[1]
Martorana, A.; Esposito, Z.; Koch, G. Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neursci. Ther., 2010, 16, 235-245.
[2]
Querfurth, H.W.; Selkoe, D.J. Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry, 1994, 33, 4550-4561.
[4]
Carson, K.A.; Geula, C.; Mesulam, M.M. Electron microscopic localization of cholinesterase activity in Alzheimer brain tissue. Brain Res., 1991, 540, 204-208.
[5]
Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminf., 2011, 3, 332-345.
[6]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
[7]
Selkoe, D.J.; Schenk, D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol., 2003, 43, 545-584.
[8]
Elina, Z.; James, A.R.N.; Raj, K.; Clive, H. Inflammation in Alzheimer’s disease: Relevance to pathogenesis and therapy. Delphine Boche Alzheimers Res. Ther., 2010, 2(1), 1.
[9]
Iranshahi, M.; Iranshahy, M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)—A review. Ethnopharmacology, 2011, 134, 1-10.
[10]
Zhou, X.; Wang, X.B.; Wang, T.; Kong, L.Y. Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg. Med. Chem., 2008, 16, 8011-8021.
[11]
Sugimoto, H.; Yamanishi, Y.; Iimura, Y.; Kawakami, Y. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr. Med. Chem., 2000, 7, 303-339.
[12]
Kavanagh, S.; Gaudig, M.; Van, M.M.; Adami, M.; Delgado, A.; Guzman, C.; Jedenius, E.; Schäuble, B. Galantamine and behavior in Alzheimer disease: analysis of four trials. Acta Neurol. Scand., 2001, 124, 302-308.
[13]
Hoerr, R.; Noeldner, M.; Ensaculin, M. (KA-672 HCl): A multitransmitter approach to dementia treatment. CNS Drug Rev., 2002, 8, 143-158.
[14]
Alipour, M.; Khoobi, M.; Foroumadi, A.; Nadri, H.; Moradi, A.; Sakhteman, M.; Ghandi, M.; Shafiee, A. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2012, 20, 7214-7222.
[16]
Carson, K.A.; Geula, C.; Mesulam, M.M. Electron microscopic localization of cholinesterase activity in Alzheimer brain tissue. Brain Res., 1991, 540, 204-208.
[17]
Koh, S.H.; Kim, S.H.; Kwon, H.; Park, Y.; Kim, K.S.; Song, C.W.; Kim, J.; Kim, M.H.; Yu, H.J.; Henkel, J.S.; Jung, H.K. Epigallocatechin gallate protects nerve growth factor differentiated PC12 cells from oxidative-radical-stress-induced apoptosis through its effect on phosphoinositide 3-kinase/Akt and glycogen synthase kinase-3. Brain Res. Mol. Brain Res., 2003, 118, 72-81.
[18]
Dan, C.; Ya-fei, P.; Chuan-Jun, L.; Yun-feng, X.; Yu-ren, J. Virtual screening of acetylcholinesterase inhibitors, In: M. Taha, Ed, Virtual Screening, InTech; Publisher, Shanghi,, 2012; pp. 83-90.
[19]
Enz, A.; Amstutz, R.; Boddeke, H.; Gemelin, G.; Malanowaski, J. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog. Brain Res., 1993, 98, 431-438.
[20]
Cardozo, M.G.; Kawai, Y.; Limura, Y.; Sugimoto, H.; Yaminishi, Y.; Hopefinger, A.J. Conformational analysis and molecular- shape comparisons of a series of indanone- benzylpiperidine inhibitors of acetylcholinesterase. J. Med. Chem., 1992, 35, 582-587.
[21]
Katzman, R.; Bick, K. The cholinergic story: hope for the patient and family, İn: Alzheimer’s Disease, the Changing View, first ed; Academic Press: London, 2000, p. 182. (Chapter 5).
[22]
Massoulié, J.; Bon, S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu. Rev. Neurosci., 1982, 5, 57-106.
[23]
Greig, N.H.; Utsukd, T.; Yu, X.; Zhu, H.W.; Holloway, T.; Perry, B.L.; Lehri, D.K.; Ingram, D.K. A new therapeutic target in the Alzheimer’s disease treatment: attention to butrylcholinesterase. Curr. Med. Res. Opin., 2001, 17, 159-165.
[24]
Johnson, G.; Moore, M.S. Peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12, 217-225.
[25]
Cavalli, A.; Bolognesi, M.L.; Minarini, A. Multi-targate-directed ligands to combat neurodegenerative disease. J. Med. Chem., 2008, 51(3), 347-372.
[26]
Quinn, D.M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., 1987, 87, 955-979.
[27]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155, 219-230.
[28]
Taylor, P.; Lappi, S. Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry, 1975, 14, 1989-1997.
[29]
Massoulié, J.; Bon, S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu. Rev. Neurosci., 1982, 5, 57-106.
[30]
Green, K.N.; LaFerla, F.M. Linking calcium to Ab and Alzheimer’s disease. Neuron, 2008, 59, 190-194.
[31]
Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur. J. Med. Chem., 2013, 70, 165-188.
[32]
Arce, P.M.; Franco, R.I.M.; Munoz, G.C.G.; Perez, C.; Lopez, B.; Villaroya, M.; Lopez, G.M.; Garcia, G.A. Neuroprotective and cholinergic properties of multifunctional glutamic acid derivatives for the treatment of Alzheimer’s disease. J. Med. Chem., 2009, 22, 7249-7257.
[33]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun., 1984, 120, 885-890.
[34]
Selkoe, D.J.; Podlisny, M.B.; Annu, R.; Genomics, H.G. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2002, 99, 251.
[35]
Alipour, M.; Khoobi, M.; Foroumadi, A.; Nadri, H.; Moradi, A.; Sakhteman, M.; Ghandi, M.; Shafiee, A. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: Potent and dual binding site acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2012, 20, 7214-7222.
[36]
Goedert, M.; Spillantini, M.G.; Crowther, R.A. Tau proteins and neurofibrillary degeneration. Brain Pathol., 1991, 1, 279-286.
[37]
Iqbal, K.; Alonso, A.C.; Chen, S.; Chohan, M.O.; El-Akkad, E.; Gong, C.X.; Khatoon, S.; Li, B.; Liu, F.; Rahman, A.; Tanimukai, H.; Grundke-Iqbal, I. Tau pathology in Alzheimer disease and other tauopathies. Biochim. Biophys. Acta, 2005, 1739, 198-210.
[38]
Chun, W.; Johnson, G.V. The role of tau phosphorylation and cleavage in neuronal cell death. Front. Biosci., 2007, 12, 733-756.
[39]
Pierrot, N.; Santos, S.F.; Feyt, C.; Morel, M.; Brion, J.P.; Octave, J.N. Calcium mediated transient phosphorylation of tau and amyloid precursor protein followed by intraneuronal amyloid-beta accumulation. J. Biol. Chem., 2006, 281, 39907-39914.
[40]
Bojarski, L.; Herms, J.; Kuznicki, J. Calcium dysregulation in Alzheimer’s disease. Neurochem. Int., 2008, 52, 621-633.
[41]
Wang, Y.; Yang, Y.; Tian, J.; Liu, J.P. Huperzine A for alzheimer’s disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One, 2013, 8(9), e74916.
[42]
Edlund, C.; Söderberg, M.; Kristensson, K. Isoprenoids in aging and neurodegeneration. Neurochem. Int., 1994, 25, 35-38.
[43]
Ibrahim, M.; Farooq, T.; Hussain, N.; Hussain, A.; Gulzar, T.; Hussain, I.; Akash, H.S.M.; Fouzia, S.R. Acetyl and butyryl cholinesterase inhibitory sesquiterpene lactones from Amberboa ramose. Chem. Central. J., 2013, 7, 116.
[44]
Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE ınhibitors from plants and their contribution to alzheimer’s disease therapy. Curr. Neuropharmacol., 2013, 11(4), 388-413.
[45]
Jain, M.P.; Sharma, V.K. Phytochemical investigation of roots of Adhatoda Vasica. Plant Medica., 1982, 46, 250.
[46]
Elsevier, Shah and Seth. Textbook of Pharmacognosy and Phytochemistry, 2010, 1, 319-321.
[47]
Murray, A.P.; Faraoni, M.B.; Castro, M.J.; Alza, N.P.; Cavallaro, V. Natural AChE ınhibitors from plants and their contribution to alzheimer’s disease therapy. Curr. Neuropharmacol., 2013, 11, 388-413.
[48]
Wang, B.S.; Wang, H.; Wie, Z.H.; Song, Y.Y.; Zhang, L.; Chen, H.Z. Efficacy and safety of natural acetylcholinesterase inhibitors huperzine A in the treatment of Alzheimer’s disease: An updated meta-analysis. J. Neural Transmission., 2009, 116, 457-465.
[49]
Catto, M.; Pisani, L.; Leonetti, F.; Nicolotti, O.; Pesce, P.; Stefanachi, A.; Cellamare, S.; Carotti, A. Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg. Med. Chem., 2013, 21, 146-152.
[50]
Van der zee, E.A.; Platt, B.; Riedel, G. Acetylcholine: future research and perspectives. Behav. Brain Res., 2011, 221, 583-587.
[51]
Meng, F.; Mao, F.; Shan, W.; Qin, R. Huang, l.; Li, X. Design, synthesis, and evaluation of indanone derivatives as acetylcholinesterase inhibitors and metal-chelating agents. Bioorg. Med. Chem., 2012, 22, 4462-4466.
[52]
Zangara, A. The psychopharmacology of huperzine A: An alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol. Biochem. Behav., 2013, 75, 675-686.
[53]
Khanaposhtani, M.M.; Saeedi, M.; Zafarghandi, S.N.; Mahdavi, M.; Sabourian, R.; Razkenari, K.E. Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur. J. Med. Chem., 2015, 92, 799-806.
[54]
Khoobi, M.; Alipour, M.; Sakhyeman, A.; Nadri, H.; Moradi, A.; Ghandi, M.; Emami, S.; Foroumadi, A. Design, synthesis, biological evaluation and docking study of 5-oxo- 4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 68, 260-269.
[55]
Cummings, J.L.; Askin-Edger, S. Design, synthesis and evaluation of novel heterodimers of donepezil and huperzine fragments as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2000, 13, 385.
[56]
Zhu, J.; Wu, F.C.; Li, X.; Wu, S.G. Synthesis, biological evaluation and molecular modelling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2013, 21, 4218-4224.
[57]
Leonetti, F.; Catto, M.; Nicolotti, O.; Pisani, L.; Cappa, A.; Stefanachi, A.; Carotti, A. Homo- and hetero-bivalent edrophonium-like ammonium salts as highly potent, dual binding site AChE inhibitors. Bioorg. Med. Chem., 2008, 16, 7450-7456.
[58]
Chen, Y.; Fang, L.; Peng, S.; Liao, H.; Lehmann, J. Discovery of a novel acetylcholinesterase inhibitor by structural- based virtual screening techniques. Bioorg. Med. Chem. Lett., 2012, 22, 3181.
[59]
Khoobi, M.; Alipour, M.; Sakhyeman, A.; Nadri, H.; Moradi, A.; Ghandi, M.; Emami, S.; Foroumadi, A. Design, synthesis, biological evaluation and docking study of 5-oxo- 4,5-dihydropyrano[3,2-c]chromene derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Eur. J. Med. Chem., 2013, 68, 260-269.
[60]
Liu, S.; Shang, R.; Shi, L.; Wan, C.C.D.; Lin, H. Synthesis and biological evaluation of 7 H-thiazolo [3, 2-b]-1, 2, 4- triazin-7-one derivatives as dual binding site acetylcholinesterase inhibitors. Eur. J. Med. Chem., 2014, 81, 237.
[61]
Bukhari, A.N.S.; Ser, M.; Hassan, M.; Masand, H.V.; Mahajan, T.D.; Amjad, W.M. Synthesis of α, β-unsaturated carbonyl based compounds as acetylcholinesterase and butyrylcholinesterase inhibitors: Characterization, molecular modeling, QSAR studies and effect against amyloid β-induced cytotoxicity. Eur. J. Med. Chem., 2014, 83, 355-365.
[62]
Baharloo, F.; Moslemin, H.M.; Mahdevi, M.; Emami, S. Benzofuran-derived benzylpyridinium bromides as potent acetylcholinesterase inhibitors. Euro. J. Med. Chem., 2015, 93, 196-201.
[63]
Khanaposhtani, M.M.; Saeedi, M.; Zafarghandi, S.N.; Mahdavi, M.; Sabourian, R.; Razkenari, K.E. Potent acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, and docking study of acridone linked to 1,2,3-triazole derivatives. Eur. J. Med. Chem., 2015, 92, 799-806.