[1]
Cho, M.Y.; Kim, J.M.; Sohn, J.H.; Kim, M.J.; Kim, K.M.; Kim, W.H.; Kim, H.; Kook, M.C.; Park, D.Y.; Lee, J.H.; Chang, H.; Jung, E.S.; Kim, H.K.; Jin, S.Y.; Choi, J.H.; Gu, M.J.; Kim, S.; Kang, M.S.; Cho, C.H.; Park, M.I.; Kang, Y.K.; Kim, Y.W.; Yoon, S.O.; Bae, H.I.; Joo, M.; Moon, W.S.; Kang, D.Y.; Chang, S.J. Current trends of the incidence and pathological diagnosis of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) in Korea 2000-2009: Multicenter Study. Cancer Res. Treat., 2012, 44, 157-165.
[2]
Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.N.; Rashid, A.; Evans, D.B. One hundred years after “carcinoid”: Epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol., 2008, 26, 3063-3072.
[3]
Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer, 2003, 97, 934-959.
[4]
Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol., 2017, 3, 1335-1342.
[5]
Ferolla, P.; Faggiano, A.; Mansueto, G.; Avenia, N.; Cantelmi, M.G.; Giovenali, P.; Del Basso De Caro, M.L.; Milone, F.; Scarpelli, G.; Masone, S.; Santeusanio, F.; Lombardi, G.; Angeletti, G.; Colao, A. The biological characterization of neuroendocrine tumors: The role of neuroendocrine markers. J. Endocrinol. Invest., 2008, 31, 277-286.
[6]
Banerjee, S.R.; Pomper, M.G. Clinical applications of Gallium-68. Appl. Radi. Isot., 2013, 76, 2-13.
[7]
Reubi, J.C. Somatostatin and other Peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology, 2004, 80(Suppl. 1), 51-56.
[8]
Balon, H.R.; Brown, T.L.; Goldsmith, S.J.; Silberstein, E.B.; Krenning, E.P.; Lang, O.; Dillehay, G.; Tarrance, J.; Johnson, M.; Stabin, M.G. The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J. Nucl. Med. Technol., 2011, 39, 317-324.
[9]
Niederle, B.; Pape, U.F.; Costa, F.; Gross, D.; Kelestimur, F.; Knigge, U.; Oberg, K.; Pavel, M.; Perren, A.; Toumpanakis, C.; O’Connor, J.; O’Toole, D.; Krenning, E.; Reed, N.; Kianmanesh, R. ENETS consensus guidelines update for neuroendocrine neoplasms of the Jejunum and Ileum. Neuroendocrinology, 2016, 103, 125-138.
[10]
Tang, L.H.; Basturk, O.; Sue, J.J.; Klimstra, D.S. A practical approach to the classification of WHO Grade 3 (G3) well-differentiated neuroendocrine tumor (WD-NET) and poorly differentiated neuroendocrine carcinoma (PD-NEC) of the Pancreas. Am. J. Surg. Pathol., 2016, 40, 1192-1202.
[11]
Ueda, Y.; Toyama, H.; Fukumoto, T.; Ku, Y. Prognosis of Patients with Neuroendocrine Neoplasms of the Pancreas According to the World Health Organization 2017 Classification. J. Pancreas, 2017, 3, 216-220.
[12]
Yachida, S.; Vakiani, E.; White, C.M.; Zhong, Y.; Saunders, T.; Morgan, R.; de Wilde, R.F.; Maitra, A.; Hicks, J.; Demarzo, A.M.; Shi, C.; Sharma, R.; Laheru, D.; Edil, B.H.; Wolfgang, C.L.; Schulick, R.D.; Hruban, R.H.; Tang, L.H.; Klimstra, D.S.; Iacobuzio-Donahue, C.A. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors. Am. J. Surg. Pathol., 2012, 36, 173-184.
[13]
Basturk, O.; Tang, L.; Hruban, R.H.; Adsay, V.; Yang, Z.; Krasinskas, A.M.; Vakiani, E.; La Rosa, S.; Jang, K.T.; Frankel, W.L.; Liu, X.; Zhang, L.; Giordano, T.J.; Bellizzi, A.M.; Chen, J.H.; Shi, C.; Allen, P.; Reidy, D.L.; Wolfgang, C.L.; Saka, B.; Rezaee, N.; Deshpande, V.; Klimstra, D.S. Poorly differentiated neuroendocrine carcinomas of the pancreas: a clinicopathologic analysis of 44 cases. Amer. J. Surg. Pathol., 2014, 38, 437-447.
[14]
Tang, L.H.; Gonen, M.; Hedvat, C.; Modlin, I.M.; Klimstra, D.S. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Amer. J. Surg. Pathol., 2012, 36, 1761-1770.
[15]
Sankowski, A.J.; Cwikla, J.B.; Nowicki, M.L.; Chaberek, S.; Pech, M.; Lewczuk, A.; Walecki, J. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med. Sci. Monit., 2012, 18, MT33-MT40.
[16]
Ozkara, S.; Aker, F.; Yesil, A.; Senates, E.; Canbey, C.; Yitik, A.; Gonen, C. Re-evaluation of cases with gastroenteropancreatic neuroendocrine tumors between 2004 and 2012 according to the 2010 criteria. Hepatogastroenterology, 2013, 60, 1665-1672.
[17]
Klimstra, D.S. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin. Oncol., 2013, 40, 23-36.
[18]
Sundin, A.; Rockall, A. Therapeutic monitoring of gastroenteropancreatic neuroendocrine tumors: the challenges ahead. Neuroendocrinology, 2012, 96, 261-271.
[19]
Gabriel, M.; Decristoforo, C.; Kendler, D.; Dobrozemsky, G.; Heute, D.; Uprimny, C.; Kovacs, P.; Von Guggenberg, E.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med., 2007, 48, 508-518.
[20]
Sorbye, H.; Welin, S.; Langer, S.W.; Vestermark, L.W.; Holt, N.; Osterlund, P.; Dueland, S.; Hofsli, E.; Guren, M.G.; Ohrling, K.; Birkemeyer, E.; Thiis-Evensen, E.; Biagini, M.; Gronbaek, H.; Soveri, L.M.; Olsen, I.H.; Federspiel, B.; Assmus, J.; Janson, E.T.; Knigge, U. Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): The NORDIC NEC study. Ann. Oncol., 2013, 24, 152-160.
[21]
Tang, L.H.; Untch, B.R.; Reidy, D.L.; O’Reilly, E.; Dhall, D.; Jih, L.; Basturk, O.; Allen, P.J.; Klimstra, D.S. Well-Differentiated Neuroendocrine Tumors with a Morphologically Apparent High-Grade Component: A Pathway Distinct from Poorly Differentiated Neuroendocrine Carcinomas. Clin. Cancer Res., 2016, 22, 1011-1017.
[22]
Basturk, O.; Yang, Z.; Tang, L.H.; Hruban, R.H.; Adsay, V.; McCall, C.M.; Krasinskas, A.M.; Jang, K.T.; Frankel, W.L.; Balci, S.; Sigel, C.; Klimstra, D.S. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Amer. J. Surg. Pathol., 2015, 39, 683-690.
[23]
Heetfeld, M.; Chougnet, C.N.; Olsen, I.H.; Rinke, A.; Borbath, I.; Crespo, G.; Barriuso, J.; Pavel, M.; O’Toole, D.; Walter, T. Characteristics and treatment of patients with G3 gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer, 2015, 22, 657-664.
[24]
Ambrosini, V.; Rubello, D.; Nanni, C.; Al-Nahhas, A.; Fanti, S. 68Ga-DOTA-peptides versus 18F-DOPA PET for the assessment of NET patients. Nucl. Med. Commun., 2008, 29, 415-417.
[25]
Travis, W.D.; Gal, A.A.; Colby, T.V.; Klimstra, D.S.; Falk, R.; Koss, M.N. Reproducibility of neuroendocrine lung tumor classification. Hum. Pathol., 1998, 29, 272-279.
[26]
Hendifar, A.E.; Marchevsky, A.M.; Tuli, R. Neuroendocrine tumors of the lung: Current challenges and advances in the diagnosis and management of well-differentiated disease. J. Thorac. Oncol., 2017, 12, 425-436.
[27]
Mizutani, G.; Nakanishi, Y.; Watanabe, N.; Honma, T.; Obana, Y.; Seki, T.; Ohni, S.; Nemoto, N. Expression of somatostatin receptor (SSTR) subtypes (SSTR-1, 2A, 3, 4 and 5) in neuroendocrine tumors using real-time RT-PCR method and immunohistochemistry. Acta Histochem. Cytochem., 2012, 45, 167-176.
[28]
Pape, U.F.; Perren, A.; Niederle, B.; Gross, D.; Gress, T.; Costa, F.; Arnold, R.; Denecke, T.; Plockinger, U.; Salazar, R.; Grossman, A. ENETS Consensus Guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas. Neuroendocrinology, 2012, 95, 135-156.
[29]
Rockall, A.G.; Reznek, R.H. Imaging of neuroendocrine tumours (CT/MR/US). Best Pract. Res. Clin. Endocrinol. Metab., 2007, 21, 43-68.
[30]
Horsch, D.; Sayeg, Y.; Bonnet, R.; Kaemmerer, D.; Presselt, N.; Baum, R.P. [Expert dialogue: neuroendocrine tumours of the lungs and gastroenteropancreatic system]. Pneumologie, 2012, 66, 44-48.
[31]
Armbruster, M.; Zech, C.J.; Sourbron, S.; Ceelen, F.; Auernhammer, C.J.; Rist, C.; Haug, A.; Singnurkar, A.; Reiser, M.F.; Sommer, W.H. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J. Magn. Reson. Imaging, 2014, 40, 457-466.
[32]
Sundin, A. Adrenal Molecular Imaging. Front. Horm. Res., 2016, 45, 70-79.
[33]
Gatto, F.; Hofland, L.J. The role of somatostatin and dopamine D2 receptors in endocrine tumors. Endocr. Relat. Cancer, 2011, 18, R233-R251.
[34]
Gouffon, M.; Iff, S.; Ziegler, K.; Larche, M.; Schwarzenbach, C.; Prior, J.O.; Matter, M.; Stettler, C.; Pralong, F.P. Diagnosis and workup of 522 consecutive patients with neuroendocrine neoplasms in Switzerland. Swiss Med. Weekly., 2014, 144, w13924.
[35]
Gabriel, M.; Oberauer, A.; Dobrozemsky, G.; Decristoforo, C.; Putzer, D.; Kendler, D.; Uprimny, C.; Kovacs, P.; Bale, R.; Virgolini, I.J. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J. Nucl. Med., 2009, 50, 1427-1434.
[36]
Sandstrom, M.; Velikyan, I.; Garske-Roman, U.; Sorensen, J.; Eriksson, B.; Granberg, D.; Lundqvist, H.; Sundin, A.; Lubberink, M. Comparative biodistribution and radiation dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in patients with neuroendocrine tumors. J. Nucl. Med., 2013, 54, 1755-1759.
[37]
Prasad, V.; Baum, R.P. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 61-67.
[38]
Hofmann, M.; Maecke, H.; Borner, R.; Weckesser, E.; Schoffski, P.; Oei, L.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, J.; Knapp, H. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: Preliminary data. Eur. J. Nucl. Med., 2001, 28, 1751-1757.
[39]
Dromain, C.; de Baere, T.; Lumbroso, J.; Caillet, H.; Laplanche, A.; Boige, V.; Ducreux, M.; Duvillard, P.; Elias, D.; Schlumberger, M.; Sigal, R.; Baudin, E. Detection of liver metastases from endocrine tumors: A prospective comparison of somatostatin receptor scintigraphy, computed tomography, and magnetic resonance imaging. J. Clin. Oncol., 2005, 23, 70-78.
[40]
Nicolini, S.; Severi, S.; Ianniello, A.; Sansovini, M.; Ambrosetti, A.; Bongiovanni, A.; Scarpi, E.; Di Mauro, F.; Rossi, A.; Matteucci, F.; Paganelli, G. Investigation of receptor radionuclide therapy with (177)Lu-DOTATATE in patients with GEP-NEN and a high Ki-67 proliferation index. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 923-930.
[41]
Kowalski, J.; Henze, M.; Schuhmacher, J.; Macke, H.R.; Hofmann, M.; Haberkorn, U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol., 2003, 5, 42-48.
[42]
Fanti, S.; Ambrosini, V.; Tomassetti, P.; Castellucci, P.; Montini, G.; Allegri, V.; Grassetto, G.; Rubello, D.; Nanni, C.; Franchi, R. Evaluation of unusual neuroendocrine tumours by means of 68Ga-DOTA-NOC PET. Biomed. Pharmacother., 2008, 62, 667-671.
[43]
Prasad, V.; Ambrosini, V.; Hommann, M.; Hoersch, D.; Fanti, S.; Baum, R.P. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 67-77.
[44]
Ambrosini, V.; Campana, D.; Bodei, L.; Nanni, C.; Castellucci, P.; Allegri, V.; Montini, G.C.; Tomassetti, P.; Paganelli, G.; Fanti, S. 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J. Nucl. Med., 2010, 51, 669-673.
[45]
Kumar, R.; Sharma, P.; Garg, P.; Karunanithi, S.; Naswa, N.; Sharma, R.; Thulkar, S.; Lata, S.; Malhotra, A. Role of (68)Ga-DOTATOC PET-CT in the diagnosis and staging of pancreatic neuroendocrine tumours. Eur. Radiol., 2011, 21, 2408-2416.
[46]
Haug, A.R.; Cindea-Drimus, R.; Auernhammer, C.J.; Reincke, M.; Wangler, B.; Uebleis, C.; Schmidt, G.P.; Goke, B.; Bartenstein, P.; Hacker, M. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J. Nucl. Med., 2012, 53, 1686-1692.
[47]
Sharma, P.; Arora, S.; Mukherjee, A.; Pal, S.; Sahni, P.; Garg, P.; Khadgawat, R.; Thulkar, S.; Bal, C.; Kumar, R. Predictive value of 68Ga-DOTANOC PET/CT in patients with suspicion of neuroendocrine tumors: is its routine use justified? Clin. Nucl. Med., 2014, 39, 37-43.
[48]
Naswa, N.; Sharma, P.; Kumar, A.; Soundararajan, R.; Kumar, R.; Malhotra, A.; Ammini, A.C.; Bal, C. (6)(8)Ga-DOTANOC PET/CT in patients with carcinoma of unknown primary of neuroendocrine origin. Clin. Nucl. Med., 2012, 37, 245-251.
[49]
Virgolini, I.; Ambrosini, V.; Bomanji, J.B.; Baum, R.P.; Fanti, S.; Gabriel, M.; Papathanasiou, N.D.; Pepe, G.; Oyen, W.; De Cristoforo, C.; Chiti, A. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 2004-2010.
[50]
Kauhanen, S.; Seppanen, M.; Ovaska, J.; Minn, H.; Bergman, J.; Korsoff, P.; Salmela, P.; Saltevo, J.; Sane, T.; Valimaki, M.; Nuutila, P. The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocr. Relat. Cancer, 2009, 16, 255-265.
[51]
Jager, P.L.; Chirakal, R.; Marriott, C.J.; Brouwers, A.H.; Koopmans, K.P.; Gulenchyn, K.Y. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J. Nucl. Med., 2008, 49, 573-586.
[52]
Koopmans, K.P.; Neels, O.C.; Kema, I.P.; Elsinga, P.H.; Sluiter, W.J.; Vanghillewe, K.; Brouwers, A.H.; Jager, P.L.; de Vries, E.G. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J. Clin. Oncol., 2008, 26, 1489-1495.
[53]
Rasul, S.; Hartenbach, S.; Rebhan, K.; Gollner, A.; Karanikas, G.; Mayerhoefer, M.; Mazal, P.; Hacker, M.; Hartenbach, M. [(18)F]DOPA PET/ceCT in diagnosis and staging of primary medullary thyroid carcinoma prior to surgery. Eur. J. Nucl. Med. Mol. Imaging, 2018.
[54]
Amodru, V.; Guerin, C.; Delcourt, S.; Romanet, P.; Loundou, A.; Viana, B.; Brue, T.; Castinetti, F.; Sebag, F.; Pacak, K.; Taieb, D. Quantitative (18)F-DOPA PET/CT in pheochromocytoma: the relationship between tumor secretion and its biochemical phenotype. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 278-282.
[55]
Knie, B.; Plotkin, M.; Zschieschang, P.; Prasad, V.; Moskopp, D. A family with pheochromocytoma-paraganglioma inherited tumour syndrome. Serial 18F-DOPA PET/CT investigations. Nuklearmedizin, 2016, 55, 34-40.
[56]
Bacca, A.; Chiacchio, S.; Zampa, V.; Carrara, D.; Duce, V.; Congregati, C.; Simi, P.; Taddei, S.; Materazzi, G.; Volterrani, D.; Mariani, G.; Bernini, G. Role of 18F-DOPA PET/CT in diagnosis and follow-up of adrenal and extra-adrenal paragangliomas. Clin. Nucl. Med., 2014, 39, 14-20.
[57]
Christiansen, C.D.; Petersen, H.; Nielsen, A.L.; Detlefsen, S.; Brusgaard, K.; Rasmussen, L.; Melikyan, M.; Ekstrom, K.; Globa, E.; Rasmussen, A.H.; Hovendal, C.; Christesen, H.T. 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT scans as diagnostic tools in focal congenital hyperinsulinism: a blinded evaluation. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45, 250-261.
[58]
Dadone-Montaudie, B.; Ambrosetti, D.; Dufour, M.; Darcourt, J.; Almairac, F.; Coyne, J.; Virolle, T.; Humbert, O.; Burel-Vandenbos, F. [18F] FDOPA standardized uptake values of brain tumors are not exclusively dependent on LAT1 expression. PloS One, 2017, 12, e0184625.
[59]
Timmers, H.J.; Chen, C.C.; Carrasquillo, J.A.; Whatley, M.; Ling, A.; Havekes, B.; Eisenhofer, G.; Martiniova, L.; Adams, K.T.; Pacak, K. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. J. Clin. Endocrinol. Metab., 2009, 94, 4757-4767.
[60]
Imani, F.; Agopian, V.G.; Auerbach, M.S.; Walter, M.A.; Benz, M.R.; Dumont, R.A.; Lai, C.K.; Czernin, J.G.; Yeh, M.W. 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J. Nucl. Med., 2009, 50, 513-519.
[61]
Hoegerle, S.; Nitzsche, E.; Altehoefer, C.; Ghanem, N.; Manz, T.; Brink, I.; Reincke, M.; Moser, E.; Neumann, H.P. Pheochromocytomas: detection with 18F DOPA whole body PET--initial results. Radiology, 2002, 222, 507-512.
[62]
Fani, M.; Nicolas, G.P.; Wild, D. Somatostatin receptor antagonists for imaging and therapy. J. Nucl. Med., 2017, 58, 61S-66S.
[63]
Reubi, J.C.; Waser, B.; Macke, H.; Rivier, J. Highly increased 125I-JR11 antagonist binding in vitro reveals novel indications for sst2 targeting in human cancers. J. Nucl. Med., 2017, 58, 300-306.
[64]
Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Wang, X.; Erchegyi, J.; Rivier, J.; Macke, H.R.; Reubi, J.C. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl. Acad. Sci. USA, 2006, 103, 16436-16441.
[65]
Wild, D.; Fani, M.; Behe, M.; Brink, I.; Rivier, J.E.; Reubi, J.C.; Maecke, H.R.; Weber, W.A. First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J. Nucl. Med., 2011, 52, 1412-1417.
[66]
Bass, R.T.; Buckwalter, B.L.; Patel, B.P.; Pausch, M.H.; Price, L.A.; Strnad, J.; Hadcock, J.R. Identification and characterization of novel somatostatin antagonists. Mol. Pharmacol., 1996, 50, 709-715.
[67]
Reubi, J.C.; Schaer, J.C.; Wenger, S.; Hoeger, C.; Erchegyi, J.; Waser, B.; Rivier, J. SST3-selective potent peptidic somatostatin receptor antagonists. Proc. Natl. Acad. Sci. U S A, 2000, 97, 13973-13978.
[68]
Fani, M.; Del Pozzo, L.; Abiraj, K.; Mansi, R.; Tamma, M.L.; Cescato, R.; Waser, B.; Weber, W.A.; Reubi, J.C.; Maecke, H.R. PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: The chelate makes the difference. J. Nucl. Med., 2011, 52, 1110-1118.
[69]
Fani, M.; Braun, F.; Waser, B.; Beetschen, K.; Cescato, R.; Erchegyi, J.; Rivier, J.E.; Weber, W.A.; Maecke, H.R.; Reubi, J.C. Unexpected sensitivity of sst2 antagonists to N-terminal radiometal modifications. J. Nucl. Med., 2012, 53, 1481-1489.
[70]
Dalm, S.U.; Martens, J.W.; Sieuwerts, A.M.; van Deurzen, C.H.; Koelewijn, S.J.; de Blois, E.; Maina, T.; Nock, B.A.; Brunel, L.; Fehrentz, J.A.; Martinez, J.; de Jong, M.; Melis, M. In vitro and in vivo application of radiolabeled gastrin-releasing peptide receptor ligands in breast cancer. J. Nucl. Med., 2015, 56, 752-757.
[71]
Nicolas, G.P.; Mansi, R.; McDougall, L.; Kaufmann, J.; Bouterfa, H.; Wild, D.; Fani, M. Biodistribution, pharmacokinetics, and dosimetry of (177)Lu-, (90)Y-, and (111)In-labeled somatostatin receptor antagonist OPS201 in comparison to the agonist (177)Lu-DOTATATE: The mass effect. J. Nucl. Med., 2017, 58, 1435-1441.
[72]
Garin, E.; Le Jeune, F.; Devillers, A.; Cuggia, M.; de Lajarte-Thirouard, A.S.; Bouriel, C.; Boucher, E.; Raoul, J.L. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J. Nucl. Med., 2009, 50, 858-864.
[73]
Tirosh, A.; Papadakis, G.Z.; Millo, C.; Hammoud, D.; Sadowski, S.M.; Herscovitch, P.; Pacak, K.; Marx, S.J.; Yang, L.; Nockel, P.; Shell, J.; Green, P.; Keutgen, X.M.; Patel, D.; Nilubol, N.; Kebebew, E. Prognostic utility of Total (68)Ga-DOTATATE-Avid tumor volume in patients with neuroendocrine tumors. Gastroenterology, 2018, 154, 998-1008 . e1001
[74]
Naswa, N.; Sharma, P.; Soundararajan, R.; Karunanithi, S.; Nazar, A.H.; Kumar, R.; Malhotra, A.; Bal, C. Diagnostic performance of somatostatin receptor PET/CT using 68Ga-DOTANOC in gastrinoma patients with negative or equivocal CT findings. Abdom. Imaging, 2013, 38, 552-560.
[75]
Breeman, W.A.; de Jong, M.; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.; Visser, T.J.; Krenning, E.P. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur. J. Nucl. Med., 2001, 28, 1421-1429.
[76]
Teunissen, J.J.; Kwekkeboom, D.J.; de Jong, M.; Esser, J.P.; Valkema, R.; Krenning, E.P. Endocrine tumours of the gastrointestinal tract. Peptide receptor radionuclide therapy. Best Pract. Res. Clin. Gastroenterol., 2005, 19, 595-616.
[77]
Bushnell, D. Treatment of metastatic carcinoid tumors with radiolabeled biologic molecules. J. Natl. Compr. Canc. Netw., 2009, 7, 760-764.
[78]
Kwekkeboom, D.J.; Krenning, E.P.; Lebtahi, R.; Komminoth, P.; Kos-Kudla, B.; de Herder, W.W.; Plockinger, U. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology, 2009, 90, 220-226.
[79]
Imhof, A.; Brunner, P.; Marincek, N.; Briel, M.; Schindler, C.; Rasch, H.; Macke, H.R.; Rochlitz, C.; Muller-Brand, J.; Walter, M.A. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J. Clin. Oncol., 2011, 29, 2416-2423.
[80]
Seregni, E.; Maccauro, M.; Coliva, A.; Castellani, M.R.; Bajetta, E.; Aliberti, G.; Vellani, C.; Chiesa, C.; Martinetti, A.; Bogni, A.; Bombardieri, E. Treatment with tandem [(90)Y]DOTA-TATE and [(177)Lu] DOTA-TATE of neuroendocrine tumors refractory to conventional therapy: preliminary results. Q. J. Nucl. Med. Mol. Imaging, 2010, 54, 84-91.
[81]
Haug, A.R.; Auernhammer, C.J.; Wangler, B.; Schmidt, G.P.; Uebleis, C.; Goke, B.; Cumming, P.; Bartenstein, P.; Tiling, R.; Hacker, M. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J. Nucl. Med., 2010, 51, 1349-1356.
[82]
Haug, A.R.; Assmann, G.; Rist, C.; Tiling, R.; Schmidt, G.P.; Bartenstein, P.; Hacker, M. [Quantification of immunohistochemical expression of somatostatin receptors in neuroendocrine tumors using 68Ga-DOTATATE PET/CT]. Radiologe, 2010, 50, 349-354.
[83]
Ruf, J.; Schiefer, J.; Furth, C.; Kosiek, O.; Kropf, S.; Heuck, F.; Denecke, T.; Pavel, M.; Pascher, A.; Wiedenmann, B.; Amthauer, H. 68Ga-DOTATOC PET/CT of neuroendocrine tumors: spotlight on the CT phases of a triple-phase protocol. J. Nucl. Med., 2011, 52, 697-704.
[84]
Ruf, J.; Heuck, F.; Schiefer, J.; Denecke, T.; Elgeti, F.; Pascher, A.; Pavel, M.; Stelter, L.; Kropf, S.; Wiedenmann, B.; Amthauer, H. Impact of Multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology, 2010, 91, 101-109.
[85]
Degnan, A.J.; Tadros, S.S.; Tocchio, S. Pediatric neuroendocrine carcinoid tumors: Review of diagnostic imaging findings and recent advances. AJR Am. J. Roentgenol., 2017, 208, 868-877.
[86]
Castleberry, R.P. Neuroblastoma. Eur. J. Cancer, 1997, 33, 1430-1437.
[87]
Kroiss, A.; Putzer, D.; Uprimny, C.; Decristoforo, C.; Gabriel, M.; Santner, W.; Kranewitter, C.; Warwitz, B.; Waitz, D.; Kendler, D.; Virgolini, I.J. Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr 3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38, 865-873.
[88]
Naswa, N.; Sharma, P.; Gupta, S.K.; Karunanithi, S.; Reddy, R.M.; Patnecha, M.; Lata, S.; Kumar, R.; Malhotra, A.; Bal, C. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary? Clin. Nucl. Med., 2014, 39, e27-e34.
[89]
Haug, A.; Auernhammer, C.J.; Wangler, B.; Tiling, R.; Schmidt, G.; Goke, B.; Bartenstein, P.; Popperl, G. Intraindividual comparison of 68Ga-DOTA-TATE and 18F-DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging, 2009, 36, 765-770.