[1]
American Diabetes Association. standarts of medical care in diabetes. Erratum. Pharmacologic approaches to glycemic treatment. Sec. 8. I standards of medical care in diabetes-2017. Diabetes Care, 2017, 40(Suppl. 1), S64-S74.
[2]
American Diabetes Association. Standarts of medical care in diabetes. Erratum. Microvascular complications and foot care. Sec. 10. In standards of medical care in diabetes. Diabetes Care, 2017, 40(Suppl. 1), S88-S98.
[3]
American Diabetes Association. Standarts of medical care in diabetes. Glycemic targets. Diabetes Care, 2017, 40(Suppl. 1), S48-S56.
[5]
Emerging Risk Factors Collaboration. Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; Stehouwer, C.D.; Lewington, S.; Pennells, L.; Thompson, A.; Sattar, N.; White, I.R.; Ray, K.K.; Danesh, J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet, 2010, 375, 2215-2222.
[6]
da Silva, P.N.; da Conceição, R.A.; do Couto Maia, R.; de Castro Barbosa, M.L. Sodium-glucose cotransporter 2 (SGLT-2) inhibitors: A new antidiabetic drug class. MedChemComm, 2018, 9, 1273-1281.
[7]
Cefalu, W.T.; Leiter, L.A.; de Bruin, T.W.; Gause-Nilsson, I.; Sugg, J.; Parikh, S.J. Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with Type 2 diabetes: A 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care, 2015, 7, 1218-1227.
[8]
Minze, M.G.; Will, K.; Terrell, B.T.; Black, R.L.; Irons, B.K. Benefits of SGLT2 Inhibitors beyond glycemic control - A focus on metabolic, cardiovascular, and renal outcomes. Curr. Diabetes Rev., 2018, 14, 509-517.
[9]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. EMPA-REG outcome Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med., 2015, 373, 2117-2128.
[10]
Kohan, D.E.; Fioretto, P.; Tang, W.; List, J.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int., 2014, 85, 962-971.
[11]
Dawwas, G.K.; Smith, S.M.; Park, H. Cardiovascular outcomes of sodium glucose cotransporter-2 inhibitors in patients with type 2 diabetes. Diabetes Obes. Metab., 2019, 21, 28-36.
[12]
Hevia, C.J.; Antzelevitch, C.; Bárzaga, T.F.; Sánchez, D.M.; Balea, D.F.; Molina, Z.R.; Quiñones Pérez, M.A.; Fayad Rodríguez, Y. Tpeak-tend and tpeak-tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the brugada syndrome. J. Am. Coll. Cardiol., 2006, 47, 1828-1834.
[13]
Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1.9 million people. Lancet Diabetes Endocrinol., 2015, 3, 105-113.
[14]
Bays, H. Sodium glucose co-transporter type 2 (SGLT2) inhibitors: Targeting the kidney to improve glycemic control in diabetes mellitus. Diabetes Ther., 2013, 4, 195-220.
[15]
Washburn, W.N.; Poucher, S.M. Differentiating sodium-glucose co-transporter-2 inhibitors in development for the treatment of type 2 diabetes mellitus. Expert Opin. Investig. Drugs, 2013, 4, 463-486.
[16]
Hach, T.; Gerich, J.; Salsali, A.; Kim, G.; Hantel, S.; Woerle, H.J.; Broedl, U.C. Empagliflozin improves glycaemic parameters and cardiovascular risk factors in patients with type 2 diabetes: Pooled data from four pivotal phase III trials. Diabetol. Stoffwechs., 2014, 9, 142.
[17]
Cherney, D.Z.; Perkins, B.A.; Soleymanlou, N.; Har, R.; Fagan, N.; Johansen, O.E.; Woerle, H.J.; von Eynatten, M.; Broedl, U.C. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol., 2014, 13, 28.
[18]
Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Horiguchi, C.S.; Nishii, N.; Yamada, H.; Takei, K.; Makino, H. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One, 2014, 9, e100777.
[19]
Matsushita, Y.; Ogawa, D.; Wada, J.; Yamamoto, N.; Shikata, K.; Sato, C.; Tachibana, H.; Toyota, N.; Makino, H. Activation of peroxisome proliferator-activated receptor delta inhibits streptozotocin-induced diabetic nephropathy through anti-inflammatory mechanisms in mice. Diabetes, 2011, 60, 960-968.
[20]
List, J.F.; Woo, V.; Morales, E.; Tang, W.; Fiedorek, F.T. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care, 2009, 32, 650-657.
[21]
Klabunde, R.E. Cardiovascular physiology concepts 2th edition,
Lippincott Williams Wilkins, Philadelphia, 2012, 2, 9-40. ;
[22]
Petrykiv, S.; Sjöström, C.D.; Greasley, P.J.; Xu, J.; Persson, F.; Heerspink, H.J.L. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. Clin. J. Am. Soc. Nephrol., 2017, 5, 751-759.
[23]
Sonesson, C.; Johansson, P.A.; Johnsson, E.; Gause-Nilsson, I. Cardiovascular effects of dapagliflozin in patients with type 2 diabetes and different risk categories: A meta-analysis. Cardiovasc. Diabetol., 2016, 15, 37.
[24]
American Diabetes Association. standarts of medical care in diabetes. Comprehensive medical evaluation and assessment of comorbidities. Diabetes Care, 2017, 40(Suppl. 1), S25-S32.
[25]
Yamaguchi, M.; Shimizu, M.; Ino, H.; Terai, H.; Uchiyama, K.; Oe, K.; Mabuchi, T.; Konno, T.; Kaneda, T.; Mabuchi, H. T wave peak-to-end interval and qt dispersion in acquired long qt syndrome: A new index for arrhythmogenicity. Clin. Sci. (Lond.), 2003, 6, 671-676.
[26]
Ciobanu, A.; Tse, G.; Liu, T.; Deaconu, M.V.; Gheorghe, G.S.; Ilieşiu, A.M.; Nanea, I.T. Electrocardiographic measures of repolarization dispersion and their relationships with echocardiographic indices of ventricular remodeling and premature ventricular beats in hypertension. J. Geriatr. Cardiol., 2017, 12, 717-724.
[27]
Tse, G.; Gong, M.; Wong, W.T.; Georgopoulos, S.; Letsas, K.P.; Vassiliou, V.S.; Chan, Y.S.; Yan, B.P.; Wong, S.H.; Wu, W.K.K.; Ciobanu, A.; Li, G.; Shenthar, J.; Saguner, A.M.; Ali-Hasan-Al-Saegh, S.; Bhardwaj, A.; Sawant, A.C.; Whittaker, P.; Xia, Y.; Yan, G.X.; Liu, T. The tpeak - tend interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Heart Rhythm, 2017, 8, 1131-1137.
[28]
Raz, I.; Mosenzon, O.; Bonaca, M.P.; Cahn, A.; Kato, E.T.; Silverman, M.G.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Gause-Nilsson, I.A.M.; Langkilde, A.M.; Johansson, P.A.; Sabatine, M.S.; Wiviott, S.D. Declare-timi 58: Participants’ baseline characteristics. Diabetes Obes. Metab., 2018, 20, 1102-1110.