[1]
Pan, L.; Chai, H.; Kinghorn, A.D. The continuing search for antitumor agents from higher plants. . Phytochem. Lett., 2010, 3, 1-8.
[2]
Song, M.; Vogelstein, B.; Giovannucci, E.L.; Willett, W.C.; Tomasetti, C. Cancer prevention: Molecular and epidemiologic consensus. Science, 2018, 361(6409), 1317-1318.
[4]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin., 2018, 68, 7-30.
[5]
Balunas, M.J.; Kinghorn, D. Drug discovery from medicinal plants. Life Sci., 2005, 78, 431-441.
[6]
Tan, B.L.; Norhaizan, M.E. Plant-Derived Compounds in Cancer
Therapy: Traditions of Past and Drugs of Future. In. Anticancer
plants: Properties and Application, 2018, 91-127. Springer, Singapore.
[7]
Tagne, R.S.; Telefo, B.P.; Nyemb, J.N.; Yemele, D.M.; Nijina, S.N.; Chekem-Goka, S.M.; Lienou, L.L.; Nwabo-Kambdje, A.H.; Moundipa, P.F.; Farooq, A.D. Anticancer and antioxidant activities of methanol extracts and fractions of some Cameroonian medicinal plants. Asian Pac. J. Trop. Med., 2014, 7, 442-447.
[8]
Levitsky, D.O.; Dembitsky, V.M. Anti-breast cancer agents derived from plants. Nat. Prod. Bioprospect., 2015, 5, 1-16.
[9]
Dipaola, R.S.; Zhang, H.; Lambert, G.H.; Meeker, R.; Licitra, E.; Rafi, M.M.; Zhu, B.T.; Spaulding, H.; Goodin, S.; Toledano, M.B.; Hait, W.N.; Gallo, M.A. Clinical and biologic activity of an estrogenic herbal combination (PC-SPES) in prostate cancer. N. Engl. J. Med., 1998, 339, 785-791.
[10]
Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol., 2005, 100, 72-79.
[11]
Reddy, L.; Odhav, B.; Bhoola, K.D. Natural products for cancer prevention: A global perspective. Pharmacol. Ther., 2003, 99, 1-13.
[12]
Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46, 4769-4807.
[13]
Ahmed, M.; Khan, M.I.; Khan, M.R.; Muhammad, N.; Khan, A.U.; Khan, R.A. Role of medicinal plants in oxidative stress and cancer. Open Acc. Sci. Rep., 2013, 2, 641-643.
[14]
Teiten, M.H.; Gaascht, F.; Dicato, M.; Diederich, M. Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. Biochem. Pharmacol., 2013, 86, 1239-1247.
[15]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Medicinal plants used to treat TB in Ghana. Int. J. Mycobacteriol., 2015, 4, 116-123.
[16]
Roleira, F.M.; Varela, C.L.; Costa, S.C.; Tavares-da-Silva, E.J. Phenolic derivatives from medicinal herbs and plant extracts: anticancer effects and synthetic approaches to modulate biological activity. Stud. Nat. Prod. Chem., 2018, 57, 115-156.
[17]
Rashed, K.N. Medicinal plants as a safe target for treatment of cancer. Nat. Prod. Chem. Res., 2014, 2, 6836.
[18]
Seca, A.; Pinto, D. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[19]
Dhanamani, M.; Devi, L.S.; Kannan, S. Ethnomedicinal plants for cancer therapy-A review. Hygeia J. D. Med., 2011, 3, 1-10.
[20]
Friedberg, E.C.; Walker, G.C.; Siede, W.; Wood, R.D.; Schultz, R.A.; Ellenberger, T. DNA repair and mutagenesis. 2006, 2nd edition,
ASM Press.
[21]
Sarasin, A. An overview of the mechanisms of mutagenesis and carcinogenesis. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2003, 544, 99-106.
[22]
Heinen, C.D.; Schmutte, C.; Fishel, R. DNA repair and tumorigenesis: lessons from hereditary cancer syndromes. Cancer Biol. Ther., 2002, 1, 477-485.
[23]
Wood, R.D.; Mitchell, M.; Lindahl, T. Human DNA repair genes. Mutat. Res. Fundam. Mol. Mech. Mutagen., 2005, 577, 275-283.
[24]
Banning, M. The carcinogenic and protective effects of food. Br. J. Nurs., 2005, 14, 1070-1074.
[25]
Vickers, A. Botanical medicines for the treatment of cancer: rationale, overview of current data, and methodological considerations for phase I and II trials. Cancer Invest., 2002, 20, 1069-1079.
[26]
Bonham, M.; Arnold, H.; Montgomery, B.; Nelson, P.S. Molecular effects of the herbal compound PC-SPES: Identification of activity pathways in prostate carcinoma. Cancer Res., 2002, 62, 3920-3924.
[27]
Hu, H.; Ahn, N.S.; Yang, X.; Lee, Y.S.; Kang, K.S. Ganoderma lucidum extract induces cell cycle arrest and apoptosis in MCF-7 human breast cancer cell. Int. J. Cancer, 2002, 102, 250-253.
[28]
Twilley, D.; Lall, N. The role of natural products from plants in the development of anticancer agentS; Nat. Products Drug Dis, 2018, pp. 139-178.
[29]
Cassady, J.M.; Douros, J.D. (Eds.). Anticancer agents based on
natural product models Academic Press, 1980, New York.
[30]
Kaefer, C.M.; Milner, J.A. The role of herbs and spices in cancer prevention. J. Nutr. Biochem., 2008, 19, 347-361.
[31]
Mamedov, N. Medicinal plants studies: History, challenges and prospective. Med. Aromat. Plants, 2012, 1, 1-2.
[32]
Harun-ur-Rashid, M.D.; Gafur, M.A.; Sadik, M.G.; Rahman, M.A.A. Biological activities of a new acrylamide derivative from Ipomoea turpethum. Pak. J. Biol. Sci., 2002, 5, 968-969.
[33]
Sala, A.; Recio, M.; Giner, R.M.; Máñez, S.; Tournier, H.; Schinella, G. Anti-inflammatory and antioxidant properties of Helichrysum italicum. J. Pharm. Pharmacol., 2002, 54, 365-371.
[34]
Siriwatanametanona, N.; Fiebich, B.L.; Efferth, T.; Prietoa, J.M.; Heinricha, M. Traditionally used Thai medicinal plants: In vitro anti-inflammatory, anticancer and antioxidant activities. J. Ethnopharmacol., 2010, 130, 196-207.
[35]
Kaur, R.; Kapoor, K.; Kaur, H. Plants as a source of anticancer agents. J. Nat. Prod. Plant Resour., 2011, 1, 119-124.
[36]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109, 69-75.
[37]
Simmons, T.L.; Andrianasolo, E.; McPhail, K. Marine natural products as anticancer drugs. Mol. Cancer Ther., 2005, 4, 333-342.
[38]
Ajumeera, R.; Thipparapu, G.; Challa, S. Remedy of Targeting
Cancer and Cancer Stem Cells with Botanicals. In. Anticancer
Plants: Natural Products and Biotechnological Implements., 2018, 289-320. Springer, Singapore.
[39]
Marris, E. Marine natural products: Drugs from the deep. Nature, 2006, 443, 904-905.
[40]
Chen, H.; Gao, Y.; Wang, A.; Zhou, X.; Zheng, Y.; Zhou, J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur. J. Med. Chem., 2015, 92, 648-655.
[41]
Newman, D.J.; Cragg, G.M.; Sanader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66, 1022-1037.
[42]
El-Shemy, H.A.; Aboul-Enein, A.M.; Aboul-Enein, M.I.; Issa, S.I.; Fujita, K. The effect of willow leaf extracts on human leukemic cells in vitro. J. Biochem. Mol. Biol., 2003, 36, 387-389.
[43]
Yano, H.; Mizoguchi, A.; Fukuda, K.; Haramaki, M.; Ogasawara, S. The herbal medicine sho-saiko-to inhibits proliferation of cancer cell lines by inducing apoptosis and arrest at the G0/G1 phase. Cancer Res., 1994, 54, 448-454.
[44]
Poma, A.; Miranda, M.; Spanò, L. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin. Melanoma Res., 1998, 8, 465-467.
[45]
Dong, Y.; Yang, M.M.; Kwan, C.Y. In vitro inhibition of proliferation of HL-60 cells by tetrandrine and Coriolus versicolor peptide derived from Chinese medicinal herbs. Life Sci., 1997, 60, 135-140.
[46]
Kagiki, F.O.; Goncalves, G.C.; Oliveira, E.T.; Crocomo, O.J.; Gallo, L.A. Callus induction and production of total saponins in Pfaffia glomerata (Spreng.) Pedersen in vitro. Braz. J. Med. Plants, 2004, 7, 43-50.
[47]
Fontanive, T.O.; Kobayashi, C.; Bona, L.R.; Massoni, T.; Weizenmann, M.; Tasca, T.; Gamaro, G.D.; Maluf, R.W.; Picoli, S.U.; Ardenghi, P.; Suyenaga, E.S. Evaluation of the pharmacological activity of Pfaffia paniculata (Martius). Kuntze. Lat. Am. J. Pharm., 2010, 29, 64-71.
[48]
Kaileh, M.; Berghe, W.V.; Boone, E.; Essawi, T.; Haegeman, G. Screening of indigenous Palestinian medicinal plants for potential anti-inflammatory and cytotoxic activity. J. Ethnopharmacol., 2010, 113, 510-516.
[49]
Bachrach, Z.Y. Contribution of selected medicinal plants for cancer prevention and therapy. Sci. J. Facul. Med. Nis., 2012, 29, 117-123.
[50]
Sartippour, M.R.; Pietras, R.; Marquez-Garban, D.C.; Chen, H.W.; Heber, D.; Henning, S.M.; Brooks, M.N. The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis, 2006, 27, 2424-2433.
[51]
Myung, S.K.; Bae, W.K.; Oh, S.M.; Kim, Y.; Ju, W.; Sung, J.; Choi, H.J. Green tea consumption and risk of stomach cancer: A meta‐analysis of epidemiologic studies. Int. J. Cancer, 2009, 124, 670-677.
[52]
Hakimuddin, F.; Paliyath, G.; Meckling, K. Selective cytotoxicity of a red grape wine flavonoid fraction against MCF-7 cells. Breast Cancer Res. Treat., 2004, 85, 65-79.
[53]
Pezzuto, J.M.; Kondratyuk, T.P.; Shalaev, E. Chemoprevention by wine polyphenols and resveratrol. Carcinog. Anticarcinog. Food Comp., 2005, 96, 239-242.
[54]
Yedjou, C.; Izevbigie, E.; Tchounwou, P. Preclinical assessment of Vernonia amygdalina leaf extracts as DNA damaging anti-cancer agent in the management of breast cancer. Int. J. Environ. Res. Public Health, 2008, 5, 337-341.
[55]
Oyugi, D.A.; Luo, X.; Lee, K.S.; Hill, B.; Izevbigie, E.B. Activity markers of the anti-breast carcinoma cell growth fractions of Vernonia amygdalina extracts. Exp. Biol. Med., 2009, 234, 410-417.
[56]
Amr, N.A.; Ahmed, A.E.; Khalid, A.E.; David, A.L.; Alan, C. Anti-cancer and antioxidant activity of some Egyptian medicinal plants. J. Med. Plants Res., 2009, 3, 799-808.
[57]
Lu, N.; Zhang, S.; Ge, Q.A. Medicine for the treatment of breast
carcinoma. 2002, Faming Zhuanli Shenqing Gongkai Shuomingshu
Patent CN 1371711.
[58]
Samarghandian, S.; Boskabady, M.H.; Davoodi, S. Use of in vitro assays to assess the potential anti-proliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Pharmacogn. Mag., 2010, 24, 309-314.
[59]
Gutheil, W.G.; Reed, G.; Ray, A.; Anant, S.; Dhar, A. Crocetin: An agent derived from saffron for prevention and therapy for cancer. Curr. Pharm. Biotechnol., 2012, 31, 173-179.
[60]
Ohyama, K.; Akaike, T.; Hirobe, C.; Yamakawa, T. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth. Biol. Pharm. Bull., 2003, 26, 10-18.
[61]
Conforti, F.; Ioele, G.; Statti, G.A.; Marrelli, M.; Ragno, G.; Menichini, F. Anti-proliferative activity against human tumor cell lines and toxicity test on mediterranean dietary plants. Food Chem. Toxicol., 2008, 46, 3325-3332.
[62]
Agarwal, C.; Sharma, Y.; Agarwal, R. Anti-carcinogenic effect of a polyphenolic fraction isolated in human prostate carcinoma DU145 cells: Modulation of cell cycle regulators and induction of G1 arrest. Mol. Carcinog., 2000, 28, 129-138.
[63]
Zhang, Z.; Liong, E.C.; Lau, T.Y.; Leung, K.M.; Fung, P.C.; Tipoe, G.L. Induction of apoptosis by hexamethylene bisacetamide is p53-dependent with telomerase activity but not with terminal differentiation. Int. J. Oncol., 2000, 16, 887-892.
[64]
Van-Huyen, D.J.P.; Sooryanarayana, V.; Delignat, S.; Bloch, M.F.; Kazatchkine, M.D.; Kaveri, S.V. Variable sensitivity of lymphoblastoid cells to apoptosis induced by Viscum album Qu FrF, a therapeutic preparation of mistletoe lectin. Chemotherapy, 2001, 47, 366-376.
[65]
Hecht, S.S.; Kenney, P.M.; Wang, M.; Trushin, N.; Agarwal, S.; Rao, A.V.; Upadhyaya, P. Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol, and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanoneinduced lung tumorigenesis in A/J mice. Cancer Lett., 1999, 137, 123-130.
[66]
Nakahata, N.; Kutsuwa, M.; Kyo, R.; Kubo, M.; Hayashi, K.; Ohizumi, Y. Analysis of inhibitory effects of Scutellariae radix and baicalein on prostaglandin E2 production in rat C6 glioma cells. Am. J. Chin. Med., 1998, 26, 311-323.
[67]
Polkowski, K.; Mazurek, A.P. Biological properties of genistein. A review of in vitro and in vivo data. Acta Pol. Pharm., 2000, 57, 135-155.
[68]
Zheng, S.; Yang, H.; Zhang, S.; Wang, X.; Yu, L.; Lu, J.; Li, J. Initial study on naturally occurring products from traditional Chinese herbs and vegetables for chemoprevention. J. Cell. Biochem., 1997, 67, 106-112.
[69]
Eberhardt, M.V.; Lee, C.Y.; Lui, R.H. Antioxidant activity of fresh apples. Nature, 2000, 405, 903-904.
[70]
Cheng, Y.H.; Shen, T.F.; Pang, V.F.; Chen, B.J. Effects of aflatoxin and carotenoids on growth performance and immune response in mule ducklings. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol., 2001, 128, 19-26.
[71]
Cardador-Martinez, A.; Casttano-Tostado, E.; Loarea-Pina, G. Antimutagenic activity of natural phenolic compounds present the common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit. Contam., 2002, 19, 62-69.
[72]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13, 894-901.
[73]
DeVita, V.T.; Hellman, S.; Rosenberg, S.A. (Eds.), Cancer: Principles
and practice of oncology. 2008, 8th Ed. Lippincott-Williams &
Wilkins, Philadelphia.
[74]
Svoboda, G.H.; Neuss, N.; Gorman, M. Alkaloids of Vinca rosea Linn. (Catharanthus roseus G. Don.) V. Preparation and characterization of alkaloids. J. Am. Pharm. Assoc., 1959, 48, 659-666.
[75]
Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol., 2007, 9, 767-776.
[76]
Wani, M.C.; Taylor, H.L.; Wall, M.E.; Coggon, P.; McPhail, A.T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc., 1971, 93, 2325-2327.
[77]
Johnson, I.S. Historical background of Vinca alkaloids research and areas of future interest. Cancer Chemother. Rep. Part 1, 1968, 52, 455-461.
[78]
Efferth, T.; Li, P.C.; Konkimalla, V.S.B.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. Trends Mol. Med., 2007, 13, 353-361.
[79]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: Discovery to clinic-thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res., 1995, 55, 753-760.
[80]
Ding, Y.F.; Bao, Y.M.; An, L.J. Progress research of antitumor agents’ vinblastine analogues. Chin. J. Pharm., 2005, 36, 424.
[81]
Mano, M. Vinorelbine in the management of breast cancer: New perspectives, revived role in the era of targeted therapy. Cancer Treat. Rev., 2006, 32, 106-118.
[82]
You, J.; Wan, F.; de-Cui, F.; Sun, Y.; Du, Y.Z.; Hu, Q.F. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles. Int. J. Pharm., 2007, 343, 270-276.
[83]
Ferlini, C.; Ojima, I.; Distefano, M.; Gallo, D.; Riva, A.; Morazzoni, P.; Scambia, G. Second generation taxanes: From the natural framework to the challenge of drug resistance. Curr. Med. Chem. Anticancer Agents, 2003, 3, 133-138.
[84]
Nicolaou, K.C.; Yang, Z.; Liu, J.J.; Ueno, H.; Nantermet, P.G.; Guy, R.K.; Sorensen, E.J. Total synthesis of taxol. Nature, 1994, 367, 630-634.
[85]
Kingston, D.G.; Newman, D.J. Taxoids: Cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Devel., 2007, 10, 130-144.
[86]
Kuznetsova, L.; Chen, J.; Sun, L.; Wu, X.; Pepe, A.; Veith, J.M.; Pera, P.; Bernacki, R.J.; Ojima, I. Syntheses and evaluation of novel fatty acid-second- generation taxoid conjugates as promising anticancer agents. Bioorg. Med. Chem. Lett., 2006, 16, 974-977.
[87]
Nakagawa-Goto, K.; Yamada, K.; Nakamura, S.; Chen, T.H.; Chiang, P.C.; Bastow, F.K. Antitumor agents. 258. Syntheses and evaluation of dietary antioxidant-taxoid conjugates as novel cytotoxic agents. Bioorg. Med. Chem. Lett., 2007, 17, 5204-5209.
[88]
Wall, M.E.; Wani, M.C. Camptothecin and taxol: From discovery to clinic. J. Ethnopharmacol., 1996, 51, 239-254.
[89]
Kingston, D.G.I.; Bane, S.; Snyder, J.P. The taxol pharmacophore and the T-taxol bridging principle. Cell Cycle, 2005, 4, 279-289.
[90]
Malonga, H.; Neault, J.F.; Diamantoglou, S.; Tajmir-Riahi, H.A. Taxol anticancer activity and DNA binding. Mini Rev. Med. Chem., 2005, 5, 307-311.
[91]
Utsugi, T.; Shibata, J.; Sugimoto, Y.; Aoyagi, K.; Wierzba, K.; Kobunai, T. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res., 1996, 56, 2809-2814.
[92]
Subrahmanyam, D.; Renuka, B.; Rao, C.V.; Sagar, P.S.; Deevi, S.D.; Babu, J.M.; Vyas, K. Novel D-ring analogues of podophyllotoxin as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 1998, 8, 1391-1396.
[93]
Stahelin, H.; VonWartburg, A. From podophyllotoxin glucoside to etoposide. Prog. Drug Res., 1989, 33, 169-266.
[94]
Von-Wartburg, A.; Stähelin, H. Etoposide. In: Lednicer D (Ed.)
Chronicles of Drug Discovery. American Chemical Society, 1993, Washington DC.
[95]
Meresse, P.; Dechaux, E.; Monneret, C.; Bertounesque, E. Etoposide: Discovery and medicinal chemistry. Curr. Med. Chem., 2004, 11, 2443-2466.
[96]
Hartmann, J.T.; Lipp, H.P. Camptothecin and podophyllotoxin derivatives: Inhibitor of topoisomerase I and II - mechanism of action, pharmacokinetics and toxicity profile. Drug Saf., 2006, 29, 209-230.
[97]
Cersisimo, R.J. Irinotecan: A new antineoplastic agent for the management of colorectal cancer. Ann. Pharmacother., 1998, 32, 1324-1333.
[98]
Malonne, H.; Atassi, G. DNA topoisomerase targeting drugs: mechanisms of action and perspectives. Anticancer Drugs, 1997, 8, 811-822.
[99]
Carbonero, G.R.; Supko, J.G. Current perspectives on the clinical experience, pharmacology and continued development of the camptothecins. Clin. Cancer Res., 2002, 8, 641-661.
[100]
Tietze, L.F.; Bell, H.P.; Chandrasekhar, S. Natural product hybrids as new leads for drug discovery. Angew. Chem. Int. Ed., 2003, 42, 3996-4028.
[101]
Busquets, S.; Ametller, E.; Fuster, G.; Olivan, M.; Raab, V.; Argilés, J.M.; López-Soriano, F.J. Resveratrol, a natural diphenol, reduces metastatic growth in an experimental cancer model. Cancer Lett., 2007, 245, 144-148.
[102]
White, S.J.; Kasman, L.M.; Kelly, M.M.; Lu, P.; Spruill, L. Doxorubicin generates a proapoptotic phenotype by phosphorylation of elongation factor 2. Free Radic. Biol. Med., 2007, 43, 1313-1321.
[103]
Corson, T.W.; Crews, C.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell, 2007, 130, 769-774.
[104]
Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25, 475-416.
[105]
Saklani, A.; Kutty, S.K. Plant-derived compounds in clinical trials. Drug Discov. Today, 2008, 13, 161-171.
[106]
Kiviharju, T.M.; Lecane, P.S.; Sellers, R.G.; Peehl, D.M. Anti-proliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin. Cancer Res., 2002, 8, 2666-2674.
[107]
Fidler, J.M.; Li, K.; Chung, C.; Wei, K.; Ross, J.A.; Gao, M.; Rosen, G.D. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol. Cancer Ther., 2003, 2, 855-862.
[108]
Raynal, N.J.M.; Momparler, L.; Charbonneau, M.; Momparler, R.L. Antileukemic activity of genistein, a major isoflavone present in soy products. J. Nat. Prod., 2008, 71, 3-7.
[109]
Liu, G.Y.; Bu, X.; Yan, H.; Jia, W.W.G. 20S-Protopanaxadiol-induced programmed cell death in glioma cells through caspase-dependent and -independent pathways. J. Nat. Prod., 2007, 70, 259-265.
[110]
Pettit, G.R.; Singh, S.B.; Niven, M.L.; Hamel, E.; Schmidt, J.M. Isolation, structure, and synthesis of combretastatins A-1 and B-1, potent new inhibitors of tubulin assembly, derived from Combretum caffrum. J. Nat. Prod., 1987, 50, 119-131.
[111]
Delmonte, A.; Sessa, C. AVE8062: A new combretastatin derivative vascular disrupting agent. Expert Opin. Investig. Drugs, 2009, 18, 1541-1548.
[112]
Pisha, E.; Chai, H.; Lee, I.S.; Chagwedera, T.E.; Farnsworth, N.R.; Cordell, G.A.; Beecher, C.W.W.; Fong, H.H.S.; Kinghorn, A.D.; Brown, D.M.; Wani, M.C.; Wall, M.E.; Heijken, T.E.; Gupta, D.T.K.; Pezzuto, J.M. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med., 1995, 1, 1046-1051.
[113]
Zhang, J.S.; Ding, J.; Tang, Q.M.; Li, M.; Zhao, M.; Lu, L.J.; Chen, L.J.; Yuan, S.T. Synthesis and antitumor activity of novel diterpenequinone salvicine and the analogs. Bioorg. Med. Chem. Lett., 1999, 9, 2731-2736.
[114]
Cai, Y.J.; Lu, J.J.; Zhu, H.; Xie, H.; Huang, M.; Lin, L.P.; Zhang, X.W.; Ding, J. Salvicine triggers DNA double-strand breaks and apoptosis by GSH-depletion driven H2O2 generation and topoisomerase II inhibition. Free Radic. Biol. Med., 2008, 45, 6227-6235.
[115]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[116]
Dhillon, N.; Aggarwal, B.B.; Newman, R.A.; Wolff, R.A.; Kunnumakkara, A.B.; Abbruzzese, J.L.; Ng, C.S.; Badmaev, V.; Kurzrock, R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res., 2008, 14, 4491-4499.
[117]
Eisenbrand, G.; Hippe, F.; Jakobs, S.; Muehlbeyer, S. Molecular mechanisms of indirubin and its derivatives: Novel anticancer molecules with their origin in traditional Chinese phytomedicine. J. Cancer Res. Clin. Oncol., 2004, 130, 627-635.
[118]
Itokawa, H.; Wang, X.; Lee, K.H. Homoharringtonine and related
compounds. In: Cragg GM, Kingston DGI, Newman DJ. (Eds.),
Anticancer Agents from Natural Products, 2005, CRC/Taylor &
Francis, Boca Raton, FL.
[119]
Quintás‐Cardama, A.; Kantarjian, H.; Garcia‐Manero, G.; O’brien, S.; Faderl, S.; Estrov, Z.; Giles, F.; Murgo, A.; Ladie, N.; Verstovsek, S.; Cortes, J. Phase I/II study of subcutaneous homoharringtonine in patients with chronic myeloid leukemia who have failed prior therapy. Cancer, 2007, 109, 248-255.
[120]
Wright, J.; Blatner, G.L.; Cheson, B.D. Clinical trials referral resource. Clinical trials of flavopiridol. Oncology, 1998, 12, 1023-1024.
[121]
Meijer, L.; Raymond, E. Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc. Chem. Res., 2003, 36, 417-425.
[122]
Powell, R.G.; Weisleder, D.; Smith, C.R. Antitumor alkaloids from Cephalotaxus harringtonia: structure and activity. J. Pharm. Sci., 1972, 61, 1227-1230.
[123]
Pinney, K.G.; Jelinek, C.; Edvardsen, K.; Chaplin, D.J.; Pettit, G.R. The discovery and development of the combretastatins. In:. Cragg
GM, Kingston DGI, Newman DJ. (Eds.), Anticancer Agents from
Natural Products, 2005, CRC Taylor & Francis, Boca Raton, FL.
[124]
Penthala, N.R.; Thakkar, S.; Crooks, P.A. Heteroaromatic analogs of the resveratrol analog DMU-212 as potent anti-cancer agents. Bioorg. Med. Chem. Lett., 2015, 25, 2763-2767.
[125]
Miao, Z.H.; Tang, T.; Zhang, Y.X.; Zhang, J.S.; Ding, J. Cytotoxicity, apoptosis induction and downregulation of MDR-1 expression by the anti-topoisomerase II agent, salvicine, in multidrug-resistant tumor cells. Int. J. Cancer, 2003, 106, 108-115.
[126]
Cooperative Study Group of Phase III Clinical Trial on Meisoindigo. Phase II clinical trial on meisoindigo in the treatment of chronic myelogenous leukemia. Zhonghua Xueyexue Zazhi, 1997, 18, 69-72.
[127]
Johnson, J.J.; Mukhtar, H. Curcumin for chemoprevention of colon cancer. Cancer Lett., 2007, 255, 170-181.
[128]
Dai, F.; Liu, G.Y.; Li, Y.; Yan, W.J.; Wang, Q.; Yang, J.; Lu, D.L.; Ding, D.J.; Lin, D.; Zhou, B. Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids. Free Radic. Biol. Med., 2015, 85, 127-137.
[130]
Senderowicz, A.M.; Headlee, D.; Stinson, S.F.; Lush, R.M.; Kalil, N.; Villalba, L.; Hill, K.; Steinberg, S.M.; Figg, W.D.; Tompkins, A. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J. Clin. Oncol., 1998, 2986-2999.
[131]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941.
[132]
Nosrati, N.; Bakovic, M.; Paliyath, G. Molecular mechanisms and pathways as targets for cancer prevention and progression with dietary compounds. Int. J. Mol. Sci., 2017, 18(10), 2050.
[133]
Wang, H.; O’Khor, T.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Kong, T.A.N. Plants vs cancer: A review on natural phytochemicals in preventing and treating cancers and their drug ability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.