WHO, 2018.
[2]
Batzlaff, C.M.; Limper, A.H. When to consider the possibility of a fungal infection: An overview of clinical diagnosis and laboratory approaches. Clin. Chest Med., 2017, 38(3), 385-391.
[3]
Liu, R.H.; Shang, Z.C.; Li, T.X.; Yang, M.H.; Kong, L.Y. In vitro antibiofilm activity of Eucarobustol E against Candida albicans. Antimicrob. Agents Chemother., 2017, 61, e02707-16.
[4]
Yeaman, M.R. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55, 27-55.
[5]
Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of action of the antimicrobial peptide Buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun., 1998, 224, 253-257.
[6]
Malina, A.; Shai, Y. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochem. J., 2005, 390, 695-702.
[7]
Sharma, S.; Sahoo, N.; Bhunia, A. Antimicrobial peptides and their pore/ion channel properties in neutralization of pathogenic microbes. Curr. Top. Med. Chem., 2016, 16, 46-53.
[8]
Herbel, V.; Wink, M. Mode of action and membrane specificity of the antimicrobial peptide Snakin-2. PeerJ, 2016, 4, e1987.
[9]
Nicolas, P. Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. FEBS J., 2009, 276, 6483-6496.
[10]
Sani, M.A.; Separovic, F. How membrane-active peptides get into lipid membranes. Acc. Chem. Res., 2016, 49, 1130-1138.
[11]
Tashima, T. Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett., 2017, 27, 121-130.
[12]
Xu, X.; Li, J.; Lu, Q.; Yang, H.; Zhang, Y.; Lai, R. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom. Toxicon, 2006, 47, 249-253.
[13]
Castro, M.S.; Ferreira, T.C.G.; Cilli, E.M.; Crusca, E.; Mendes-Giannini, M.J.S.; Sebben, A.; Ricart, C.A.O.; Sousa, M.V.; Fontes, W. Hylin A1, the first cytolytic peptide isolated from the arboreal south American frog Hypsiboas albopunctatus (“spotted Treefrog”). Peptides, 2009, 30, 291-296.
[14]
Matejuk, A.; Leng, Q.; Begum, M.D.; Woodle, M.C.; Scaria, P.; Chou, S.T.; Mixson, A.J. Peptide-Based antifungal therapies against emerging infections. Drugs Future, 2010, 35(3), 197.
[15]
Omar, R.; Yadav, A. The remarkable cationic peptides: A boon to pharmaceutical sciences? J. Pharm. Pharm. Sci., 2018, 21, 60.
[16]
Van Der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. . Cell. Mol. Life Sci., 2013, 70, 3545-3570.
[17]
Yun, J.; Hwang, J.S.; Lee, D.G. The antifungal activity of the peptide periplanetasin-2, derived from American cockroach Periplaneta americana. Biochem. J., 2017, 474, 3027-3043.
[18]
Lockwood, N.A.; Haseman, J.R.; Tirrell, M.V.; Mayo, K.H. Acylation of SC4 dodecapeptide increases bactericidal potency against gram-positive bacteria, including drug-resistant strains. Biochem. J., 2004, 378, 93-103.
[19]
Fang, Y.; Zhong, W.; Wang, Y.; Xun, T.; Lin, D.; Liu, W.; Wang, J.; Lv, L.; Liu, S.; He, J. Tuning the antimicrobial pharmacophore to enable discovery of short lipopeptides with multiple modes of action. Eur. J. Med. Chem., 2014, 83, 36-44.
[20]
Avrahami, D.; Shai, Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry, 2002, 41, 2254-2263.
[21]
Mak, P.; Pohl, J.; Dubin, A.; Reed, M.S.; Bowers, S.E.; Fallon, M.T.; Shafer, W.M. The increased bactericidal activity of a fatty acid-modified synthetic antimicrobial peptide of human cathepsin G correlates with its enhanced capacity to interact with model membranes. Int. J. Antimicrob. Agents, 2003, 21, 13-19.
[22]
Shai, Y.; Makovitzky, A.; Avrahami, D. Host defense peptides and lipopeptides: Modes of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci., 2006, 7, 479-486.
[23]
Húmpola, M.V.; Rey, M.C.; Carballeira, N.M.; Simonetta, A.C.; Tonarelli, G.G. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids. J. Pept. Sci., 2017, 23, 45-55.
[24]
Lohan, S.; Cameotra, S.S.; Bisht, G.S. Systematic study of non-natural short cationic lipopeptides as novel broad-spectrum antimicrobial agents. Chem. Biol. Drug Des., 2013, 82, 557-566.
[25]
Makovitzki, A.; Avrahami, D.; Shai, Y. Ultrashort antibacterial and antifungal lipopeptides. Proc. Natl. Acad. Sci., 2006, 103, 15997-16002.
[26]
Strøm, M.B.; Haug, B.E.; Skar, M.L.; Stensen, W.; Stiberg, T.; Svendsen, J.S. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem., 2003, 46, 1567-1570.
[27]
Ramesh, S.; Govender, T.; Kruger, H.G.; de la Torre, B.G.; Albericio, F. Short Anti Microbial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J. Pept. Sci., 2016, 22, 438-451.
[28]
Liu, Z.; Brady, A.; Young, A.; Rasimick, B.; Chen, K.; Zhou, C.; Kallenbach, N.R. Length effects in antimicrobial peptides of the (RW)n series. Antimicrob. Agents Chemother., 2007, 51, 597-603.
[29]
Chan, W.C.; White, P. Fmoc Solid Phase Peptide Synthesis: A Practical Approach, 2000.
[30]
Siano, A.; Húmpola, M.V.; Rey, M.C.; Simonetta, A.; Tonarelli, G.G. Interaction of acylated and substituted antimicrobial peptide analogs with phospholipid-polydiacetylene vesicles. Correlation with their biological properties. Chem. Biol. Drug Des., 2011, 78, 85-93.
[31]
Siano, A.; Húmpola, M.V.; De Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G. Antimicrobial peptides from skin secretions of Hypsiboas pulchellus (Anura: Hylidae). J. Nat. Prod., 2014, 77, 831-841.
[32]
Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta, 2005, 548, 95-100.
[33]
Siano, A.; Húmpola, M.V.; De Oliveira, E.; Albericio, F.; Simonetta, A.C.; Lajmanovich, R.; Tonarelli, G.G. Leptodactylus latrans amphibian skin secretions as a novel source for the isolation of antibacterial peptides. Molecules, 2018, 23(11), 2943.
[34]
Sreerama, N.; Woody, R.W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem., 1993, 209, 32-44.
[35]
Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem., 2000, 282, 252-260.
[36]
Sreerama, N.; Venyaminov, S.Y.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Inclusion of denatured proteins with native protein in the analysis. Anal. Biochem., 2000, 287, 243-451.
[37]
Ladokhin, A.S.; Jayasinghe, S.; White, S.H. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal. Biochem., 2000, 285, 235-245.
[38]
Krokhin, O. Peptide retention prediction in reversed-phase chromatography: Proteomic applications. Expert Rev. Proteomics, 2012, 9(1), 1-4.
[39]
Huang, Y.; Pan, L.; Zhao, L.; Mant, C.T.; Hodges, R.S.; Chen, Y. Structure-guided RP-HPLC chromatography of diastereomeric α-helical peptide analogs substituted with single amino acid stereoisomers. Biomed. Chromatogr., 2014, 28, 511-517.
[40]
Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J. Biol. Chem., 2005, 280, 12316-12329.
[41]
Sikorska, E.; Dawgul, M.; Greber, K.; Iłowska, E.; Pogorzelska, A.; Kamysz, W. Self-assembly and interactions of short antimicrobial
cationic lipopeptides with membrane lipids: ITC, FTIR and
molecular dynamics studies. Biochim. Biophys. Acta - Biomembr, 2014, 1838, 2625-2634.
[42]
Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Coll. Surf. B, 2016, 141, 528-536.
[43]
Kang, H.K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of Antimicrobial Peptides (AMPs): A patent review. J. Microbiol., 2017, 55, 1-12.
[44]
Nasompag, S.; Dechsiri, P.; Hongsing, N.; Phonimdaeng, P.; Daduang, S.; Klaynongsruang, S.; Camesano, T.A.; Patramanon, R. Effect of acyl chain length on therapeutic activity and mode of action
of the CX-KYR-NH2 antimicrobial lipopeptide. Biochim. Biophys.
Acta - Biomembr, 2015, 1848, 2351-2364.
[45]
Makovitzki, A.; Baram, J.; Shai, Y. Antimicrobial lipopolypeptides composed of palmitoyl di- and tricationic peptides: In vitro and in vivo activities, self-assembly to nanostructures, and a plausible mode of action. Biochemistry, 2008, 47, 10630-10636.
[46]
Xu, T.; Levitz, S.M.; Diamond, R.D.; Oppenheim, F.G. Anticandidal activity of major human salivary histatins. Infect. Immun., 1991, 59, 2549-2554.
[47]
Viejo-Díaz, M.; Andrés, M.T.; Fierro, J.F. Different anti-candida activities of two human lactoferrin-derived peptides, lfpep and Kaliocin-1. Antimicrob. Agents Chemother., 2005, 49, 2583-2588.
[48]
Thevissen, K.; Ferket, K.K.A.; François, I.E.J.A.; Cammue, B.P.A. Interactions of antifungal plant defensins with fungal membrane components. Peptides, 2003, 24(11), 1705-1712.
[49]
Thevissen, K.; Warnecke, D.C.; Francois, I.E.J.A.; Leipelt, M.; Heinz, E.; Ott, C.; Zähringer, U.; Thomma, B.P.H.J.; Ferket, K.K.A.; Cammue, B.P.A. Defensins from insects and plants interact with fungal glucosylceramides. J. Biol. Chem., 2004, 279(6), 3900-3905.
[50]
Henriksen, J.; Rowat, A.C.; Brief, E.; Hsueh, Y.W.; Thewalt, J.L.; Zuckermann, M.J.; Ipsen, J.H. Universal behavior of membranes with sterols. Biophys. J., 2006, 90, 1639-1649.
[51]
Sood, R.; Kinnunen, P.K.J. Cholesterol, lanosterol, and ergosterol
attenuate the membrane association of LL-37(W27F) and Temporin
L. Biochim. Biophys. Acta - Biomembr, 2008, 1778, 1460-
1466.
[52]
Brender, J.R.; McHenry, A.J.; Ramamoorthy, A. Does cholesterol play a role in the bacterial selectivity of antimicrobial peptides? Front. Immunol., 2012, 3, 195.
[53]
Fritsche, T.R.; Rhomberg, P.R.; Sader, H.S.; Jones, R.N. Antimicrobial activity of omiganan pentahydrochloride tested against contemporary bacterial pathogens commonly responsible for catheter-associated infections. J. Antimicrob. Chemother., 2008, 52, 1187-1189.
[54]
Avrahami, D.; Shai, Y. A new group of antifungal and antibacterial lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem., 2004, 279, 12277-12285.
[55]
Chu-Kung, A.F.; Nguyen, R.; Bozzelli, K.N.; Tirrell, M. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J. Coll. Interf. Sci., 2010, 345, 160-167.
[56]
Laverty, G.; McLaughlin, M.; Shaw, C.; Gorman, S.P.; Gilmore, B.F. Antimicrobial activity of short, synthetic cationic lipopeptides. Chem. Biol. Drug Des., 2010, 75, 563-569.
[57]
Wieprecht, T.; Apostolov, O.; Beyermann, M.; Seelig, J. Membrane binding and pore formation of the antibacterial peptide pgla: Thermodynamic and mechanistic aspects. Biochemistry, 2000, 39, 442-452.
[58]
Bonucci, A.; Balducci, E.; Pistolesi, S.; Pogni, R. The defensin-lipid interaction: Insights on the binding states of the human antimicrobial peptide HNP-1 to model bacterial membranes. Biochim. Biophys. Acta Biomembr., 2013, 1828, 758-764.
[59]
Christiaens, B.; Symoens, S.; Vanderheyden, S.; Engelborghs, Y.; Joliot, A.; Prochiantz, A.; Vandekerckhove, J.; Rosseneu, M.; Vanloo, B. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem., 2002, 269, 2918-2926.
[60]
Haldar, S.; Raghuraman, H.; Chattopadhyay, A. Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J. Phys. Chem. B, 2008, 112, 14075-14082.