摘要
转基因小鼠已被广泛用于研究阿尔茨海默病病理学。 为了减少,改进和替换(3Rs)动物的数量,使用并优化离体培养物。 器官型脑切片是最有效的离体切片培养模型,保持大脑的三维结构并且最接近体内情况。 器官型脑切片培养已经使用了数十年,但主要是从出生后(第8-10天)老年大鼠或小鼠制备的。 最近的工作(包括我们的实验室)现在旨在培养来自成年小鼠(包括转基因小鼠)的器官型脑切片。 特别是在阿尔茨海默病研究中,来自成年转基因小鼠的脑切片将用于研究β-淀粉样斑块,tau病理学和胶质细胞活化。 本综述将总结使用成年小鼠的器官型脑切片培养模拟阿尔茨海默病的研究,并将突出使用该技术的优势和缺陷。
关键词: 器官型脑切片,转基因,阿尔茨海默病,成年小鼠,切碎片,vibroslices。
[2]
Gähwiler BH, Capogna M, Debanne D, McKinney RA, Thompson SM. Organotypic slice cultures: a technique has come of age. Trends Neurosci 20: 471-7. (1997).
[3]
Gähwiler BH. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods 4: 329-42. (1981).
[5]
Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37: 173-82. (1991).
[6]
De Simoni A, Yu LM. Preparation of organotypic hippocampal slice cultures: interface method. Nat Protoc 1: 1439-45. (2006).
[7]
Gähwiler BH, Thompson SM, Muller D. Preparation and maintenance of organotypic slice cultures of CNS tissue. Curr Protoc Neurosci Chapter 6: Unit 6.11 (2001).
[8]
Ullrich C, Daschil N, Humpel C. Organotypic vibrosections: novel whole sagittal brain cultures. J Neurosci Methods 201: 131-41. (2011).
[10]
Humpel C, Weis C. Nerve growth factor and cholinergic CNS neurons studied in organotypic brain slices. Implication in Alzheimer’s disease? J Neural Transm Suppl 62: 253-63. (2002).
[11]
Xiang Z, Hrabetova S, Moskowitz SI, Casaccia-Bonnefil P, Young SR, Nimmrich VC, et al. Long-term maintenance of mature hippocampal slices in vitro. J Neurosci Methods 98(2): 145-54. (2000).
[12]
Leutgeb JK, Frey JU, Behnisch T. LTP in cultured hippocampal-entorhinal cortex slices from young adult (P25-30) rats. J Neurosci Methods 130(1): 19-32. (2003).
[13]
Finley M, Fairman D, Liu D, Li P, Wood A, Cho S. Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury. Brain Res 1001(1-2): 125-32. (2004).
[14]
Kim H, Kim E, Park M, Lee E, Namkoong K. Organotypic hippocampal slice culture from the adult mouse brain: a versatile tool for translational neuropsychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry 41: 36-43. (2013).
[15]
Schommer J, Schrag M, Nackenoff A, Marwarha G, Ghribi O. Method for organotypic tissue culture in the aged animal. Methods 4: 166-71. (2017).
[15a]
Alzheimer´disease: Advances in Genetics, Molecular and Cellular
Biology. Sangram S Sisodia and Rudolph E. Tanzi (Eds). Springer
(2007) • ISBN 978-0-387-35135-3.
[16]
Allen YS, Devanathan PH, Owen GP. Neurotoxicity of beta-amyloid protein: cytochemical changes and apoptotic cell death investigated in organotypic cultures. Clin Exp Pharmacol Physiol 22: 370-1. (1995).
[17]
Suh EC, Jung YJ, Kim YA, Park EM, Lee KE. A beta 25-35 induces presynaptic changes in organotypic hippocampal slice cultures. Neurotoxicology 29: 691-9. (2008).
[18]
Frozza RL, Horn AP, Hoppe JB, Simão F, Gerhardt D, Comiran RA, et al. A comparative study of beta-amyloid peptides Abeta1-42 and Abeta25-35 toxicity in organotypic hippocampal slice cultures. Neurochem Res 34: 295-303. (2009).
[19]
Tardito D, Gennarelli M, Musazzi L, Gesuete R, Chiarini S, Barbiero VS, et al. Long-term soluble Abeta1-40 activates CaM kinase II in organotypic hippocampal cultures. Neurobiol Aging 28: 1388-95. (2007).
[20]
Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG, Tenner AJ. ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 281: 20315-25. (2006).
[21]
Johansson S, Jämsä A, Vasänge M, Winblad B, Luthman J, Cowburn RF. Increased tau phosphorylation at the Ser396 epitope after amyloid beta-exposure in organotypic cultures. Neuroreport 17: 907-11. (2006).
[22]
Schrag M, Sharma S, Brown-Borg H, Ghribi O. Hippocampus of Ames dwarf mice is resistant to beta-amyloid-induced tau hyperphosphorylation and changes in apoptosis-regulatory protein levels. Hippocampus 18(3): 239-44. (2008).
[23]
Humpel C. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations) as a model to study clearance of beta-amyloid plaques. Front Aging Neurosci 7: 47. (2015).
[24]
Jang S, Kim H, Kim HJ, Lee SK, Kim EW, Namkoong K, et al. Long-term culture of organotypic hippocampal slice from old 3xtg-ad mouse: an ex vivo model of Alzheimer’s disease. Psychiatry Investig 15(2): 205-13. (2018).
[25]
Foidl BM, Humpel C. differential hyperphosphorylation of tau-s199, -t231 and -s396 in organotypic brain slices of alzheimer mice. A model to study early tau hyperphosphorylation using okadaic acid. Front Aging Neurosci 10: 113. (2018).
[26]
Mewes A, Franke H, Singer D. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies. PLoS One 7(9): e45017. (2012).
[27]
Su T, Paradiso B, Long YS, Liao WP, Simonato M. Evaluation of cell damage in organotypic hippocampal sliceculture from adult mouse: a potential model system to study neuroprotection. Brain Res 1385: 68-76. (2011).
[28]
Staal JA, Alexander SR, Liu Y, Dickson TD, Vickers JC. Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice. PLoS One 6(7): e22040. (2011).
[29]
Wilhelmi E, Schöder UH, Benabdallah A, Sieg F, Breder J, Reymann KG. Organotypic brain-slice cultures from adult rats: approaches for a prolonged culture time. Altern Lab Anim 30: 275-83. (2002).
[30]
Daschil N, Humpel C. Green-fluorescent protein+ Astrocytes attach to beta-amyloid plaques in an Alzheimer mouse model and GFP+ astrocytes are sensitive for clasmatodendrosis. Front Aging Neurosci 8: 75. (2016).
[31]
Hellwig S, Masuch A, Nestel S, Katzmarski N, Meyer-Luehmann M, Biber K. Forebrain microglia from wildtype but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Sci Rep 5: 14624. (2015).
[32]
Kniewallner K, Foidl BM, Humpel C. Platelets isolated from an Alzheimer mouse damage healthy cortical vessels and cause inflammation in an organotypic ex vivo brain slice model. Sci Rep 8(1): 15483. (2018).
[33]
Moser KV, Schmidt-Kastner R, Hinterhuber H, Humpel C. Brain capillaries and cholinergic neurons persist in organotypic brain slices in the absence of blood flow. Eur J Neurosci 18: 85-94. (2003).
[34]
Hutter-Schmid B, Kniewallner KK, Humpel C. Organotypic brain slice cultures as a model to study angiogenesis of brain vessels. Front Cell Dev Biol 3: 52. (2015).
[35]
Marksteiner J, Humpel C. Beta-amyloid expression, release and extracellular deposition in aged rat brain slices. Mol Psychiatry 13: 939-52. (2008).
[36]
Harris-White ME, Chu T, Balverde Z, Sigel JJ, Flanders KC, Frautschy SA. Effects of transforming growth factor-beta (isoforms 1-3) on amyloid-beta deposition, inflammation, and cell targeting in organotypic hippocampal slice mcultures. J Neurosci 18: 10366-74. (1998).
[37]
Duff K, Noble W, Gaynor K, Matsuoka Y. Organotypic slice cultures from transgenic mice as disease model systems. J Mol Neurosci 19(3): 317-20. (2002).
[38]
Croft CL, Noble W. Preparation of organotypic brain slice cultures for the study of Alzheimer's disease Version 2. F1000Res. [revised 2018 Jun 27];7:592. doi: 10.12688/f1000research.14500.2. eCollection 2018 (2018).
[39]
Harwell CS, Coleman MP. Synaptophysin depletion and intraneuronal Aβ in organotypic hippocampal slice cultures from huAPP transgenic mice. Mol Neurodegener 11(1): 44. (2016).
[40]
Duport S, Robert F, Muller D, Grau G, Parisi L, Stoppini L. An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci USA 95: 1840-5. (1998).
[41]
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature 501: 373-9. (2013).
[42]
Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D’Avanzo C, et al. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515: 274-8. (2014).
[43]
Le Duigou C, Savary E, Morin-Brureau M, Gomez-Dominguez D, Sobczyk A, Chali F, et al. Imaging pathological activities of human brain tissue in organotypic culture. J Neurosci Methods 298: 33-44. (2018).
[44]
Andersson M, Avaliani N, Svensson A, Wickham J, Pinborg LH, Jespersen B, et al. Optogenetic control of human neurons in organotypic brain cultures. Sci Rep 6: 24818. (2016).
[45]
Eugene E, Cluzeaud F, Cifuentes-Diaz C, Fricker D, Le Duigou C, Clemenceau S, et al. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods 235: 234-44. (2014).
[46]
Schwarz N, Hedrich UBS, Schwarz H, Harshad PA, Dammeier N, Auffenberg E, et al. Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci Rep 7(1): 12249. (2017).
[47]
Hammond RR, Iskander S, Achim CL, Hearn S, Nassif J, Wiley CA. A reliable primary human CNS culture protocol for morphological studies of dendritic and synaptic elements. J Neurosci Methods 118(2): 189-98. (2002).
[48]
Ray B, Chopra N, Long JM, Lahiri DK. Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research. Mol Brain 7: 63. (2014).
[49]
Lahiri DK, Ray B. Intravenous immunoglobulin treatment preserves and protects primary rat hippocampal neurons and primary human brain cultures against oxidative insults. Curr Alzheimer Res 11(7): 645-54. (2014).
[50]
Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates
protein expression of β-site amyloid precursor protein-cleaving enzyme
1 (BACE1) in human primary brain cultures and is reduced
in brain tissue specimens of Alzheimer disease subjects. J Biol
Chem 289(8): 5184-98 (2014.)