[1]
Herman, M.A.; Kahn, B.B. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J. Clin. Invest., 2006, 116(7), 1767-1775.
[2]
Wu, C.C.; Sytwu, H.K.; Lu, K.C.; Lin, Y.F. Role of T cells in type 2 diabetic nephropathy. Exp. Diabetes Res., 2011, 2011, 514738.
[3]
Shoelson, S.E.; Lee, J.; Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, 116(7), 1793-1801.
[4]
Kahn, S.E.; Cooper, M.E.; Del, P.S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present and future. Lancet, 2014, 383(9922), 1068-1083.
[5]
Kubaszek, A.; Pihlajamäki, J.; Komarovski, V.; Lindi, V.; Lindström, J.; Eriksson, J.; Timo, T.V.; Helena, H.; Pirjo, I.P.; Sirkka, K.; Jaakko, T.; Matti, U.; Markku, L. Promoter polymorphisms of the TNF-α (G-308A) and IL-6 (C-174G) genes predict the conversion from impaired glucose tolerance to Type 2 diabetes: The finnish diabetes prevention study. Diabetes, 2003, 52(7), 1872-1876.
[6]
Van Beelen, A.J.; Zelinkova, Z.; Taanman-Kueter, E.W.; Muller, F.J.; Hommes, D.W.; Zaat, S.A.; Kapsenberg, M.L.; de Jong, E.C. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity, 2007, 27(4), 660-669.
[7]
Ilan, Y.; Maron, R.; Tukpah, A.M.; Maioli, T.U.; Murugaiyan, G.; Yang, K.; Wu, H.Y.; Weiner, H.L. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl. Acad. Sci., 2010, 107(21), 9765-9770.
[8]
Knoll, P.; Schlaak, J.; Uhrig, A.; Kempf, P.; zum Büschenfelde, K-H.M.; Gerken, G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol., 1995, 22, 226-229.
[9]
Horst, A.K.; Neumann, K.; Diehl, L.; Tiegs, G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell. Mol. Immunol., 2016, 13(3), 277-292.
[10]
Robinson, M.W.; Harmon, C.; O’Farrelly, C. Liver immunology and its role in inflammation and homeostasis. Cell. Mol. Immunol., 2016, 13(3), 267-276.
[11]
Jena, P.K.; Singh, S.; Prajapati, B.; Nareshkumar, G.; Mehta, T.; Seshadri, S. Impact of targeted specific antibiotic delivery for gut microbiota modulation on high-fructose-fed rats. Appl. Biochem. Biotechnol., 2014, 72(8), 3810-3826.
[12]
Prajapati, B.; Jena, P.K.; Mehta, T.; Seshadri, S. Preparation and optimization of moxifloxacin microspheres for colon targeted delivery using quality by design approach: In vitro and in vivo study. Curr. Drug Deliv., 2016, 13(7), 1021-1033.
[13]
Patel, H.; Yadav, N.; Parmar, R.; Patel, S.; Singh, A.P.; Shrivastava, N.; Dalai, S.K. Frequent inoculations with radiation attenuated sporozoite is essential for inducing sterile protection that correlates with a threshold level of Plasmodia liver-stage specific CD8 + T cells. Cell. Immunol., 2017, 317, 48-54.
[14]
Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 2008, 57(6), 1470-1481.
[15]
Garidou, L.; Pomié, C.; Klopp, P.; Waget, A.; Charpentier, J.; Aloulou, M.; Giry, A.; Serino, M.; Stenman, L.; Lahtinen, S.; Dray, C. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab., 2015, 22(1), 100-112.
[16]
Zeng, C.; Shi, X.; Zhang, B.; Liu, H.; Zhang, L.; Ding, W.; Zhao, Y. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: Relationship with metabolic factors and complications. J. Mol. Med., 2012, 90(2), 175-186.
[17]
Kawabe, T.; Sun, S.L.; Fujita, T.; Yamaki, S.; Asao, A.; Takahashi, T.; So, T.; Ishii, N. Homeostatic proliferation of naive CD4+ T cells in mesenteric lymph nodes generates gut-tropic Th17 cells. J. Immunol., 2013, 190, 5788-5798.
[18]
Cavallari, J.F.; Denou, E.; Foley, K.P.; Khan, W.I.; Schertzer, J.D. Different Th17 immunity in gut, liver, and adipose tissues during obesity: The role of diet, genetics, and microbes. Gut Microbes, 2016, 7, 82-89.
[19]
Min, Y.W.; Rhee, P.L. The role of microbiota on the gut immunology. Clin. Ther., 2015, 37(5), 968-975.
[20]
Ray, S.; De Salvo, C.; Pizarro, T.T. Central role of IL-17/Th17 immune responses and the gut microbiota in the pathogenesis of intestinal fibrosis. Curr. Opin. Gastroenterol., 2014, 30(6), 531-538.
[21]
Son, G.; Kremer, M.; Hines, I.N. Contribution of gut bacteria to liver pathobiology. Gastroenterol. Res. Pract., 2010, 2010, 1-13.
[22]
Dong, P.; Yang, Y.; Wang, W. The role of intestinal bifidobacteria on immune system development in young rats. Early Hum. Dev., 2010, 86(1), 51-58.
[23]
Ivanov, I.I.; de Llanos Frutos, R.; Manel, N.; Yoshinaga, K.; Rifkin, D.B.; Sartor, R.B.; Finlay, B.B.; Littman, D.R. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe, 2008, 4(4), 337-349.
[24]
Kolls, J.K.; Khader, S.A. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev., 2010, 21(6), 443-448.