[1]
Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov., 2009, 8, 69-85.
[2]
Haefner, B. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today, 2003, 8(12), 536-544.
[3]
Simmons, T.L.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W.H. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4(2), 333-342.
[4]
Gao, J.; Hamann, M.T. Chemistry and biology of kahalalides. Chem. Rev., 2011, 111, 3208-3235.
[5]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2004, 4, 206-220.
[6]
Mayer, A.M.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci., 2010, 31(6), 255-265.
[8]
Williams, D.H.; Stone, M.J.; Hauck, P.R.; Rahman, S.K. Why are secondary metabolites (natural products) biosynthesized? J. Nat. Prod., 1989, 52, 1189-1208.
[9]
Firn, R.D.; Jones, C.G. Natural products: A simple model to explain chemical diversity. Nat. Prod. Rep., 2003, 20, 382-391.
[10]
Zähner, H. What are secondary metabolites? Folia Microbiol., 1979, 24(5), 435-443.
[11]
Hu, G.P.; Yuan, J.; Sun, L.; She, Z.G.; Wu, J.H.; Lan, X.J.; Zhu, X.; Lin, Y.C.; Chen, S.P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs, 2011, 9, 514-525.
[12]
Gul, W.; Hamann, M.T. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci., 2005, 78, 442-453.
[13]
França, P.H.B.; Barbosa, D.P.; da Silva, D.L.; Ribeiro, Ê.A.N.; Santana, A.E.G.; Santos, B.V.O.; Barbosa-Filho, J.M.; Quintans, J.S.S.; Barreto, R.S.S.; Quintans-Júnior, L.J.; de Araújo-Júnior, J.X. Indole alkaloids from marine sources as potential leads against
infectious diseases BioMed. Res. Int, 2014, 2014
[14]
Güven, K.C.; Percot, A.; Sezik, E. Alkaloids in marine algae. Mar. Drugs, 2010, 8, 269-284.
[15]
Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110, 4489-4497.
[16]
Williams, J.E. Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on uña de gato and sangre de grado. Altern. Med. Rev., 2001, 6, 567-579.
[17]
Liu, D-Q.; Mao, S-C.; Zhang, H-Y.; Yu, X-Q.; Feng, M-T.; Wang, B.; Feng, L-H.; Guo, Y-W. Racemosins A and B, two novel bisindole alkaloids from the green alga Caulerpa racemosa. Fitoterapia, 2013, 91, 15-20.
[18]
aKnolker, H-J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev., 2002, 102, 4303-4427.
bHibino, S.; Choshi, T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2001, 18, 66-87.
cNishizawa, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 1984, 308, 693-698.
dNishizawa, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988, 334, 661-665.
eNishizawa, Y. Studies and perspectives of protein kinase C. Science, 1986, 233, 305-312.
fStewart, A.F.; Schultz, G. Camptothecin-induced in vivo topoisomerase I cleavages in the transcriptionally active tyrosine aminotransferase gene. Cell, 1987, 50, 1109-1117.
gMerino, A.; Madden, K.R.; Lane, W.S.; Champoux, D. DNA topoisomerase I is involved in both repression and activation of transcription. Nature, 1993, 365, 227-232.
[19]
Rubnov, S.; Chevallier, C.; Thoison, O.; Debitus, C.; Laprevote, O.; Guénard, D.; Sévenet, T. Echinosulfonic acid D: An ESI MSn evaluation of a new cytotoxic alkaloid from the New-Caledonian sponge Psammoclemma sp. Nat. Prod. Res., 2005, 19, 75-79.
[20]
Reyes, F.; Fernández, R.; Rodríguez, A.; Bueno, S.; de Eguilior, C.; Francesch, A.; Cuevas, C. Cytotoxic staurosporines from the marine ascidian Cystodytes solitus. J. Nat. Prod., 2008, 71, 1046-1048.
[21]
Jimenez, P.C.; Wilke, D.V.; Ferreira, E.G.; Takeara, R.; de Moraes, M.O.; Silveira, E.R.; da Cruz Lotufo, T.M.; Lopes, N.P.; Costa-Lotufo, L.V. Structure elucidation and anticancer activity of 7-oxostaurosporine derivatives from the Brazilian endemic tunicate Eudistoma vannamei. Mar. Drugs, 2012, 10, 1092-1102.
[22]
aKobayashi, J.; Murayama, T.; Ishibashi, M.; Kosuge, S.; Takamatsu, M.; Ohizumi, Y.; Kobayashi, H.; Ohta, T.; Nozoe, S.; Sasaki, T. Hyrtiosins A and B, new indole alkaloids from the Okinawan marine sponge Hyrtios erecta. Tetrahedron, 1990, 46, 7699-7702.
bBergman, J.; Venemalm, L. Synthesis of cyclopent[b]indolones. Tetrahedron, 1990, 46, 6061-6066.
[23]
aBartik, K.; Braekman, J-C.; Daloze, D.; Stoller, C.; Huysecom, J.; Vandevyer, G.; Ottinger, R. Topsentins, new toxic bis-indole alkaloids from the marine sponge Topsentiagenitrix. Can. J. Chem., 1987, 65, 2118-2121.
bTsuji, S.; Rinehart, K.L.; Gunasekera, S.P.; Kashman, Y.; Cross, S.S.; Lui, M.S.; Pomponi, S.A.; Diaz, M.C. Topsentin, Bromotopsentin, and Dihydrodeoxybromotopsentin: Antiviral and Antitumor bis (indolyl)imidazoles from Caribbean deep-sea sponge of the family Halichondriidae. Structural and synthetic studies. J. Org. Chem., 1988, 53, 5446-5453.
cMorris, S.A.; Andersen, R.J. Nitrogenous metabolites from the deep water sponge Hexadella sp. Can. J. Chem., 1989, 67, 677-681.
dMurray, L.M.; Lim, T.K.; Hooper, J.N.A.; Capon, R.J. Isobromotopsentin: a new bis(indo1e) alkaloid from a deep-water marine sponge Spongosorites sp. Aust. J. Chem., 1995, 48, 2053-2058.
eShin, J.; Seo, Y.; Cho, K.W.; Rho, J-R.; Sim, C.J. New bis(indole)alkaloids of the topsentin class from the sponge Spongosorites genitrix. J. Nat. Prod., 1999, 62, 647-649.
[24]
aBonjouklian, R.; Smitka, T.A.; Doolin, L.E.; Molloy, R.M.; Debono, M.; Shaffer, S.A.; Moore, R.E.; Stewart, J.B.; Patterson, G.M.L. Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis. Tetrahedron, 1991, 47, 7739-7750.
bKuethe, J.T.; Wong, A.; Davies, I.W. Effective strategy for the preparation of indolocarbazole aglycons and glycosides: Total synthesis of tjipanazoles B, D, E, and I. Org. Lett., 2003, 5, 3721-3723.
cGilbert, E.J.; Ziller, J.W.; Van Vranken, D.L. Cyclizations of unsymmetrical bis-1,2-(3-indolyl)ethanes: Synthesis of (−)-tjipanazole F1. Tetrahedron, 1997, 53, 16553-16564.
[25]
aSu, J-Y.; Zhu, Y.; Zeng, L-M.; Xu, X-H. A new bisindole from alga Caulerpa serrulata. J. Nat. Prod., 1997, 60, 1043-1044.
bWahlstrom, N.; Stensland, B.; Bergman, J. Synthesis of the marine alkaloid caulersin. Tetrahedron, 2004, 60, 2147-2153.
cBourderioux, A.; Routier, S.; Beneteau, V.; Merour, J-Y. Synthesis of benzo analogues of oxoarcyriaflavins and caulersine. Tetrahedron, 2007, 63, 9465-9475.
dMiki, Y.; Aoki, Y.; Miyatake, H.; Minematsu, T.; Hibino, H. Synthesis of caulersin and its isomers by reaction of indole-2,3-dicarboxylic anhydrides with methyl indoleacetates. Tetrahedron Lett., 2006, 47, 5215-5218.
[26]
Aguilar-Santos, G. Caulerpin, a new red pigment from green algae of the genus Caulerpa. J. Chem. Soc., 1970, 6, 842-843. [C].
[27]
Aguilar-Santos, G. Doty. M.S. in Drugs from the sea (1968)
(Freudenthal, H.D., ed.) p. 173 Marin Technology Society, Washington,
DC
[28]
Dumay, O.; Fernandez, C.; Pergent, G. Primary production and vegetative cycle in Posidonia oceanica when in competition with the green algae Caulerpa taxifolia and Caulerpa racemosa. J. Mar. Biol. Assoc. U. K., 2002, 82, 379-387.
[29]
Capon, R.J.; Ghisalberti, E.L.; Jefferies, P.R. Metabolites of the green algae, Caulerpa Species. Phytochemistry, 1983, 22(6), 1465-1467.
[30]
Vest, S.E.; Dawes, C.J.; Romeo, J.T. Distribution of caulerpin and caulerpicin in eight species of the green alga Caulerpa (Caulerpales). Bot. Mar., 1983, XXVI, 313-316.
[31]
Schwede, J.G.; Cardellina, J.H.; Grode, S.H.; James, Jr, T.R.; Blackman, A.J. Distribution of the pigment caulerpin in species of the green alga Caulerpa. Phytochemistry, 1987, 26(1), 155-158.
[32]
Raub, M.F.; Cardellina, J.H.; Schwede, J.G. The green algal pigment caulerpin as a plant growth regulator. Phytochemistry, 1987, 26, 619-620.
[33]
Anjaneyulu, A.S.R.; Prakash, C.V.S.; Mallavadhani, U.V. Two caulerpin analogues and a sesquiterpene from Caulerpa racemosa. Phytochemistry, 1991, 30(9), 3041-3042.
[34]
Govenkar, M.B.; Wahidulla, S. Constituents of Chondria armata. Phytochemistry, 2000, 54, 979-981.
[35]
Vottero, E.; Balgi, A.; Woods, K.; Tugendreich, S.; Melese, T.; Andersen, R.J.; Grant Mauk, A.; Roberge, M. Inhibitors of human indoleamine 2,3-dioxygenase identified with a target-based screen in yeast. Biotechnol. J., 2006, 1, 282-288.
[36]
Mao, S-C.; Guo, Y-W.; Shen, X. Two novel aromatic valerenane-type sesquiterpenes from the Chinese green alga Caulerpa taxifolia. Bioorg. Med. Chem. Lett., 2006, 16, 2947-2950.
[37]
Rocha, F.D.; Soares, A.R.; Houghton, P.J.; Pereira, R.C.; Kaplan, M.A.C.; Teixeira, V.L. Potential cytotoxic activity of some Brazilian seaweeds on human melanoma cells. Phytother. Res., 2007, 21, 170-175.
[38]
de Souza, É.T.; de Lira, D.P.; de Queiroz, A.C.; da Silva, D.J.C.; de Aquino, A.B.; Campessato Mella, E.A.; Lorenzo, V.P.; de Miranda, G.E.C.; de Araújo-Júnior, J.X.; de Oliveira Chaves, M.C.; Barbosa-Filho, J.M.; de Athayde-Filho, P.F.; de Oliveira Santos, B.V.; Alexandre-Moreira, M.S. The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar. Drugs, 2009, 7, 689-704.
[39]
Alarif, W.M.; Abou-Elnaga, Z.S.; Ayyad, S-E.N.; Al-lihaibi, S.S. Insecticidal metabolites from the green alga Caulerpa racemosa. Clean Soil, Air. Water, 2010, 38(5-6), 548-557.
[40]
Kamal, C.; Sethuraman, M.G. Caulerpin-a bis-indole alkaloid as a green inhibitor for the corrosion of mild steel in 1 M HCl solution from the marine alga Caulerpa racemosa. Ind. Eng. Chem. Res., 2012, 51, 10399-10407.
[41]
Macedo, N.R.P.V.; Ribeiro, M.S.; Villaça, R.C.; Ferreira, W.; Pinto, A.M.; Teixeira, V.L.; Cirne-Santos, C.; Paixão, I.C.N.P.; Giongo, V. Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev. Bras. Farmacogn., 2012, 22(4)
[42]
Pinto, A.M.V.; Leite, J.P.G.; Ferreira, W.J.; Cavalcanti, D.N.; Villaça, R.C.; Giongo, V.; Teixeira, V.L.; de Palmer Paixão, I.C.N. Marine natural seaweed products as potential antiviral drugs against Bovine viral diarrhea virus. Rev. Bras. Farmacogn., 2012, 22(4)
[43]
Cavalcante-Silva, L.H.A.; de Carvalho Correia, A.C.; Barbosa-Filho, J.M.; da Silva, B.A.; de Oliveira Santos, B.V.; de Lira, D.P.; Sousa, J.C.F.; de Miranda, G.E.C.; de Andrade Cavalcante, F.; Alexandre-Moreira, M.S. Spasmolytic effect of caulerpine involves blockade of Ca2+ influx on guinea pig ileum. Mar. Drugs, 2013, 11, 1553-1564.
[44]
Nagappan, T.; Vairappan, C.S. Nutritional and bioactive properties of three edible species of green algae, genus Caulerpa (Caulerpaceae). J. Appl. Phycol., 2014, 26, 1019-1027.
[45]
Maiti, B.C.; Thomson, R.H.; Mahendran, M.J. The structure of caulerpin, a pigment from Caulerpa algae. Chem. Res. Synop, 1978, 4, 126-127.
[46]
Canché Chay, C.I.; Cansino, R.G.; Espitia Pinzón, C.I.; Torres-Ochoa, R.O.; Martínez, R. Synthesis and anti-tuberculosis activity of the marine natural product caulerpin and its analogues. Mar. Drugs, 2014, 12, 1757-1772.
[47]
Talaz, O.; Saracoglu, N. A study on the synthesis of structural analogues of bis-indole alkaloid caulerpin: A step-by-step synthesis of a cyclic indole-tetramer. Tetrahedron, 2010, 66, 1902-1910.
[48]
Vidal, J.P.; Laurent, D.; Kabore, S.A.; Rechencq, E.; Boucard, M.; Girard, J.P.; Escale, R.; Rossi, J.C. Caulerpin, caulerpicin, Caulerpa scalpelliformis: comparative acute toxicity study. Bot. Mar., 1984, XXVII, 533-537.
[49]
Schwede, J.G. Process for promoting and regulating plant growth
with caulerpin. U.S. Patent 4,608,077, August 26. 1986.
[50]
Liu, L.; Pohnert, G.; Wei, D. Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar. Drugs, 2016, 14, 191.
[51]
Saltiel, A.R.; Kahn, C.R. Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 2001, 414, 799-806.
[52]
Obici, S.; Feng, Z.; Karkanias, G.; Baskin, D.G.; Rossetti, L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci., 2002, 5, 566-572.
[53]
Saltiel, A.R.; Pessin, J.E. Insulin signaling pathways in time and space. Trends Cell Biol., 2002, 12, 65-71.
[54]
Bryant, N.J.; Govers, R.; James, D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol., 2002, 3, 267-277.
[55]
Smith, U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance — is insulin resistance initiated in the adipose tissue? Int. J. Obes. Relat. Metab. Disord., 2002, 26, 897-904.
[56]
Ostman, A.; Bohmer, F.D. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol., 2001, 11, 258-266.
[57]
Cheng, A.; Dube, N.; Gu, F.; Tremblay, M.L. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur. J. Biochem., 2002, 269, 1050-1059.
[58]
Goldstein, B.J.; Bittner-Kowalczyk, A.; White, M.F.; Harbeck, M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the GRB2 adaptor protein. J. Biol. Chem., 2000, 275, 4283-4289.
[59]
Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1b inhibitors for diabetes. Nat. Rev. Drug Discov., 2002, 1, 696-709.
[60]
Cavalcante-Silva, L.H.A.; Falcão, M.A.P.; Vieira, A.C.S.; Viana, M.D.M.; de Araújo-Júnior, J.X.; Sousa, J.C.F.; da Silva, T.M.S.; Barbosa-Filho, J.M.; Noël, F.; de Miranda, G.E.C.; de Oliveira Santos, B.V.; Alexandre-Moreira, M.S. Assessment of mechanisms involved in antinociception produced by the alkaloid caulerpine. Molecules, 2014, 19, 14699-14709.
[61]
Liu, Y.; Morgan, J.B.; Coothankandaswamy, V.; Liu, R.; Jekabsons, M.B.; Mahdi, F.; Nagle, D.G.; Zhou, Y-D. The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J. Nat. Prod., 2009, 72, 2104-2109.
[62]
Yu, H.; Zhang, H. Dong. M.; Wu. Z.; Shen. Z.; Xie, Y.; Kong, Z.; Dai, X.; Xu, B. Metabolic reprogramming and AMPKα1 pathway activation by caulerpin in colorectal cancer cells. Int. J. Oncol., 2017, 50, 161-172.
[63]
El-Bahnasawy, M.M.; Fadil, E.E.; Morsy, T.A. Mosquito vectors of infectious diseases: are they neglected health disaster in Egypt? J. Egypt. Soc. Parasitol., 2013, 43(2), 373-386.
[64]
Arduino, P.G.; Porter, S.R. Oral and perioral herpes simplex virus type 1 (HSV-1) infection: Review of its management. Oral Dis., 2006, 12, 254-270.
[65]
World Health Organization. Global Tuberculosis report 2016.
WHO Press, World Health Organization, Geneva. 2016, ISBN:
978-92-4-156539-4.
[66]
Kumar, V.; Abbas, A.K.; Fausto, N.; Mitchell, R.N. Robbins Basic
Pathology, 8th ed.; Saunders Elsevier: 2007, 516-522. ISBN 978-1- 4160-2973-1.
[67]
World Health Organization. "The sixteenth global report on tuberculosis. 2011.
[68]
Zumla, A.; Raviglione, M.; Hafner, R.; von Reyn, C.F. Tuberculosis. N. Engl. J. Med., 2013, 368(8), 745-755.
[69]
Moloney, M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci., 2016, 37(8), 689-701.
[70]
Chan, G.J.; Lee, A.C.; Baqui, A.H.; Tan, J.; Black, R.E. Risk of early-onset neonatal infection with maternal infection or colonization: A global systematic review and meta-analysis. PLoS Med., 2013, 10(8), e1001502.
[71]
Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol., 2011, 23, 797-810.
[72]
Wijesekara, I.; Pangestuti, R.; Kim, S-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym., 2011, 84, 14-21.
[73]
Lorenzo, V.P.; Filho, J.M.B.; Scotti, L.; Scotti, M.T. Combined structure- and ligand-based virtual screening to evaluate caulerpin analogs with potential inhibitory activity against monoamine oxidase B. Rev. Bras. Farmacogn., 2015, 25, 690-697.