[1]
Du, Y.; Zhao, Y.; Dai, S.; Yang, B. Preparation of water-soluble chitosan from shrimp shell and its antibacterial activity. Innov. Food Sci. Emerg. Technol., 2009, 10(1), 103-107.
[2]
Mucha, M. Chitozan: wszechstronny polimer ze źródeł odnawialnych (Chitosan: a versatile polymer from renewable sources); WNT: Warsaw, 2010.
[3]
Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci., 2009, 34(7), 641-678.
[4]
Pusateri, A.E.; McCarthy, S.J.; Gregory, K.W.; Harris, R.A.; Cardenas, L.; McManus, A.T.; Goodwin, Jr, C.W. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J. Trauma Acute Care Surg., 2009, 54(1), 177-182.
[5]
No, H.K.; Meyers, S.P.; Lee, K.S. Isolation and characterization of chitin from crawfish shell waste. J. Agric. Food Chem., 1989, 37(3), 575-579.
[6]
Struszczyk, H. Chitin and Chitosan, Part I. Properties and Production. Polimery, 2002, 47(5), 316-325.
[7]
Gagne, N.; Simpson, B.K. Use of proteolytic enzymes to facilitate the recovery of chitin from shrimp wastes. Food Biotechnol., 1993, 7(3), 253-263.
[8]
Gildberg, A.; Stenberg, E. A new process for advanced utilisation of shrimp waste. Process Biochem., 2001, 36(8-9), 809-812.
[9]
Tsigos, I.; Martinou, A.; Kafetzopoulos, D.; Bouriotis, V. Chitin deacetylases: New, versatile tools in biotechnology. Trends Biotechnol., 2000, 18(7), 305-312.
[10]
Jayakumar, R.; Prabaharan, M.; Kumar, P.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011, 29(3), 322-337.
[11]
Olteanu, C.E. Applications of functionalized chitosan. SCSCC6,, 2007, 8(3), 227-256.
[12]
Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci., 2006, 31(7), 603-632.
[13]
Chakrabarty, T.; Kumar, M.; Shahi, V.K. Chitosan based membranes for separation, pervaporation and fuel cell applications: Recent developments. Biopolymers, 2010, 10, 201-226.
[14]
Kim, S.K., Ed.; Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications; CRC Press, 2010.
[15]
Zielinska, D.; Struszczyk, M.H.; Madej-Kiełbik, L.; Chmal-Fudali, E.; Kucharska, M.; Wisniewska-Wrona, M.; Brzoza-Malczewska, K. Design of new-generation usable forms of topical haemostatic agents containing chitosan. Molecules, 2017, 22(12), 2240.
[16]
Mironov, A.V.; Vikhoreva, G.A.; Kil’deeva, N.R.; Uspenskii, S.A. Reasons for unstable viscous properties of chitosan solutions in acetic acid. Polym. Sci. Ser. B, 2007, 49(1-2), 15-17.
[17]
Szymańska, E.; Winnicka, K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar. Drugs, 2015, 13(4), 1819-1846.
[18]
Furuike, T.; Komoto, D.; Hashimoto, H.; Tamura, H. Preparation of chitosan hydrogel and its solubility in organic acids. Int. J. Biol. Macromol., 2017, 104, 1620-1625.
[19]
Khanmohammadi, M.; Elmizadeh, H.; Ghasemi, K. Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran. J. Pharm. Res., 2015, 14(3), 665-675.
[20]
Ostrowska-Czubenko, J.; Pieróg, M.; Gierszewska, M. Modification of Chitosan – a Concise Overview. Wiadomości Chemiczne, 2016, 70(9-10), 657-679.
[21]
d’Ayala, G.G.; Malinconico, M.; Laurienzo, P. Marine derived polysaccharides for biomedical applications: Chemical modification approaches. Molecules, 2008, 13(9), 2069-2106.
[22]
Kurita, K. Controlled functionalization of the polysaccharide chitin. Prog. Polym. Sci., 2001, 26(9), 1921-1971.
[23]
Sashiwa, H.; Aiba, S.I. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci., 2004, 29(9), 887-908.
[24]
Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol., 2006, 8(3), 203-226.
[25]
Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: opportunities galore. React. Funct. Polym., 2008, 68(6), 1013-1051.
[26]
Prashanth, K.H.; Tharanathan, R.N. Chitin/chitosan: Modifications and their unlimited application potential—an overview. Trends Food Sci. Technol., 2007, 18(3), 117-131.
[27]
Kalia, S.; Avérous, L. (Eds.) Biopolymers: Biomedical and Environmental
Applications, John Wiley & Sons, Inc. Hoboken, New
Jersey, and Scrivener Publishing LLC, Salem, Massachusetts, 2006.
[28]
Yao, K.; Li, J.; Yao, F.; Yin, Y. (Eds.) Chitosan-based hydrogels:
functions and applications, CRC Press, 2011.
[29]
Ji, J.; Wang, L.; Yu, H.; Chen, Y.; Zhao, Y.; Zhang, H.; Saleem, M. Chemical modifications of chitosan and its applications. Polym. Plast. Technol. Eng., 2014, 53(14), 1494-1505.
[30]
Chopin, N.; Guillory, X.; Weiss, P.; Bideau, J.L.; Colliec-Jouault, S. Design polysaccharides of marine origin: Chemical modifications to reach advanced versatile compounds. Curr. Org. Chem., 2014, 18(7), 867-895.
[31]
Sarmento, B. das Neves, J. (Eds.) Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics, John Wiley & Sons Inc. 2012.
[32]
Dufresne, A.; Sabu, T.; Pothan, L.A., Eds.; Biopolymer Nanocomposites: Processing, Properties, and Applications; John Wiley & Sons, Inc., 2013.
[33]
Jain, A.; Gulbake, A.; Shilpi, S.; Jain, A.; Hurkat, P.; Jain, S.K. A new horizon in modifications of chitosan: Syntheses and applications. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(2), 91-181.
[34]
Muzzarelli, R.A.A.; Muzzarelli, C. Chitosan chemistry: Relevance to the biomedical sciences.In Polysaccharides I. Structure, Characterisation and Use; Heinze, T., Ed.; Springer, 2005, pp. 151-209.
[35]
Alves, N.M.; Mano, J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol., 2008, 43(5), 401-414.
[36]
Prabaharan, M. Chitosan derivatives as promising materials for controlled drug delivery. J. Biomater. Appl., 2008, 23(1), 5-36.
[38]
Giri, T.K.; Thakur, A.; Alexander, A.; Badwaik, H.; Tripathi, D.K. Modified chitosan hydrogels as drug delivery and tissue engineering systems: Present status and applications. Acta Pharm. Sin. B, 2012, 2(5), 439-449.
[39]
Yong, S.K.; Shrivastava, M.; Srivastava, P.; Kunhikrishnan, A.; Bolan, N. Environmental applications of chitosan and its derivatives. Rev. Environ. Contam. Toxicol., 2015, 233, 1-43.
[40]
Ma, J.; Sahai, Y. Chitosan biopolymer for fuel cell applications. Carbohydr. Polym., 2013, 92(2), 955-975.
[41]
Shukla, S.K.; Mishra, A.K.; Arotiba, O.A.; Mamba, B.B. Chitosan-based nanomaterials: A state-of-the-art review. Int. J. Biol. Macromol., 2013, 59, 46-58.
[42]
Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs, 2015, 13(1), 312-337.
[43]
Wang, J.; Chen, C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol., 2014, 160, 129-141.
[44]
Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Amouzgar, P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym., 2014, 113, 115-130.
[45]
Macquarrie, D.J.; Hardy, J.J. Applications of functionalized chitosan in catalysis. Ind. Eng. Chem. Res., 2005, 44(23), 8499-8520.
[46]
Ahmed, S.; Ikram, S. Chitosan and its derivatives: A review in recent innovations. Int. J. Pharm. Sci. Res., 2015, 6(1), 14-30.
[47]
Sahoo, D.; Nayak, P.L. Chitosan: The most valuable derivative of
chitin In:. Biopolymers: Biomedical and Environmental Applications, Susheel Kalia, Luc Avérous, Ed. Scrivener Publishing LLC,
2011, pp. 129-166
[48]
Aranaz, I.; Harris, R.; Heras, A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr. Org. Chem., 2010, 14(3), 308-330.
[49]
Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol., 2007, 40(3), 175-181.
[50]
Jayakumar, R.; Selvamurugan, N.; Nair, S.V.; Tokura, S.; Tamura, H. Preparative methods of phosphorylated chitin and chitosan—An overview. Int. J. Biol. Macromol., 2008, 43(3), 221-225.
[51]
Thakur, V.K.; Thakur, M.K. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustain. Chem.& Eng., 2014, 2(12), 2637-2652.
[52]
Manoj, P.; Nayak, P.L. Graft copolymerization of methyl acrylate on chitosan: Initiated by ceric ammonium nitrate as the initiator-characterization and antimicrobial activity. Adv. Appl. Sci. Res, 2012, 3(3), 1646-1654.
[53]
Jayakumar, R.; Prabaharan, M.; Reis, R.L.; Mano, J. Graft copolymerized chitosan—present status and applications. Carbohydr. Polym., 2005, 62(2), 142-158.
[54]
Zohuriaan-Mehr, M.J. Advances in chitin and chitosan modification through graft copolymerization: A comprehensive review. Iran. Polym. J., 2005, 14(3), 235-265.
[55]
Sabaa, M.W. Chitosan-g-Copolymers: Synthesis, Properties, and Applications.In Polysaccharide Based Graft Copolymers; Kalia, S.; Sabaa, M.W., Eds.; Springer Berlin Heidelberg, 2013, pp. 111-147.
[56]
Yao, F.; Chen, W.; Wang, H.; Liu, H.; Yao, K.; Sun, P.; Lin, H. A study on cytocompatible poly (chitosan-gL-lactic acid). Polymer., 2003, 44(21), 6435-6441.
[57]
Venkatrajah, B.; Pandidurai, V.; Rajendran, R.; Elayarajah, B.; Jenifer, J.; Ashokan, B.; Anand, N. Polymer biocomposite nanoparticles for sustained drug delivery. IJABPT., 2011, 2(2), 454-462.
[58]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 19-34.
[59]
Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Gurny, R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur. J. Pharm. Biopharm., 2004, 57(1), 35-52.
[60]
Mi, F.L.; Sung, H.W.; Shyu, S.S.; Su, C.C.; Peng, C.K. Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer., 2003, 44(21), 6521-6530.
[61]
Muzzarelli, R.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym., 2009, 77(1), 1-9.
[62]
Mi, F.L.; Shyu, S.S.; Peng, C. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. J. Polym. Sci. A Polym. Chem., 2005, 43(10), 1985-2000.
[63]
Ostrowska-Czubenko, J.; Pieróg, M. Synthesis and characteristics of chemically modified chitosan membranes with sulfuric acid. Pol. J. Appl. Chem., 2009, 53(2), 155-160.
[64]
Ostrowska-Czubenko, J.; Pieróg, M.; Gierszewska-Drużyńska, M. Equilibrium swelling behavior of crosslinked chitosan hydrogels. Pol. J. Appl. Chem, 2011, 55(2), 49-56.
[65]
Dutta, P.K., Ed.; Chitin and chitosan for regenerative medicine; New York, NY, USA Springer, 2014.
[66]
Mourya, V.K.; Inamdar, N.N.; Choudhari, Y.M. Chitooligosaccharides: Synthesis, characterization and applications. Polym. Sci. Ser. A Chem. Phys., 2011, 53(7), 583-612.
[67]
Lodhi, G.; Kim, Y.S.; Hwang, J.W.; Kim, S.K.; Jeon, Y.J.; Je, J.Y.; Park, P.J. Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Res. Int., 2014, 2014, 654913.
[68]
Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sørlie, M.; Vårum, K.M.; Eijsink, V.G. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs, 2010, 8(5), 1482-1517.
[69]
Kim, S.K.; Rajapakse, N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym., 2005, 62(4), 357-368.
[70]
Modrzejewska, Z.; Dorabialska, M.; Zarzycki, R.; Wojtasz-Pająk, A. The mechanism of sorption of Ag+ ions on chitosan microgranules: IR and NMR studies. Prog. Chem. Appl. Chitin Deriv., 2009, 14, 49-64.
[71]
Nie, J.; Wang, Z.; Hu, Q. Chitosan hydrogel structure modulated by metal ions. Sci. Rep., 2016, 6, 36005.
[72]
Gaisford, S.; Beezer, A.E.; Bishop, A.H.; Walker, M.; Parsons, D. An in vitro method for the quantitative determination of the antimicrobial efficacy of silver-containing wound dressings. Int. J. Pharm., 2009, 366(1-2), 111-116.
[73]
Meaume, S.; Vallet, D.; Nguyen Morere, M.; Teot, L. Evaluation of a silver-releasing hydroalginate dressing in chronic wounds with signs of local infection. J. Wound Care, 2005, 14(9), 411-419.
[74]
Ong, S.Y.; Wu, J.; Moochhala, S.M.; Tan, M.H.; Lu, J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials, 2008, 29(32), 4323-4332.
[75]
Ip, M.; Lui, S.L.; Poon, V.K.; Lung, I.; Burd, A. Antimicrobial activities of silver dressings: An in vitro comparison. J. Med. Microbiol., 2006, 55(1), 59-63.
[76]
Said, J.; Dodoo, C.C.; Walker, M.; Parsons, D.; Stapleton, P.; Beezer, A.E.; Gaisford, S. An in vitro test of the efficacy of silver-containing wound dressings against Staphylococcus aureus and Pseudomonas aeruginosa in simulated wound fluid. Int. J. Pharm., 2014, 462(1-2), 123-128.
[77]
Percival, S.L.; Bowler, P.G.; Russell, D. Bacterial resistance to silver in wound care. J. Hosp. Infect., 2005, 60(1), 1-7.
[78]
Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007, 33(2), 139-148.
[79]
Katsumiti, A.; Gilliland, D.; Arostegui, I.; Cajaraville, M.P. Mechanisms of toxicity of Ag nanoparticles in comparison to bulk and ionic Ag on mussel hemocytes and gill cells. PLoS One, 2015, 10(6), e0129039.
[80]
Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Morales, J.D.M.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol. Lett., 2017, 276, 11-20.
[81]
Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Heyder, J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect., 2001, 109(4), 547-551.
[82]
Cheung, R.C.F.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[83]
No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74(1-2), 65-72.
[84]
Kumar, A.B.V.; Varadaraj, M.C.; Gowda, L.R.; Tharanathan, R.N. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochem. J., 2005, 391(2), 167-175.
[85]
Jeon, Y.J.; Park, P.J.; Kim, S.K. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym., 2001, 44(1), 71-76.
[86]
Dai, T.; Tanaka, M.; Huang, Y.Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther., 2011, 9(7), 857-879.
[87]
Sahariah, P.; Masson, M. Antimicrobial chitosan and chitosan derivatives: A review of the structure activity relationship. Biomacromolecules, 2017, 18(11), 3846-3868.
[88]
Zheng, L.Y.; Zhu, J.F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym., 2003, 54(4), 527-530.
[89]
Muzzarelli, R.; Tarsi, R.; Filippini, O.; Giovanetti, E.; Biagini, G.; Varaldo, P.E. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother., 1990, 34(10), 2019-2023.
[90]
Sudarshan, N.R.; Hoover, D.G.; Knorr, D. Antibacterial action of chitosan. Food Biotechnol., 1992, 6(3), 257-272.
[91]
Liu, N.; Chen, X.G.; Park, H.J.; Liu, C.G.; Liu, C.S.; Meng, X.H.; Yu, L.J. Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydr. Polym., 2006, 64(1), 60-65.
[92]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol., 2010, 144, 51-63.
[93]
Park, S.C.; Nam, J.P.; Kim, J.H.; Kim, Y.M.; Nah, J.W.; Jang, M.K. Antimicrobial action of water-soluble beta-chitosan against clinical multi-drug resistant bacteria. Int. J. Mol. Sci., 2015, 16, 7995-8007.
[94]
Sahariah, P.; Benediktssdottir, B.E.; Hjalmarsdottir, M.A.; Sigurjonsson, O.E.; Sorensen, K.K.; Thygesen, M.B.; Jensen, K.J.; Masson, M. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and N,N-dialkyl chitosan derivatives. Biomacromolecules, 2015, 16, 1449-1460.
[95]
Sarhan, W.A.; Azzazy, H.M. High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym., 2015, 122, 135-143.
[96]
Chung, Y.C.; Wang, H.L.; Chen, Y.M.; Li, S.L. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresour. Technol., 2003, 88(3), 179-184.
[97]
Rhoades, J.; Roller, S. Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Appl. Environ. Microbiol., 2000, 66, 80-86.
[98]
Younes, I.; Sellimi, S.; Rinaudo, M.; Jellouli, K.; Nasri, M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol., 2014, 185, 57-63.
[99]
Tayel, A.A.; Moussa, S.H.; Salem, M.F.; Mazrou, K.E.; El‐Tras, W.F. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite. J. Sci. Food Agric., 2016, 96(4), 1306-1312.
[100]
Ben-Shalom, N.; Ardi, R.; Pinto, R.; Aki, C.; Fallik, E. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot., 2003, 22, 285-290.
[101]
Atia, M.M.M.; Buchenauer, H.; Aly, A.Z.; Abou-Zaid, M.I. Antifungal activity of chitosan against Phytophthora infestans and activation of defence mechanisms in tomato to late blight. Biol. Agric. Hortic., 2005, 23, 175-197.
[102]
Saharan, V.; Sharma, G.; Yadav, M.; Choudhary, M.K.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol., 2015, 75, 346-353.
[103]
El Ghaouth, A.; Arul, J.; Grenier, J.; Asselin, A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology, 1992, 82(4), 398-402.
[104]
Wang, L.S.; Wang, C.Y.; Yang, C.H.; Hsieh, C.L.; Chen, S.Y.; Shen, C.Y.; Wang, J.J.; Huang, K.S. Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles. Int. J. Nanomedicine, 2015, 10, 2685-2696.
[105]
Lopez-Moya, F.; Colom-Valiente, M.F.; Martinez-Peinado, P.; Martinez-Lopez, J.E.; Puelles, E.; Sempere-Ortells, J.M.; Lopez-Llorca, L.V. Carbon and nitrogen limitation increase chitosan antifungal activity in Neurospora crassa and fungal human pathogens. Fungal Biol., 2015, 119, 154-169.
[106]
Gabriel Jdos, S.; Tiera, M.J.; Tiera, V.A. Synthesis, characterization, and antifungal activities of amphiphilic derivatives of diethylaminoethyl chitosan against Aspergillus flavus. J. Agric. Food Chem., 2015, 63, 5725-5731.
[107]
Bai, R.K.; Huang, M.Y.; Jiang, Y.Y. Selective permeabilities of chitosan-acetic acid complex membrane and chitosan-polymer complex membranes for oxygen and carbon dioxide. Polym. Bull., 1988, 20(1), 83-88.
[108]
Karagozlu, M.Z.; Karadeniz, F.; Kim, S.K. Anti-HIV activities of novel synthetic peptide conjugated chitosan oligomers. Int. J. Biol. Macromol., 2014, 66, 260-266.
[109]
Artan, M.; Karadeniz, F.; Karagozlu, M.Z.; Kim, M.M.; Kim, S.K. Anti-HIV-1 activity of low molecular weight sulfated chitooligosaccharides. Carbohydr. Res., 2010, 345, 656-662.
[110]
Meng, J.; Zhang, T.; Agrahari, V.; Ezoulin, M.J.; Youan, B.B. Comparative biophysical properties of tenofovir-loaded, thiolated and nonthiolated chitosan nanoparticles intended for HIV prevention. Nanomedicine., 2014, 9, 1595-1612.
[111]
Aghasadeghi, M.R. Heidari. H.; Sadat, S.M.; Irani, S.; Amini, S.; Siadat, S.D.; Fazlhashemy, M.E.; Zabihollahi, R.; Atyabi, S.M.; Momen, S.B. Lamivudine-PEGylated chitosan: A novel effective nanosized antiretroviral agent. Curr. HIV Res., 2013, 11, 309-320.
[112]
Khan, A.B.; Thakur, R.S. Formulation and evaluation of mucoadhesive microspheres of tenofovir disoproxil fumarate for intravaginal use. Curr. Drug Deliv., 2014, 11, 112-122.
[113]
Ramana, L.N.; Sharma, S.; Sethuraman, S.; Ranga, U.; Krishnan, U.M. Evaluation of chitosan nanoformulations as potent anti-HIV therapeutic systems. Biochim. Biophys. Acta, 2014, 1840, 476-484.
[114]
Belletti, D.; Tosi, G.; Forni, F.; Gamberini, M.C.; Baraldi, C.; Vandelli, M.A.; Ruozi, B. Chemico-physical investigation of tenofovir loaded polymeric nanoparticles. Int. J. Pharm., 2012, 436, 753-763.
[115]
Meng, J.; Sturgis, T.F.; Youan, B.B. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur. J. Pharm. Sci., 2011, 44, 57-67.
[116]
Yang, L.; Chen, L.; Zeng, R.; Li, C.; Qiao, R.; Hu, L.; Li, Z. Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: Chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg. Med. Chem., 2010, 18, 117-123.
[117]
Tokoro, A.; Tatewaki, N.; Suzuki, K.; Mikami, T.; Suzuki, S.; Suzuki, M. Growth-inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem. Pharm. Bull., 1988, 36, 784-790.
[118]
Lin, S.Y.; Chan, H.Y.; Shen, F.H.; Chen, M.H.; Wang, Y.J.; Yu, C.K. Chitosan prevents the development of AOM-induced aberrant crypt foci in mice and suppressed the proliferation of AGS cells by inhibiting DNA synthesis. J. Cell. Biochem., 2007, 100, 1573-1580.
[119]
Gibot, L.; Chabaud, S.; Bouhout, S.; Bolduc, S.; Auger, F.A.; Moulin, V.J. Anticancer properties of chitosan on human melanoma are cell line dependent. Int. J. Biol. Macromol., 2015, 72, 370-379.
[120]
Jiang, Z.; Han, B.; Li, H.; Li, X.; Yang, Y.; Liu, W. Preparation and anti-tumor metastasis of carboxymethyl chitosan. Carbohydr. Polym., 2015, 125, 53-60.
[121]
Park, J.K.; Chung, M.J.; Choi, H.N.; Park, Y.I. Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int. J. Mol. Sci., 2011, 12, 266-277.
[122]
He, B.; Tao, H.Y.; Liu, S.Q. Neuroprotective effects of carboxymethylated chitosan on hydrogen peroxide induced apoptosis in Schwann cells. Eur. J. Pharmacol., 2014, 740, 127-134.
[123]
Ruiz, G.A.M.; Corrales, H.F.Z. Chitosan, chitosan derivatives and their biomedical applications in biological activities and application of marine polysaccharides; InTech, 2017, pp. 87-106.
[124]
Pokhrel, S.; Yadav, P.N.; Adhikari, R. Applications of chitin and chitosan in industry and medical science: A review. Nep. J. Sci. Technol, 2015, 16(1), 99-104.
[125]
Silva, S.S.; Mano, J.F.; Reis, R.L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem., 2017, 19(5), 1208-1220.
[126]
Zhang, J.; Xia, W.; Liu, P.; Cheng, Q.; Tahi, T.; Gu, W.; Li, B. Chitosan modification and pharmaceutical/biomedical applications. Mar. Drugs, 2010, 8(7), 1962-1987.
[127]
Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials. Int. J. Adv. Res., 2016, 4(3), 411-427.
[128]
Kim, I.Y.; Seo, S.J.; Moon, H.S.; Yoo, M.K.; Park, I.Y.; Kim, B.C.; Cho, C.S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv., 2008, 26, 1-21.
[129]
Yang, T.L. Chitin-based materials in tissue engineering: Applications in soft tissue and epithelial organ. Int. J. Mol. Sci., 2011, 12(3), 1936-1963.
[130]
Muzzarelli, R.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym., 2009, 76(2), 167-182.
[131]
Chen, X.G.; Wang, Z.; Liu, W.S.; Park, H.J. The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 2002, 23(23), 4609-4614.
[132]
Liu, X.; Ma, L.; Liang, J.; Zhang, B.; Teng, J.; Gao, C. RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring. Biomaterials, 2013, 34(8), 2038-2048.
[133]
Li, B.; Wang, L.; Xu, F.; Gang, X.; Demirci, U.; Wei, D.; Li, Y.; Feng, Y.; Jia, D.; Zhou, Y. Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomater., 2015, 22, 59-69.
[134]
Yang, L.; Wang, Q.; Peng, L.; Yue, H.; Zhang, Z. Vascularization of repaired limb bone defects using chitosan-β-tricalcium phosphate composite as a tissue engineering bone scaffold. Mol. Med. Rep., 2015, 12, 2343-2347.
[135]
Frohbergh, M.E.; Katsman, A.; Botta, G.P.; Lazarovici, P.; Schauer, C.L.; Wegst, U.G.; Lelkes, P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 2012, 33(36), 9167-9178.
[136]
Li, Q.; Zhou, G.; Yu, X.; Wang, T.; Xi, Y.; Tang, Z. Porous deproteinized bovine bone scaffold with three-dimensional localized drug delivery system using chitosan microspheres. Biomed. Eng. Online, 2015, 14, 33.
[137]
Correia, C.O.; Leite, A.J.; Mano, J.F. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties. Carbohydr. Polym., 2015, 123, 39-45.
[138]
Li, H. ; Hu, C. ; H. Yu, C. Chen Chitosan composite scaffolds for articular cartilage defect repair: A review. RSC Advances, 2018, 8, 3736-3749.
[139]
Chameettachal, S.; Murab, S.; Vaid, R.; Midha, S.; Ghosh, S. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering. J. Tissue Eng. Regen. Med., 2017, 11(4), 1212-1229.
[140]
Shapira, Y.; Tolmasov, M.; Nissan, M.; Reider, E.; Koren, A.; Biron, T.; Rochkind, S. Comparison of results between chitosan hollow tube and autologous nerve graft in reconstruction of peripheral nerve defect: An experimental study. Microsurgery, 2016, 36(8), 664-671.
[141]
Tanaka, N.; Matsumoto, I.; Suzuki, M.; Kaneko, M.; Nitta, K.; Seguchi, R.; Ooi, A.; Takemura, H. Chitosan tubes can restore the function of resected phrenic nerves. Interact. Cardiovasc. Thorac. Surg., 2015, 21, 8-13.
[142]
Mincea, M.; Negrulescu, A.; Ostafe, V. Preparation, modification, and applications of chitin nanowhiskers: A review. Rev. Adv. Mater. Sci., 2012, 30(3), 225-242.
[143]
Jian, R.; Yixu, Y.; Sheyu, L.; Jianhong, S.; Yaohua, Y.; Xing, S.; Fangling, X. Repair of spinal cord injury by chitosan scaffold with glioma ECM and SB216763 implantation in adult rats. J. Biomed. Mater. Res. A, 2015, 103(10), 3259-3272.
[144]
Ways, T.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery system. Polymers., 2018, 10(3), 267.
[145]
Jabbal-Gill, I.; Watts, P.; Smith, A. Chitosan-based delivery systems for mucosal vaccines. Expert Opin. Drug Deliv., 2012, 9, 1051-1067.
[146]
Xing, L.; Fan, Y.T.; Zhou, T.J.; Gong, J.H.; Cui, L.H.; Cho, K.H.; Cho, C.S. Chemical modification of chitosan for efficient vaccine delivery. Molecules, 2018, 23(2), 229.
[147]
Kofuji, K.; Qian, C.J.; Nishimura, M.; Sugiyama, I.; Murata, Y.; Kawashima, S. Relationship between physicochemical characteristics and functional properties of chitosan. Eur. Polym. J., 2005, 41, 2784-2791.
[148]
Sinha, V.R.; Singla, A.K.; Wadhawan, S.; Kaushik, R.; Kumria, R.; Bansal, K.; Dhawan, S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm., 2004, 274(1-2), 1-33.
[149]
Pandey, R.; Khuller, G.K. Chemotherapeutic potential of alginate–chitosan microspheres as anti-tubercular drug carriers. J. Antimicrob. Chemother., 2004, 53(4), 635-640.
[150]
Berthold, A.; Cremer, K.; Kreuter, J.S.T.P. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J. Control. Release, 1996, 39(1), 17-25.
[151]
Jiang, H.L.; Park, I.K.; Shin, N.R.; Kang, S.G.; Yoo, H.S.; Kim, S.I.; Suh, S.B.; Akaike, T.; Cho, C.S. In vitro study of the immune stimulating activity of an atrophic rhinitis vaccine associated to chitosan microspheres. Eur. J. Pharm. Biopharm., 2004, 58, 471-476.
[152]
Thanou, M.; Verhoef, J.C.; Junginger, H.E. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev., 2001, 52, 117-126.
[153]
del Valle, L.J.; Díaz, A.; Puiggalí, J. Hydrogels for biomedical
applications: Cellulose, chitosan, and protein/peptide derivatives. Gels,, 2017, 3, (3), pii: E27.
[154]
Supper, S.; Anton, N.; Boisclair, J.; Seidel, N.; Riemenschnitter, M.; Curdy, C.; Vandamme, T. Chitosan/glucose 1-phosphate as new stable in situ forming depot system for controlled drug delivery. Eur. J. Pharm. Biopharm., 2014, 88, 361-373.
[155]
Supper, S.; Anton, N.; Seidel, N.; Riemenschnitter, M.; Curdy, C.; Vandamme, T. Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications. Expert Opin. Drug Deliv., 2014, 11, 249-267.
[156]
Lai, P.; Daear, W.; Lobenberg, R.; Prenner, E.J. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(D,L-lactide-co-glycolic acid) and polyalkylcyanoacrylate. Colloids Surf. B Biointerfaces, 2014, 118, 154-163.
[157]
Hudson, D.; Margaritis, A. Biopolymer nanoparticle production for controlled release of biopharmaceuticals. Crit. Rev. Biotechnol., 2014, 34, 161-179.
[158]
Kato, Y.; Onishi, H.; Machida, Y. Contribution of chitosan and its derivatives to cancer chemotherapy. In Vivo, 2005, 19, 301-310.
[159]
Anraku, M.; Hiraga, A.; Iohara, D.; Pipkin, J.D.; Uekama, K.; Hirayama, F. Slow-release of famotidine from tablets consisting of chitosan/sulfobutyl ether beta-cyclodextrin composites. Int. J. Pharm., 2015, 487, 142-147.
[160]
Pereira, P.; Pedrosa, S.S.; Wymant, J.M.; Sayers, E.; Correia, A.; Vilanova, M.; Jones, A.T.; Gama, F.M. siRNA inhibition of endocytic pathways to characterize the cellular uptake mechanisms of folate-functionalized glycol chitosan nanogels. Mol. Pharm., 2015, 12, 1970-1979.
[161]
Kulkarni, N.; Wakte, P.; Naik, J. Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int. J. Pharm. Investig., 2015, 5, 73-80.
[162]
Al-Kurdi, Z.I.; Chowdhry, B.Z.; Leharne, S.A.; Al Omari, M.M.; Badwan, A.A. Low molecular weight chitosan-insulin polyelectrolyte complex: Characterization and stability studies. Mar. Drugs, 2015, 13, 1765-1784.
[163]
Gadalla, H.H.; Soliman, G.M.; Mohammed, F.A.; El-Sayed, A.M. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone. Drug Deliv., 2015, 8, 1-14.
[164]
Jana, S.; Laha, B.; Maiti, S. Boswellia gum resin/chitosan polymer composites: Controlled delivery vehicles for aceclofenac. Int. J. Biol. Macromol., 2015, 77, 303-306.
[165]
Qinna, N.A.; Karwi, Q.G.; Al-Jbour, N.; Al-Remawi, M.A.; Alhussainy, T.M.; Al-So’ud, K.A.; Al Omari, M.M.; Badwan, A.A. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations. Mar. Drugs, 2015, 13, 1710-1725.
[166]
Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials, 2015, 52, 161-170.
[167]
Chatterjee, S.; Judeh, Z.M.A. Encapsulation of fish oil with N-stearoyl O-butylglyceryl chitosan using membrane and ultrasonic emulsification processes. Carbohydr. Polym., 2015, 123, 432-442.
[168]
Jayasree, R.S.; Rathinam, K.; Sharma, C.P. Development of artificial skin (Template) and influence of different types of sterilization procedures on wound healing pattern in rabbits and guinea pigs. J. Biomater. Appl., 1995, 10, 144-162.
[169]
Ueno, H.; Mori, T.; Fujinaga, T. Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev., 2001, 52, 105-115.
[170]
Muzzarelli, R.A.; Mattioli-Belmonte, M.; Pugnaloni, A.; Biagini, G. Biochemistry, histology and clinical uses of chitins and chitosans in wound healing. EXS, 1999, 87, 251-264.
[171]
Azuma, K.; Izumi, R.; Osaki, T.; Ifuku, S.; Morimoto, M.; Saimoto, H.; Minami, S.; Okamoto, Y. Chitin, chitosan, and its derivatives for wound healing: Old and new materials. J. Funct. Biomater., 2015, 6, 104-142.
[172]
Naseri, N.; Algan, C.; Jacobs, V.; John, M.; Oksman, K.; Mathew, A.P. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr. Polym., 2014, 109, 7-15.
[173]
Guo, R.; Xu, S.; Ma, L.; Huang, A.; Gao, C. Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials, 2010, 31(28), 7308-7320.
[174]
Ishihara, M.; Obara, K.; Nakamura, S.; Fujita, M.; Masuoka, K.; Kanatani, Y.; Takase, B.; Hattori, H.; Morimoto, Y.; Ishihara, M. Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J. Artif. Organs, 2006, 9, 8-16.
[175]
Chou, T.C.; Fu, E.; Wu, C.J.; Yeh, J.H. Chitosan enhances platelet adhesion and aggregation. Biochem. Biophys. Res. Commun., 2003, 302(3), 480-483.
[176]
Okamoto, Y.; Yano, R.; Miyatake, K.; Tomohiro, I.; Shigemasa, Y.; Minami, S. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym., 2003, 53(3), 337-342.
[177]
Biagini, G.; Bertani, A.; Muzzarelli, R.; Damadei, A.; DiBenedetto, G.; Belligolli, A.; Riccotti, G.; Zucchini, C.; Rizzoli, C. Wound management with N-carboxybutyl chitosan. Biomaterials, 1991, 12, 281-286.
[178]
Stone, C.A.; Wright, H.; Devaraj, V.S.; Clarke, T.; Powell, R. Healing at skin graft donor sites dressed with chitosan. Br. J. Plast. Surg., 2000, 53, 601-606.
[179]
Azad, A.K.; Sermsintham, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J. Biomed. Mater. Res. B Appl. Biomater., 2004, 69, 216-222.
[180]
Valentine, R.; Athanasiadis, T.; Moratti, S.; Hanton, L.; Robinson, S.; Wormald, P.J. The efficacy of a novel chitosan gel on hemostasis and wound healing after endoscopic sinus surgery. Am. J. Rhinol. Allergy, 2010, 24, 70-75.
[181]
Bennett, B.L.; Littlejohn, L.F.; Kheirabadi, B.S.; Butler, F.K.; Kotwal, R.S.; Dubick, M.A.; Bailey, J.A. Management of external hemorrhage in tactical combat casualty care: Chitosan-based hemostatic gauze dressings-TCCC guidelines-change 13-05. J. Spec. Oper. Med., 2014, 14, 40-57.
[182]
Hatamabadi, H.R.; Zarchi, F.A.; Kariman, H.; Dolatabadi, A.A.; Tabatabaey, A.; Amini, A. Celox-coated gauze for the treatment of civilian penetrating trauma: A randomized clinical trial. Trauma Mon., 2015, 20(1), e23862.
[183]
Nguyen, N.; Hasan, S.; Caufield, L.; Ling, F.S.; Narins, C.R. Randomized controlled trial of topical hemostasis pad use for achieving vascular hemostasis following percutaneous coronary intervention. Catheter. Cardiovasc. Interv., 2007, 69, 801-807.
[184]
Weng, M.H. The effect of protective treatment in reducing pressure ulcers for non-invasive ventilation patients. Intensive Crit. Care Nurs., 2008, 24, 295-259.
[185]
Mohaiyiddin, M.S.; Ong, H.L.; Othman, M.B.H.; Julkapli, N.M.; Villagracia, A.R.C.; Akil, H.M. Swelling behavior and chemical stability of chitosan/nanocellulose biocomposites. Polym. Comp. Special Issue: Composites for Biological Applications, 2018, 39(S1), E561-E572.
[186]
Lamarra, J.; Damonte, L.; Rivero, S.; Pinotti, A. Structural insight into chitosan supports functionalized with nanoparticles. Adv. Mater. Sci. Eng., 2018, 3965783.
[187]
Capel, V.; Vllasaliu, D.; Watts, P.; Clarke, P.A.; Luxton, D.; Grabowska, A.M.; Mantovani, G.; Stolnik, S. Water-soluble substituted chitosan derivatives as technology platform for inhalation delivery of siRNA. Drug Deliv., 2018, 25(1), 644-653.
[188]
Ali, A. Ahmed. S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol., 2018, 109, 273-286.
[189]
Ahmed, S.; Annu, A.; Ali, A.; Sheikh, J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int. J. Biol. Macromol., 2018, 116, 849-862.
[190]
Demina, T.S.; Gilman, A.B.; Akopova, T.A.; Zelenetskii, A.N. High Energy Chem., 2014, 48, 293-302.