[1]
Ploegh, H. Machinery that guides immunity. Nature, 2017, 551(7681), 442-443.
[2]
Pancer, Z.; Cooper, M.D. The evolution of adaptive immunity. Annu. Rev. Immunol., 2006, 24, 497-518.
[3]
Marelli, G.; Sica, A.; Vannucci, L.; Allavena, P. Inflammation as target in cancer therapy. Curr. Opin. Pharmacol., 2017, 35, 57-65.
[4]
Mattner, J.; Wirtz, S. Friend or Foe? The ambiguous role of innate lymphoid cells in cancer development. Trends Immunol., 2017, 38(1), 29-38.
[5]
Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; Wells, D.K.; Cary, C.I.O.; Grbovic-Huezo, O.; Attiyeh, M.; Medina, B.; Zhang, J.; Loo, J.; Saglimbeni, J.; Abu-Akeel, M.; Zappasodi, R.; Riaz, N.; Smoragiewicz, M.; Kelley, Z.L.; Basturk, O. Australian Pancreatic Cancer Genome Initiative; Garvan Institute of Medical Research; Prince of Wales Hospital; Royal North Shore Hospital; University of Glasgow; St Vincent’s Hospital; QIMR Berghofer Medical Research Institute; University of Melbourne, Centre for Cancer Research; University of Queensland, Institute for Molecular Bioscience; Bankstown Hospital; Liverpool Hospital; Royal Prince Alfred Hospital, Chris O’Brien Lifehouse; Westmead Hospital; Fremantle Hospital; St John of God Healthcare; Royal Adelaide Hospital; Flinders Medical Centre; Envoi Pathology; Princess Alexandria Hospital; Austin Hospital; Johns Hopkins Medical Institutes; ARC-Net Centre for Applied Research on Cancer, Gönen, M.; Levine, A.J.; Allen, P.J.; Fearon, D.T.; Merad, M.; Gnjatic, S.; Iacobuzio-Donahue, C.A.; Wolchok, J.D.; DeMatteo, R.P.; Chan, T.A.; Greenbaum, B.D.; Merghoub, T.; Leach, S.D. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551(7681), 512-516.
[6]
Łuksza, M.; Riaz, N.; Makarov, V.; Balachandran, V.P.; Hellmann, M.D.; Solovyov, A.; Rizvi, N.A.; Merghoub, T.; Levine, A.J.; Chan, T.A.; Wolchok, J.D.; Greenbaum, B.D. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature, 2017, 551(7681), 517-520.
[7]
Miller, J.F. The golden anniversary of the thymus. Nat. Rev. Immunol., 2011, 11(7), 489-495.
[8]
Davis, M.M.; Boniface, J.J.; Reich, Z.; Lyons, D.; Hampl, J.; Arden, B.; Chien, Y. Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol., 1998, 16, 523-544.
[9]
Magrone, T.; Jirillo, E. Development and organization of the secondary and tertiary lymphoid organs: Influence of microbial and food antigens. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 128-135.
[10]
Takada, K.; Takahama, Y. Positive-selection-inducing self-peptides displayed by cortical thymic epithelial cells. Adv. Immunol., 2015, 125, 87-110.
[11]
Anderson, G.; Takahama, Y. Thymic epithelial cells: Working class heroes for T cell development and repertoire selection. Trends Immunol., 2012, 33(6), 256-263.
[12]
Murata, S.; Sasaki, K.; Kishimoto, T.; Niwa, S.; Hayashi, H.; Takahama, Y.; Tanaka, K. Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 2007, 316(5829), 1349-1353.
[13]
Lancaster, J.N.; Li, Y.; Ehrlich, L.I.R. Chemokine-mediated choreography of thymocyte development and selection. Trends Immunol., 2018, 39(2), 86-98.
[14]
Takaba, H.; Takayanagi, H. The mechanisms of T Cell selection in the thymus. Trends Immunol., 2017, 38(11), 805-816.
[15]
Alves, N.L.; Ribeiro, A.R. Thymus medulla under construction: Time and space oddities. Eur. J. Immunol., 2016, 46(4), 829-833.
[16]
Rodrigues, P.M.; Ribeiro, A.R.; Perrod, C.; Landry, J.J.M.; Araújo, L.; Pereira-Castro, I.; Benes, V.; Moreira, A.; Xavier-Ferreira, H.; Meireles, C.; Alves, N.L. Thymic epithelial cells require p53 to support their long-term function in thymopoiesis in mice. Blood, 2017, 130(4), 478-488.
[17]
Muñoz-Fontela, C.; Mandinova, A.; Aaronson, S.A.; Lee, S.W. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat. Rev. Immunol., 2016, 16(12), 741-750.
[18]
Haljasorg, U.; Dooley, J.; Laan, M.; Kisand, K.; Bichele, R.; Liston, A.; Peterson, P. Irf4 Expression in thymic epithelium is critical for thymic regulatory t cell homeostasis. J. Immunol., 2017, 198(5), 1952-1960.
[19]
Rodrigues, P.M.; Peterson, P.; Alves, N.L. Setting up the perimeter of tolerance: Insights into mTEC physiology. Trends Immunol., 2018, 39(1), 2-5.
[20]
Akiyama, N.; Shinzawa, M.; Miyauchi, M.; Yanai, H.; Tateishi, R.; Shimo, Y.; Ohshima, D.; Matsuo, K.; Sasaki, I.; Hoshino, K.; Wu, G.; Yagi, S.; Inoue, J.; Kaisho, T.; Akiyama, T. Limitation of immune tolerance-inducing thymic epithelial cell development by Spi-B-mediated negative feedback regulation. J. Exp. Med., 2014, 211(12), 2425-2438.
[21]
Hauri-Hohl, M.; Zuklys, S.; Holländer, G.A.; Ziegler, S.F. A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nat. Immunol., 2014, 15(6), 554-561.
[22]
Satoh, R.; Kakugawa, K.; Yasuda, T.; Yoshida, H.; Sibilia, M.; Katsura, Y.; Levi, B.; Abramson, J.; Koseki, Y.; Koseki, H.; van Ewijk, W.; Hollander, G.A.; Kawamoto, H. Requirement of stat3 signaling in the postnatal development of thymic medullary epithelial cells. PLoS Genet., 2016, 12(1)e1005776
[23]
Lomada, D.; Jain, M.; Bolner, M.; Reeh, K.A.; Kang, R.; Reddy, M.C.; DiGiovanni, J.; Richie, E.R. Stat3 signaling promotes survival and maintenance of medullary thymic epithelial cells. PLoS Genet., 2010, 12(1)e1005777
[24]
Cosway, E.J.; Lucas, B.; James, K.D.; Parnell, S.M.; Carvalho-Gaspar, M.; White, A.J.; Tumanov, A.V.; Jenkinson, W.E.; Anderson, G. Redefining thymus medulla specialization for central tolerance. J. Exp. Med., 2017, 214(11), 3183-3195.
[25]
Gray, D.H.; Seach, N.; Ueno, T.; Milton, M.K.; Liston, A.; Lew, A.M.; Goodnow, C.C.; Boyd, R.L. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood, 2006, 108(12), 3777-3785.
[26]
Sansom, S.N.; Shikama-Dorn, N.; Zhanybekova, S.; Nusspaumer, G.; Macaulay, I.C.; Deadman, M.E.; Heger, A.; Ponting, C.P.; Holländer, G.A. Population and single-cell genomics reveal the aire dependency, relief from polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res., 2014, 24(12), 1918-1931.
[27]
Hubert, F.X.; Kinkel, S.A.; Davey, G.M.; Phipson, B.; Mueller, S.N.; Liston, A.; Proietto, A.I.; Cannon, P.Z.; Forehan, S.; Smyth, G.K.; Wu, L.; Goodnow, C.C.; Carbone, F.R.; Scott, H.S.; Heath, W.R. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood, 2011, 118(9), 2462-2472.
[28]
Perry, J.S.; Hsieh, C.S. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol. Rev., 2016, 271(1), 141-155.
[29]
DeVoss, J.; Hou, Y.; Johannes, K.; Lu, W.; Liou, G.I.; Rinn, J.; Chang, H.; Caspi, R.R.; Fong, L.; Anderson, M.S. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med., 2006, 203(12), 2727-2735.
[30]
Fan, Y.; Rudert, W.A.; Grupillo, M.; He, J.; Sisino, G.; Trucco, M. Thymus-specific deletion of insulin induces autoimmune diabetes. EMBO J., 2009, 28(18), 2812-2824.
[31]
Yamano, T.; Nedjic, J.; Hinterberger, M.; Steinert, M.; Koser, S.; Pinto, S.; Gerdes, N.; Lutgens, E.; Ishimaru, N.; Busslinger, M.; Brors, B.; Kyewski, B.; Klein, L. Thymic B cells are licensed to present self antigens for central t cell tolerance induction. Immunity, 2015, 42(6), 1048-1061.
[32]
Perniola, R. Twenty years of aire. Front. Immunol., 2018, 9, 98.
[33]
DeVoss, J.J.; LeClair, N.P.; Hou, Y.; Grewal, N.K.; Johannes, K.P.; Lu, W.; Yang, T.; Meagher, C.; Fong, L.; Strauss, E.C.; Anderson, M.S. An autoimmune response to odorant binding protein 1a is associated with dry eye in the Aire-deficient mouse. J. Immunol., 2010, 184(8), 4236-4246.
[34]
Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet., 1997, 17(4), 399-403.
[35]
Nagamine, K.; Peterson, P.; Scott, H.S.; Kudoh, J.; Minoshima, S.; Heino, M.; Krohn, K.J.; Lalioti, M.D.; Mullis, P.E.; Antonarakis, S.E.; Kawasaki, K.; Asakawa, S.; Ito, F.; Shimizu, N. Positional cloning of the APECED gene. Nat. Genet., 1997, 17(4), 393-398.
[36]
Browne, S.K. Anticytokine autoantibody-associated immunodeficiency. Annu. Rev. Immunol., 2014, 32, 635-657.
[37]
Capalbo, D.; De Martino, L.; Giardino, G.; Di Mase, R.; Di Donato, I.; Parenti, G.; Vajro, P.; Pignata, C.; Salerno, M. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy: insights into genotype-phenotype correlation. Int. J. Endocrinol., 2012, 2012353250
[38]
Meyer, S.; Woodward, M.; Hertel, C.; Vlaicu, P.; Haque, Y.; Kärner, J.; Macagno, A.; Onuoha, S.C.; Fishman, D.; Peterson, H.; Metsküla, K.; Uibo, R.; Jäntti, K.; Hokynar, K.; Wolff, A.S.B. APECED patient collaborative, Krohn, K.; Ranki, A.; Peterson, P.; Kisand, K.; Hayday, A.; Meloni, A.; Kluger, N.; Husebye, E.S.; Podkrajsek, K.T.; Battelino, T.; Bratanic, N.; Peet, A. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell, 2016, 166(3), 582-595.
[39]
Gardner, J.M.; Metzger, T.C.; McMahon, E.J.; Au-Yeung, B.B.; Krawisz, A.K.; Lu, W.; Price, J.D.; Johannes, K.P.; Satpathy, A.T.; Murphy, K.M.; Tarbell, K.V.; Weiss, A.; Anderson, M.S. Extrathymic aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells. Immunity, 2013, 39(3), 560-572.
[40]
Guerau-de-Arellano, M.; Martinic, M.; Benoist, C.; Mathis, D. Neonatal tolerance revisited: A perinatal window for aire control of autoimmunity. J. Exp. Med., 2009, 206(6), 1245-1252.
[41]
Takaba, H.; Morishita, Y.; Tomofuji, Y.; Danks, L.; Nitta, T.; Komatsu, N.; Kodama, T.; Takayanagi, H. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell, 2015, 163(4), 975-987.
[42]
Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J.; Ercan-Sencicek, A.G.; DiLullo, N.M.; Parikshak, N.N.; Stein, J.L.; Walker, M.F.; Ober, G.T.; Teran, N.A.; Song, Y.; El-Fishawy, P.; Murtha, R.C.; Choi, M.; Overton, J.D.; Bjornson, R.D.; Carriero, N.J.; Meyer, K.A.; Bilguvar, K.; Mane, S.M.; Sestan, N.; Lifton, R.P.; Günel, M.; Roeder, K.; Geschwind, D.H.; Devlin, B.; State, M.W. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 2012, 485(7397), 237-241.
[43]
Kwan, K.Y. Transcriptional dysregulation of neocortical circuit assembly in ASD. Int. Rev. Neurobiol., 2013, 113, 167-205.
[44]
Shu, X.S.; Li, L.; Ji, M.; Cheng, Y.; Ying, J.; Fan, Y.; Zhong, L.; Liu, X.; Tsao, S.W.; Chan, A.T.; Tao, Q. FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma. Carcinogenesis, 2013, 34(9), 1984-1993.
[45]
Seach, N.; Ueno, T.; Fletcher, A.L.; Lowen, T.; Mattesich, M.; Engwerda, C.R.; Scott, H.S.; Ware, C.F.; Chidgey, A.P.; Gray, D.H.; Boyd, R.L. The lymphotoxin pathway regulates aire-independent expression of ectopic genes and chemokines in thymic stromal cells. J. Immunol., 2008, 180(8), 5384-5392.
[46]
Li, J.; Park, J.; Foss, D.; Goldschneider, I. Thymus-homing peripheral dendritic cells constitute two of the three major subsets of dendritic cells in the steady-state thymus. J. Exp. Med., 2009, 206(3), 607-622.
[47]
Proietto, A.I.; van Dommelen, S.; Zhou, P.; Rizzitelli, A.; D’Amico, A.; Steptoe, R.J.; Naik, S.H.; Lahoud, M.H.; Liu, Y.; Zheng, P.; Shortman, K.; Wu, L. Dendritic cells in the thymus contribute to T-regulatory cell induction. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19869-19874.
[48]
Leventhal, D.S.; Gilmore, D.C.; Berger, J.M.; Nishi, S.; Lee, V.; Malchow, S.; Kline, D.E.; Kline, J.; Vander Griend, D.J.; Huang, H.; Socci, N.D.; Savage, P.A. Dendritic cells coordinate the development and homeostasis of organ-specific regulatory T cells. Immunity, 2016, 44(4), 847-559.
[49]
Kroger, C.J.; Spidale, N.A.; Wang, B.; Tisch, R. Thymic dendritic cell subsets display distinct efficiencies and mechanisms of intercellular mhc transfer. J. Immunol., 2017, 198(1), 249-256.
[50]
Atibalentja, D.F.; Murphy, K.M.; Unanue, E.R. Functional redundancy between thymic CD8α+ and Sirpα+ conventional dendritic cells in presentation of blood-derived lysozyme by MHC class II proteins. J. Immunol., 2011, 186(3), 1421-1431.
[51]
Hadeiba, H.; Lahl, K.; Edalati, A.; Oderup, C.; Habtezion, A.; Pachynski, R.; Nguyen, L.; Ghodsi, A.; Adler, S.; Butcher, E.C. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity, 2012, 36(3), 438-450.
[52]
Schlenner, S.M.; Madan, V.; Busch, K.; Tietz, A.; Läufle, C.; Costa, C.; Blum, C.; Fehling, H.J.; Rodewald, H.R. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity, 2010, 32(3), 426-436.
[53]
Wu, L.; Shortman, K. Heterogeneity of thymic dendritic cells. Semin. Immunol., 2005, 17(4), 304-312.
[54]
Millet, V.; Naquet, P.; Guinamard, R.R. Intercellular MHC transfer between thymic epithelial and dendritic cells. Eur. J. Immunol., 2008, 38(5), 1257-1263.
[55]
Koble, C.; Kyewski, B. The thymic medulla: A unique microenvironment for intercellular self-antigen transfer. J. Exp. Med., 2009, 206(7), 1505-1513.
[56]
Nedjic, J.; Aichinger, M.; Emmerich, J.; Mizushima, N.; Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 2008, 455(7211), 396-400.
[57]
Kloetzel, P.M.; Ossendorp, F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr. Opin. Immunol., 2004, 16(1), 76-81.
[58]
Nil, A.; Firat, E.; Sobek, V.; Eichmann, K.; Niedermann, G. Expression of housekeeping and immunoproteasome subunit genes is differentially regulated in positively and negatively selecting thymic stroma subsets. Eur. J. Immunol., 2004, 34(10), 2681-2689.
[59]
Honey, K.; Rudensky, A.Y. Lysosomal cysteine proteases regulate antigen presentation. Nat. Rev. Immunol., 2003, 3(6), 472-482.
[60]
Dong, H.; Chen, J.; Chen, W. Membrane molecules in induction of apoptosis of thymocytes by mouse thymic dendritic cells which express Fas ligands. Sci. China C Life Sci., 1998, 41(2), 189-194.
[61]
Cretney, E.; Uldrich, A.P.; McNab, F.W.; Godfrey, D.I.; Smyth, M.J. No requirement for trail in intrathymic negative selection. Int. Immunol., 2008, 20(2), 267-276.
[62]
Gascoigne, N.R.; Palmer, E. Signaling in thymic selection. Curr. Opin. Immunol., 2011, 23(2), 207-212.
[63]
Leung, M.W.; Shen, S.; Lafaille, J.J. TCR-dependent differentiation of thymic Foxp3+ cells is limited to small clonal sizes. J. Exp. Med., 2009, 206(10), 2121-2130.
[64]
Bautista, J.L.; Lio, C.W.; Lathrop, S.K.; Forbush, K.; Liang, Y.; Luo, J.; Rudensky, A.Y.; Hsieh, C.S. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol., 2009, 10(6), 610-617.
[65]
Malchow, S.; Leventhal, D.S.; Nishi, S.; Nishi, S.; Fischer, B.I.; Shen, L.; Paner, G.P.; Amit, A.S.; Kang, C.; Geddes, J.E.; Allison, J.P.; Socci, N.D.; Savage, P.A. Aire-dependent thymic development of tumor-associated regulatory T cells. Science, 2013, 339(6124), 1219-1224.
[66]
Lee, H.M.; Bautista, J.L.; Scott-Browne, J.; Mohan, J.F.; Hsieh, C.S. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity, 2012, 37(3), 475-486.
[67]
Wojciech, L.; Ignatowicz, A.; Seweryn, M.; Rempala, G.; Pabla, S.S.; McIndoe, R.A.; Kisielow, P.; Ignatowicz, L. The same self-peptide selects conventional and regulatory CD4+ T cells with identical antigen receptors. Nat. Commun., 2014, 5, 5061.
[68]
Hood, J.D.; Zarnitsyna, V.I.; Zhu, C.; Evavold, B.D. Regulatory and t effector cells have overlapping low to high ranges in tcr affinities for self during demyelinating disease. J. Immunol., 2015, 195(9), 4162-4170.
[69]
Lio, C.W.; Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity, 2008, 28(1), 100-111.
[70]
Hinterberger, M.; Wirnsberger, G.; Klein, L. B7/CD28 in central tolerance: Costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front. Immunol., 2011, 2, 30.
[71]
Burchill, M.A.; Yang, J.; Vang, K.B.; Moon, J.J.; Chu, H.H.; Lio, C.W.; Vegoe, A.L.; Hsieh, C.S.; Jenkins, M.K.; Farrar, M.A. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity, 2008, 28(1), 112-121.
[72]
Chen, W.; Jin, W.; Hardegen, N.; Lei, K.J.; Li, L.; Marinos, N.; McGrady, G.; Wahl, S.M. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med., 2003, 198(12), 1875-1886.
[73]
Li, M.O.; Sanjabi, S.; Flavell, R.A. Transforming growth factor-beta controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity, 2006, 25(3), 455-471.
[74]
Liu, Y.; Zhang, P.; Li, J.; Kulkarni, A.B.; Perruche, S.; Chen, W. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol., 2008, 9(6), 632-640.
[75]
Vang, K.B.; Yang, J.; Mahmud, S.A.; Burchill, M.A.; Vegoe, A.L.; Farrar, M.A. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J. Immunol., 2008, 181(5), 3285-3290.
[76]
Burchill, M.A.; Yang, J.; Vogtenhuber, C.; Blazar, B.R.; Farrar, M.A. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol., 2007, 178(1), 280-290.
[77]
Tai, X.; Erman, B.; Alag, A.; Mu, J.; Kimura, M.; Katz, G.; Guinter, T.; McCaughtry, T.; Etzensperger, R.; Feigenbaum, L.; Singer, D.S.; Singer, A. Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity, 2013, 38(6), 1116-1128.
[78]
Tai, X.; Cowan, M.; Feigenbaum, L.; Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol., 2005, 6(2), 152-162.
[79]
Weist, B.M.; Kurd, N.; Boussier, J.; Chan, S.W.; Robey, E.A. Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat. Immunol., 2015, 16(6), 635-641.
[80]
Lio, C.W.; Dodson, L.F.; Deppong, C.M.; Hsieh, C.S.; Green, J.M. CD28 facilitates the generation of Foxp3(-) cytokine responsive regulatory T cell precursors. J. Immunol., 2010, 184(11), 6007-6013.
[81]
Mahmud, S.A.; Manlove, L.S.; Schmitz, H.M.; Xing, Y.; Wang, Y.; Owen, D.L.; Schenkel, J.M.; Boomer, J.S.; Green, J.M.; Yagita, H.; Chi, H.; Hogquist, K.A.; Farrar, M.A. Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat. Immunol., 2014, 15(5), 473-481.
[82]
Liu, C.; Wang, H.C.; Yu, S.; Jin, R.; Tang, H.; Liu, Y.F.; Ge, Q.; Sun, X.H.; Zhang, Y. Id1 expression promotes T regulatory cell differentiation by facilitating TCR costimulation. J. Immunol., 2014, 193(2), 663-672.
[83]
Williams, J.A.; Zhang, J.; Jeon, H.; Nitta, T.; Ohigashi, I.; Klug, D.; Kruhlak, M.J.; Choudhury, B.; Sharrow, S.O.; Granger, L.; Adams, A.; Eckhaus, M.A.; Jenkinson, S.R.; Richie, E.R.; Gress, R.E.; Takahama, Y.; Hodes, R.J. Thymic medullary epithelium and thymocyte self-tolerance require cooperation between CD28-CD80/86 and CD40-CD40L costimulatory pathways. J. Immunol., 2014, 192(2), 630-640.
[84]
Cuss, S.M.; Green, E.A. Abrogation of CD40-CD154 signaling impedes the homeostasis of thymic resident regulatory T cells by altering the levels of IL-2, but does not affect regulatory T cell development. J. Immunol., 2012, 189(4), 1717-1725.
[85]
Lu, F.T.; Yang, W.; Wang, Y.H.; Ma, H.D.; Tang, W.; Yang, J.B.; Li, L.; Ansari, A.A.; Lian, Z.X. Thymic B cells promote thymus-derived regulatory T cell development and proliferation. J. Autoimmun., 2015, 61, 62-72.
[86]
Coquet, J.M.; Ribot, J.C.; Bąbała, N.; Middendorp, S.; van der Horst, G.; Xiao, Y.; Neves, J.F.; Fonseca-Pereira, D.; Jacobs, H.; Pennington, D.J.; Silva-Santos, B.; Borst, J. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J. Exp. Med., 2013, 210(4), 715-728.
[87]
Thiault, N.; Darrigues, J.; Adoue, V.; Gros, M.; Binet, B.; Perals, C.; Leobon, B.; Fazilleau, N.; Joffre, O.P.; Robey, E.A.; van Meerwijk, J.P.; Romagnoli, P. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol., 2015, 16(6), 628-634.
[88]
Cebula, A.; Seweryn, M.; Rempala, G.A.; Pabla, S.S.; McIndoe, R.A.; Denning, T.L.; Bry, L.; Kraj, P.; Kisielow, P.; Ignatowicz, L. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, 497(7448), 258-262.
[89]
Watanabe, N.; Wang, Y.H.; Lee, H.K.; Ito, T.; Wang, Y.H.; Cao, W.; Liu, Y.J. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature, 2005, 436(7054), 1181-1185.
[90]
Hanabuchi, S.; Ito, T.; Park, W.R.; Watanabe, N.; Shaw, J.L.; Roman, E.; Arima, K.; Wang, Y.H.; Voo, K.S.; Cao, W.; Liu, Y.J. Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus. J. Immunol., 2010, 184(6), 2999-3007.
[91]
Mazzucchelli, R.; Hixon, J.A.; Spolski, R.; Chen, X.; Li, W.Q.; Hall, V.L.; Willette-Brown, J.; Hurwitz, A.A.; Leonard, W.J.; Durum, S.K. Development of regulatory T cells requires IL-7Ralpha stimulation by IL-7 or TSLP. Blood, 2008, 112(8), 3283-3292.
[92]
Coquet, J.M.; Ribot, J.C.; Bąbała, N.; Middendorp, S.; van der Horst, G.; Xiao, Y.; Neves, J.F.; Fonseca-Pereira, D.; Jacobs, H.; Pennington, D.J.; Silva-Santos, B.; Borst, J. Epithelial and dendritic cells in the thymic medulla promote CD4+Foxp3+ regulatory T cell development via the CD27-CD70 pathway. J. Exp. Med., 2013, 210(4), 715-728.
[93]
Shin, J.S.; Ebersold, M.; Pypaert, M.; Delamarre, L.; Hartley, A.; Mellman, I. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature, 2006, 444(7115), 115-118.
[94]
Baravalle, G.; Park, H.; McSweeney, M.; Ohmura-Hoshino, M.; Matsuki, Y.; Ishido, S.; Shin, J.S. Ubiquitination of CD86 is a key mechanism in regulating antigen presentation by dendritic cells. J. Immunol., 2011, 187(6), 2966-2973.
[95]
De Gassart, A.; Camosseto, V.; Thibodeau, J.; Ceppi, M.; Catalan, N.; Pierre, P.; Gatti, E. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3491-3496.
[96]
Ueno, T.; Hara, K.; Willis, M.S.; Malin, M.A.; Höpken, U.E.; Gray, D.H.; Matsushima, K.; Lipp, M.; Springer, T.A.; Boyd, R.L.; Yoshie, O.; Takahama, Y. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity, 2002, 16(2), 205-218.
[97]
Matloubian, M.; Lo, C.G.; Cinamon, G.; Lesneski, M.J.; Xu, Y.; Brinkmann, V.; Allende, M.L.; Proia, R.L.; Cyster, J.G. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 2004, 427(6792), 355-360.
[98]
Zachariah, M.A.; Cyster, J.G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science, 2010, 328(5982), 1129-1135.
[99]
White, A.J.; Baik, S.; Parnell, S.M.; Holland, A.M.; Brombacher, F.; Jenkinson, W.E.; Anderson, G. A type 2 cytokine axis for thymus emigration. J. Exp. Med., 2017, 214(8), 2205-2216.
[100]
Richards, D.M.; Kyewski, B.; Feuerer, M. Re-examining the nature and function of self-reactive t cells. Trends Immunol., 2016, 37(2), 114-125.
[101]
Enouz, S.; Carrié, L.; Merkler, D.; Bevan, M.J.; Zehn, D. Autoreactive T cells bypass negative selection and respond to self-antigen stimulation during infection. J. Exp. Med., 2012, 209(10), 1769-1779.
[102]
Wucherpfennig, K.W. T cell receptor crossreactivity as a general property of T cell recognition. Mol. Immunol., 2004, 40(14-15), 1009-1017.
[103]
Nelson, R.W.; Beisang, D.; Tubo, N.J.; Dileepan, T.; Wiesner, D.L.; Nielsen, K.; Wüthrich, M.; Klein, B.S.; Kotov, D.I.; Spanier, J.A.; Fife, B.T.; Moon, J.J.; Jenkins, M.K. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity, 2015, 42(1), 95-107.
[104]
Anderson, A.C.; Nicholson, L.B.; Legge, K.L.; Turchin, V.; Zaghouani, H.; Kuchroo, V.K. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: Mechanisms of selection of the self-reactive repertoire. J. Exp. Med., 2000, 191(5), 761-770.
[105]
Koehli, S.; Naeher, D.; Galati-Fournier, V.; Zehn, D.; Palmer, E. Optimal T-cell receptor affinity for inducing autoimmunity. Proc. Natl. Acad. Sci. USA, 2014, 111(48), 17248-17253.
[106]
Richards, D.M.; Ruggiero, E.; Hofer, A.C.; Sefrin, J.P.; Schmidt, M.; von Kalle, C.; Feuerer, M. The contained self-reactive peripheral t cell repertoire: Size, diversity, and cellular composition. J. Immunol., 2015, 195(5), 2067-2079.
[107]
Josefowicz, S.Z.; Lu, L.F.; Rudensky, A.Y. Regulatory T cells: Mechanisms of differentiation and function. Annu. Rev. Immunol., 2012, 30, 531-564.
[108]
Ooi, J.D.; Petersen, J.; Tan, Y.H.; Huynh, M.; Willett, Z.J.; Ramarathinam, S.H.; Eggenhuizen, P.J.; Loh, K.L.; Watson, K.A.; Gan, P.Y.; Alikhan, M.A.; Dudek, N.L.; Handel, A.; Hudson, B.G.; Fugger, L.; Power, D.A.; Holt, S.G.; Coates, P.T.; Gregersen, J.W.; Purcell, A.W.; Holdsworth, S.R.; La Gruta, N.L.; Reid, H.H.; Rossjohn, J.; Kitching, A.R. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature, 2017, 545(7653), 243-247.
[109]
Jones, A.; Hawiger, D. Peripherally induced regulatory t cells: Recruited protectors of the central nervous system against autoimmune neuroinflammation. Front. Immunol., 2017, 8, 532.
[110]
Malhotra, D.; Linehan, J.L.; Dileepan, T.; Lee, Y.J.; Purtha, W.E.; Lu, J.V.; Nelson, R.W.; Fife, B.T.; Orr, H.T.; Anderson, M.S.; Hogquist, K.A.; Jenkins, M.K. Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol., 2016, 17(2), 187-195.
[111]
Rocha, B.; von Boehmer, H. Peripheral selection of the T cell repertoire. Science, 1991, 251(4998), 1225-1228.
[112]
Hawiger, D.; Inaba, K.; Dorsett, Y.; Guo, M.; Mahnke, K.; Rivera, M.; Ravetch, J.V.; Steinman, R.M.; Nussenzweig, M.C. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med., 2001, 194(6), 769-779.
[113]
Hawiger, D.; Masilamani, R.F.; Bettelli, E.; Kuchroo, V.K.; Nussenzweig, M.C. Immunological unresponsiveness characterized by increased expression of CD5 on peripheral T cells induced by dendritic cells in vivo. Immunity, 2004, 20(6), 695-705.
[114]
Kretschmer, K.; Apostolou, I.; Hawiger, D.; Khazaie, K.; Nussenzweig, M.C.; von Boehmer, H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol., 2005, 6(12), 1219-1227.
[115]
Darrasse-Jèze, G.; Deroubaix, S.; Mouquet, H.; Victora, G.D.; Eisenreich, T.; Yao, K.H.; Masilamani, R.F.; Dustin, M.L.; Rudensky, A.; Liu, K.; Nussenzweig, M.C. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med., 2009, 206(9), 1853-1862.
[116]
Welty, N.E.; Staley, C.; Ghilardi, N.; Sadowsky, M.J.; Igyártó, B.Z.; Kaplan, D.H. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J. Exp. Med., 2013, 210(10), 2011-2024.
[117]
Josefowicz, S.Z.; Niec, R.E.; Kim, H.Y.; Treuting, P.; Chinen, T.; Zheng, Y.; Umetsu, D.T.; Rudensky, A.Y. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 2012, 482(7385), 395-399.
[118]
Hasegawa, H.; Matsumoto, T. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol., 2018, 9, 350.
[119]
Hawiger, D.; Wan, Y.Y.; Eynon, E.E.; Flavell, R.A. The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness. Nat. Immunol., 2010, 11(10), 962-968.
[120]
Sancho, D.; Reis e Sousa, C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol., 2012, 30, 491-529.
[121]
Durai, V.; Murphy, K.M. Functions of murine dendritic cells. Immunity, 2016, 45(4), 719-736.
[122]
Guilliams, M.; Dutertre, C.A.; Scott, C.L.; McGovern, N.; Sichien, D.; Chakarov, S.; Van Gassen, S.; Chen, J.; Poidinger, M.; De Prijck, S.; Tavernier, S.J.; Low, I.; Irac, S.E.; Mattar, C.N.; Sumatoh, H.R.; Low, G.H.L.; Chung, T.J.K.; Chan, D.K.H.; Tan, K.K.; Hon, T.L.K.; Fossum, E.; Bogen, B.; Choolani, M.; Chan, J.K.Y.; Larbi, A.; Luche, H.; Henri, S.; Saeys, Y.; Newell, E.W.; Lambrecht, B.N.; Malissen, B.; Ginhoux, F. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity, 2016, 45(3), 669-684.
[123]
Merad, M.; Sathe, P.; Helft, J.; Miller, J.; Mortha, A. The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol., 2013, 31, 563-604.
[124]
Gottschalk, C.; Damuzzo, V.; Gotot, J.; Kroczek, R.A.; Yagita, H.; Murphy, K.M.; Knolle, P.A.; Ludwig-Portugall, I.; Kurts, C. Batf3-dependent dendritic cells in the renal lymph node induce tolerance against circulating antigens. J. Am. Soc. Nephrol., 2013, 24(4), 543-549.
[125]
Esterházy, D.; Loschko, J.; London, M.; Jove, V.; Oliveira, T.Y.; Mucida, D. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat. Immunol., 2016, 17(5), 545-555.
[126]
Nutsch, K.; Chai, J.N.; Ai, T.L.; Russler-Germain, E.; Feehley, T.; Nagler, C.R.; Hsieh, C.S. Rapid and efficient generation of regulatory t cells to commensal antigens in the periphery. Cell Rep., 2016, 17(1), 206-220.
[127]
Muzaki, A.R.; Tetlak, P.; Sheng, J.; Loh, S.C.; Setiagani, Y.A.; Poidinger, M.; Zolezzi, F.; Karjalainen, K.; Ruedl, C. Intestinal CD103(+)CD11b(-) dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells. Mucosal Immunol., 2016, 9(2), 336-351.
[128]
Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, 16(4), 343-353.
[129]
Jones, A.; Bourque, J.; Kuehm, L.; Opejin, A.; Teague, R.M.; Gross, C.; Hawiger, D. Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory t cells and tolerance by dendritic cells. Immunity, 2016, 45(5), 1066-1077.
[130]
Kalekar, L.A.; Schmiel, S.E.; Nandiwada, S.L.; Lam, W.Y.; Barsness, L.O.; Zhang, N.; Stritesky, G.L.; Malhotra, D.; Pauken, K.E.; Linehan, J.L.; O’Sullivan, M.G.; Fife, B.T.; Hogquist, K.A.; Jenkins, M.K.; Mueller, D.L. CD4(+) T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol., 2016, 17(3), 304-314.
[131]
Manicassamy, S.; Ravindran, R.; Deng, J.; Oluoch, H.; Denning, T.L.; Kasturi, S.P.; Rosenthal, K.M.; Evavold, B.D.; Pulendran, B. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat. Med., 2009, 15(4), 401-409.
[132]
Li, M.O.; Flavell, R.A. Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10. Immunity, 2008, 28(4), 468-476.
[133]
Manicassamy, S.; Reizis, B.; Ravindran, R.; Nakaya, H.; Salazar-Gonzalez, R.M.; Wang, Y.C.; Pulendran, B. Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science, 2010, 329(5993), 849-853.
[134]
Wang, L.; Pino-Lagos, K.; de Vries, V.C.; Guleria, I.; Sayegh, M.H.; Noelle, R.J. Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc. Natl. Acad. Sci. USA, 2008, 105(27), 9331-9336.
[135]
Wing, K.; Onishi, Y.; Prieto-Martin, P.; Yamaguchi, T.; Miyara, M.; Fehervari, Z.; Nomura, T.; Sakaguchi, S. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, 322(5899), 271-275.
[136]
Akbari, O.; Freeman, G.J.; Meyer, E.H.; Greenfield, E.A.; Chang, T.T.; Sharpe, A.H.; Berry, G.; DeKruyff, R.H.; Umetsu, D.T. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med., 2002, 8(9), 1024-1032.
[137]
Henderson, J.G.; Opejin, A.; Jones, A.; Gross, C.; Hawiger, D. CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity, 2015, 42(3), 471-483.
[138]
Kalden, J.R. Emerging Therapies for Rheumatoid Arthritis. Rheumatol. Ther., 2016, 3(1), 31-42.
[139]
Miyara, M.; Amoura, Z.; Parizot, C.; Badoual, C.; Dorgham, K. Trad S.; Nochy, D.; Debré, P.; Piette, J.C.; Gorochov, G. Global natural regulatory T cell depletion in active systemic lupus erythematosus. J. Immunol., 2005, 175(12), 8392-8400.
[140]
Dwivedi, M.; Kumar, P.; Laddha, N.C.; Kemp, E.H. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity. Autoimmun. Rev., 2016, 15(4), 379-392.
[141]
Qiao, Y.C.; Shen, J.; He, L.; Hong, X.Z.; Tian, F.; Pan, Y.H.; Liang, L.; Zhang, X.X.; Zhao, H.L. Changes of regulatory t cells and of proinflammatory and immunosuppressive cytokines in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Diabetes Res., 2016, 20163694957
[142]
Sakaguchi, S.; Yamaguchi, T.; Nomura, T.; Ono, M. Regulatory T cells and immune tolerance. Cell, 2008, 133(5), 775-787.
[143]
Liu, W.; Putnam, A.L.; Xu-Yu, Z.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; Fazekas de St Groth, B.; Clayberger, C.; Soper, D.M.; Ziegler, S.F.; Bluestone, J.A. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med., 2006, 203(7), 1701-1711.
[144]
Salomon, B.; Bluestone, J.A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol., 2001, 19, 225-252.
[145]
Kataoka, H.; Takahashi, S.; Takase, K.; Yamasaki, S.; Yokosuka, T.; Koike, T.; Saito, T. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int. Immunol., 2005, 17(4), 421-427.
[146]
Bluestone, J.A.; Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol., 2003, 3(3), 253-237.
[147]
Mucida, D.; Kutchukhidze, N.; Erazo, A.; Russo, M.; Lafaille, J.J.; Curotto de Lafaille, M.A. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest., 2005, 115(7), 1923-1933.
[148]
Kingsley, C.I.; Karim, M.; Bushell, A.R.; Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol., 2002, 168(3), 1080-1086.
[149]
Fallarino, F.; Grohmann, U.; Hwang, K.W.; Orabona, C.; Vacca, C.; Bianchi, R.; Belladonna, M.L.; Fioretti, M.C.; Alegre, M.L.; Puccetti, P. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol., 2003, 4(12), 1206-1212.
[150]
Chen, W.; Jin, W.; Wahl, S.M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor beta (TGF-beta) production by murine CD4(+) T cells. J. Exp. Med., 1998, 188(10), 1849-1857.
[151]
Tagaya, Y.; Bamford, R.N.; DeFilippis, A.P.; Waldmann, T.A. IL-15: A pleiotropic cytokine with diverse receptor/signaling pathways whose expression is controlled at multiple levels. Immunity, 1996, 4(4), 329-336.
[152]
Dooms, H.; Desmedt, M.; Vancaeneghem, S.; Rottiers, P.; Goossens, V.; Fiers, W.; Grooten, J. Quiescence-inducing and antiapoptotic activities of IL-15 enhance secondary CD4+ T cell responsiveness to antigen. J. Immunol., 1998, 161(5), 2141-2150.
[153]
Villablanca, E.J. Retinoic acid-producing DCs and gut-tropic FOXP3+ regulatory T cells in the induction of oral tolerance. OncoImmunology, 2013, 2(2)e22987
[154]
Lee, H.M.; Bautista, J.L.; Scott-Browne, J.; Mohan, J.F.; Hsieh, C.S. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity, 2012, 37(3), 475-486.
[155]
Cebula, A.; Seweryn, M.; Rempala, G.A.; Pabla, S.S.; McIndoe, R.A.; Denning, T.L.; Bry, L.; Kraj, P.; Kisielow, P.; Ignatowicz, L. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 2013, 497(7448), 258-262.
[156]
Thornton, A.M.; Korty, P.E.; Tran, D.Q.; Wohlfert, E.A.; Murray, P.E.; Belkaid, Y.; Shevach, E.M. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol., 2010, 184(7), 3433-3441.
[157]
Weiss, J.M.; Bilate, A.M.; Gobert, M.; Ding, Y.; Curotto de Lafaille, M.A.; Parkhurst, C.N.; Xiong, H.; Dolpady, J.; Frey, A.B.; Ruocco, M.G.; Yang, Y.; Floess, S.; Huehn, J.; Oh, S.; Li, M.O.; Niec, R.E.; Rudensky, A.Y.; Dustin, M.L.; Littman, D.R.; Lafaille, J.J. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med., 2012, 209(10), 1723-1742.
[158]
Yadav, M.; Louvet, C.; Davini, D.; Gardner, J.M.; Martinez-Llordella, M.; Bailey-Bucktrout, S.; Anthony, B.A.; Sverdrup, F.M.; Head, R.; Kuster, D.J.; Ruminski, P.; Weiss, D.; Von Schack, D.; Bluestone, J.A. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med., 2012, 209(10), 1713-1722.
[159]
Nutsch, K.; Chai, J.N.; Ai, T.L.; Russler-Germain, E.; Feehley, T.; Nagler, C.R.; Hsieh, C.S. Rapid and efficient generation of regulatory t cells to commensal antigens in the periphery. Cell Rep., 2016, 17(1), 206-220.
[160]
Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; Taniguchi, T.; Takeda, K.; Hori, S.; Ivanov, I.I.; Umesaki, Y.; Itoh, K.; Honda, K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 2011, 331(6015), 337-341.
[161]
Russler-Germain, E.V.; Rengarajan, S.; Hsieh, C.S. Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol., 2017, 10(6), 1375-1386.
[162]
Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; Kim, S.; Fritz, J.V.; Wilmes, P.; Ueha, S.; Matsushima, K.; Ohno, H.; Olle, B.; Sakaguchi, S.; Taniguchi, T.; Morita, H.; Hattori, M.; Honda, K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 2013, 500(7461), 232-236.
[163]
Mucida, D.; Pino-Lagos, K.; Kim, G.; Nowak, E.; Benson, M.J.; Kronenberg, M.; Noelle, R.J.; Cheroutre, H. Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. Immunity, 2009, 30(4), 471-472.
[164]
Nolting, J.; Daniel, C.; Reuter, S.; Stuelten, C.; Li, P.; Sucov, H.; Kim, B.G.; Letterio, J.J.; Kretschmer, K.; Kim, H.J.; von Boehmer, H. Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. J. Exp. Med., 2009, 206(10), 2131-2139.
[165]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[166]
Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480), 451-455.
[167]
Chu, H.; Khosravi, A.; Kusumawardhani, I.P.; Kwon, A.H.; Vasconcelos, A.C.; Cunha, L.D.; Mayer, A.E.; Shen, Y.; Wu, W.L.; Kambal, A.; Targan, S.R.; Xavier, R.J.; Ernst, P.B.; Green, D.R.; McGovern, D.P.; Virgin, H.W.; Mazmanian, S.K. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 2016, 352(6289), 1116-1120.
[168]
Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol., 2013, 34(3), 137-143.
[169]
Zheng, Y.; Josefowicz, S.; Chaudhry, A.; Peng, X.P.; Forbush, K.; Rudensky, A.Y. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 2010, 463(7282), 808-812.
[170]
Feng, Y.; Arvey, A.; Chinen, T.; van der Veeken, J.; Gasteiger, G.; Rudensky, A.Y. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell, 2014, 158(4), 749-763.
[171]
Koch, M.A.; Tucker-Heard, G.; Perdue, N.R.; Killebrew, J.R.; Urdahl, K.B.; Campbell, D.J. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol., 2009, 10(6), 595-602.
[172]
Kitagawa, Y.; Sakaguchi, S. Molecular control of regulatory T cell development and function. Curr. Opin. Immunol., 2017, 49, 64-70.
[173]
Kuehn, H.S.; Ouyang, W.; Lo, B.; Deenick, E.K.; Niemela, J.E.; Avery, D.T.; Schickel, J.N.; Tran, D.Q.; Stoddard, J.; Zhang, Y.; Frucht, D.M.; Dumitriu, B.; Scheinberg, P.; Folio, L.R.; Frein, C.A.; Price, S.; Koh, C.; Heller, T.; Seroogy, C.M.; Huttenlocher, A.; Rao, V.K.; Su, H.C.; Kleiner, D.; Notarangelo, L.D.; Rampertaap, Y.; Olivier, K.N.; McElwee, J.; Hughes, J.; Pittaluga, S.; Oliveira, J.B.; Meffre, E.; Fleisher, T.A.; Holland, S.M.; Lenardo, M.J.; Tangye, S.G.; Uzel, G. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science, 2014, 345(6204), 1623-1627.
[174]
Schubert, D.; Bode, C.; Kenefeck, R.; Hou, T.Z.; Wing, J.B.; Kennedy, A.; Bulashevska, A.; Petersen, B.S.; Schäffer, A.A.; Grüning, B.A.; Unger, S.; Frede, N.; Baumann, U.; Witte, T.; Schmidt, R.E.; Dueckers, G.; Niehues, T.; Seneviratne, S.; Kanariou, M.; Speckmann, C.; Ehl, S.; Rensing-Ehl, A.; Warnatz, K.; Rakhmanov, M.; Thimme, R.; Hasselblatt, P.; Emmerich, F.; Cathomen, T.; Backofen, R.; Fisch, P.; Seidl, M.; May, A.; Schmitt-Graeff, A.; Ikemizu, S.; Salzer, U.; Franke, A.; Sakaguchi, S.; Walker, L.S.K.; Sansom, D.M.; Grimbacher, B. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med., 2014, 20(12), 1410-1416.
[175]
Lo, B.; Zhang, K.; Lu, W.; Zheng, L.; Zhang, Q.; Kanellopoulou, C.; Zhang, Y.; Liu, Z.; Fritz, J.M.; Marsh, R.; Husami, A.; Kissell, D.; Nortman, S.; Chaturvedi, V.; Haines, H.; Young, L.R.; Mo, J.; Filipovich, A.H.; Bleesing, J.J.; Mustillo, P.; Stephens, M.; Rueda, C.M.; Chougnet, C.A.; Hoebe, K.; McElwee, J.; Hughes, J.D.; Karakoc-Aydiner, E.; Matthews, H.F.; Price, S.; Su, H.C.; Rao, V.K.; Lenardo, M.J.; Jordan, M.B. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science, 2015, 349(4246), 436-440.
[176]
Kitagawa, Y.; Ohkura, N.; Kidani, Y.; Vandenbon, A.; Hirota, K.; Kawakami, R.; Yasuda, K.; Motooka, D.; Nakamura, S.; Kondo, M.; Taniuchi, I.; Kohwi-Shigematsu, T.; Sakaguchi, S. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat. Immunol., 2017, 18(2), 173-183.
[177]
Vahedi, G.; Kanno, Y.; Furumoto, Y.; Jiang, K.; Parker, S.C.; Erdos, M.R.; Davis, S.R.; Roychoudhuri, R.; Restifo, N.P.; Gadina, M.; Tang, Z.; Ruan, Y.; Collins, F.S.; Sartorelli, V.; O’Shea, J.J. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 520(7548), 558-562.
[178]
Mascanfroni, I.D.; Takenaka, M.C.; Yeste, A.; Patel, B.; Wu, Y.; Kenison, J.E.; Siddiqui, S.; Basso, A.S.; Otterbein, L.E.; Pardoll, D.M.; Pan, F.; Priel, A.; Clish, C.B.; Robson, S.C.; Quintana, F.J. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med., 2015, 21(6), 638-646.
[179]
Newton, R.; Priyadharshini, B.; Turka, L.A. Immunometabolism of regulatory T cells. Nat. Immunol., 2016, 17(6), 618-625.
[180]
Gregori, S.; Roncarolo, M.G. Engineered T regulatory type 1 cells for clinical application. Front. Immunol., 2018, 9, 233.
[181]
Roncarolo, M.G.; Gregori, S.; Bacchetta, R.; Battaglia, M. Tr1 cells and the counter-regulation of immunity: Natural mechanisms and therapeutic applications. Curr. Top. Microbiol. Immunol., 2014, 380, 39-68.
[182]
Bacchetta, R.; Lucarelli, B.; Sartirana, C.; Gregori, S.; Lupo Stanghellini, M.T.; Miqueu, P.; Tomiuk, S.; Hernandez-Fuentes, M.; Gianolini, M.E.; Greco, R.; Bernardi, M.; Zappone, E.; Rossini, S.; Janssen, U.; Ambrosi, A.; Salomoni, M.; Peccatori, J.; Ciceri, F.; Roncarolo, M.G. Immunological outcome in haploidentical-hsc transplanted patients treated with IL-10-anergized donor t cells. Front. Immunol., 2014, 5, 16.
[183]
Desreumaux, P.; Foussat, A.; Allez, M.; Beaugerie, L.; Hébuterne, X.; Bouhnik, Y.; Nachury, M.; Brun, V.; Bastian, H.; Belmonte, N.; Ticchioni, M.; Duchange, A.; Morel-Mandrino, P.; Neveu, V.; Clerget-Chossat, N.; Forte, M.; Colombel, J.F. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn's disease. Gastroenterology., , 2012, 143(5), 1207-1217. e1-2.
[184]
Andolfi, G.; Fousteri, G.; Rossetti, M.; Magnani, C.F.; Jofra, T.; Locafaro, G.; Bondanza, A.; Gregori, S.; Roncarolo, M.G. Enforced IL-10 expression confers type 1 regulatory T cell (Tr1) phenotype and function to human CD4(+) T cells. Mol. Ther., 2012, 20(9), 1778-1790.
[185]
Locafaro, G.; Andolfi, G.; Russo, F.; Cesana, L.; Spinelli, A.; Camisa, B.; Ciceri, F.; Lombardo, A.; Bondanza, A.; Roncarolo, M.G.; Gregori, S. IL-10-engineered human CD4+ Tr1 cells eliminate myeloid leukemia in an hla class I-dependent mechanism. Mol. Ther., 2017, 25(10), 2254-2269.
[186]
Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol., 2008, 8(9), 685-698.
[187]
Benson, M.J.; Pino-Lagos, K.; Rosemblatt, M.; Noelle, R.J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med., 2007, 204(8), 1765-1774.
[188]
Provvedini, D.M.; Tsoukas, C.D.; Deftos, L.J.; Manolagas, S.C. 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science, 1983, 221(4616), 1181-1183.
[189]
Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol., 2009, 183(9), 5458-5467.
[190]
Barrat, F.J.; Cua, D.J.; Boonstra, A.; Richards, D.F.; Crain, C.; Savelkoul, H.F.; de Waal-Malefyt, R.; Coffman, R.L.; Hawrylowicz, C.M.; O’Garra, A. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med., 2002, 195(5), 603-616.
[191]
Nikolouli, E.; Hardtke-Wolenski, M.; Hapke, M.; Beckstette, M.; Geffers, R.; Floess, S.; Jaeckel, E.; Huehn, J. Alloantigen-induced regulatory t cells generated in presence of vitamin c display enhanced stability of foxp3 expression and promote skin allograft acceptance. Front. Immunol., 2017, 8, 748.
[192]
Oyarce, K.; Campos-Mora, M. Gajardo-Carrasco, T.; Pino-Lagos, K. Vitamin c fosters the in vivo differentiation of peripheral CD4+ Foxp3- t cells into CD4+ Foxp3+ regulatory t cells but impairs their ability to prolong skin allograft survival. Front. Immunol., 2018, 9, 112.
[193]
Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res., 2014, 34(11), 907-929.
[194]
McEneny, J.; Wade, L.; Young, I.S.; Masson, L.; Duthie, G.; McGinty, A.; McMaster, C.; Thies, F. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J. Nutr. Biochem., 2013, 24(1), 163-168.
[195]
Xu, X.R.; Zou, Z.Y.; Xiao, X.; Huang, Y.M.; Wang, X.; Lin, X.M. Effects of lutein supplement on serum inflammatory cytokines, ApoE and lipid profiles in early atherosclerosis population. J. Atheroscler. Thromb., 2013, 20(2), 170-177.
[196]
Jørgensen, S.P.; Agnholt, J.; Glerup, H.; Lyhne, S.; Villadsen, G.E.; Hvas, C.L.; Bartels, L.E.; Kelsen, J.; Christensen, L.A.; Dahlerup, J.F. Clinical trial: Vitamin D3 treatment in Crohn’s disease - A randomized double-blind placebo-controlled study. Aliment. Pharmacol. Ther., 2010, 32(3), 377-383.
[197]
Yang, L.; Weaver, V.; Smith, J.P.; Bingaman, S.; Hartman, T.J.; Cantorna, M.T. Therapeutic effect of vitamin d supplementation in a pilot study of Crohn’s patients. Clin. Transl. Gastroenterol., 2013, 4e33
[198]
Xia, J.; Shi, L.; Zhao, L.; Xu, F. Impact of vitamin D supplementation on the outcome of tuberculosis treatment: A systematic review and meta-analysis of randomized controlled trials. Chin. Med. J. (Engl.), 2014, 127(17), 3127-3134.
[199]
Burton, J.M.; Kimball, S.; Vieth, R.; Bar-Or, A.; Dosch, H.M.; Cheung, R.; Gagne, D.; D’Souza, C.; Ursell, M.; O’Connor, P. A phase I/II dose-escalation trial of vitamin D3 and calcium in multiple sclerosis. Neurology, 2010, 74(23), 1852-1859.
[200]
Soilu-Hänninen, M.; Aivo, J.; Lindström, B.M.; Elovaara, I.; Sumelahti, M.L.; Färkkilä, M.; Tienari, P.; Atula, S.; Sarasoja, T.; Herrala, L.; Keskinarkaus, I.; Kruger, J.; Kallio, T.; Rocca, M.A.; Filippi, M. A randomised, double blind, placebo controlled trial with vitamin D3 as an add on treatment to interferon β-1b in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2012, 83(5), 565-571.
[201]
Derakhshandi, H.; Etemadifar, M.; Feizi, A.; Abtahi, S.H.; Minagar, A.; Abtahi, M.A.; Abtahi, Z.A.; Dehghani, A.; Sajjadi, S.; Tabrizi, N. Preventive effect of vitamin D3 supplementation on conversion of optic neuritis to clinically definite multiple sclerosis: a double blind, randomized, placebo-controlled pilot clinical trial. Acta Neurol. Belg., 2013, 113(3), 257-263.
[202]
Mosayebi, G.; Ghazavi, A.; Ghasami, K.; Jand, Y.; Kokhaei, P. Therapeutic effect of vitamin D3 in multiple sclerosis patients. Immunol. Invest., 2011, 40(6), 627-639.
[203]
Kampman, M.T.; Steffensen, L.H.; Mellgren, S.I.; Jørgensen, L. Effect of vitamin D3 supplementation on relapses, disease progression, and measures of function in persons with multiple sclerosis: exploratory outcomes from a double-blind randomised controlled trial. Mult. Scler., 2012, 18(8), 1144-1151.
[204]
Osganian, S.K.; Stampfer, M.J.; Rimm, E.; Spiegelman, D.; Hu, F.B.; Manson, J.E.; Willett, W.C. Vitamin C and risk of coronary heart disease in women. J. Am. Coll. Cardiol., 2003, 42(2), 246-252.
[205]
Knekt, P.; Reunanen, A.; Järvinen, R.; Seppänen, R.; Heliövaara, M.; Aromaa, A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am. J. Epidemiol., 1994, 139(12), 1180-1189.
[206]
Rimm, E.B.; Stampfer, M.J.; Ascherio, A.; Giovannucci, E.; Colditz, G.A.; Willett, W.C. Vitamin E consumption and the risk of coronary heart disease in men. N. Engl. J. Med., 1993, 328(20), 1450-1456.
[207]
Enstrom, J.E.; Kanim, L.E.; Klein, M.A. Vitamin C intake and mortality among a sample of the United States population. Epidemiology, 1992, 3(3), 194-202.
[208]
Ness, A.; Egger, M.; Smith, G.D. Role of antioxidant vitamins in prevention of cardiovascular diseases. Meta-analysis seems to exclude benefit of vitamin C supplementation. BMJ, 1999, 319(7209), 577.
[209]
Sabharwal, A.K.; May, J.M. alpha-Lipoic acid and ascorbate prevent LDL oxidation and oxidant stress in endothelial cells. Mol. Cell. Biochem., 2008, 309(1-2), 125-132.
[210]
Hoffman, R.P.; Dye, A.S.; Bauer, J.A. Ascorbic acid blocks hyperglycemic impairment of endothelial function in adolescents with type 1 diabetes. Pediatr. Diabetes, 2012, 13(8), 607-610.
[211]
Chambial, S.; Dwivedi, S.; Shukla, K.K.; John, P.J.; Sharma, P. Vitamin C in disease prevention and cure: An overview. Indian J. Clin. Biochem., 2013, 28(4), 314-328.
[212]
Luerce, T.D.; Gomes-Santos, A.C.; Rocha, C.S.; Moreira, T.G.; Cruz, D.N.; Lemos, L.; Sousa, A.L.; Pereira, V.B.; de Azevedo, M.; Moraes, K.; Cara, D.C.; LeBlanc, J.G.; Azevedo, V.; Faria, A.M.C.; Miyoshi, A. Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathog., 2014, 6, 33.
[213]
Maruo, T.; Gotoh, Y.; Nishimura, H.; Ohashi, S.; Toda, T.; Takahashi, K. Oral administration of milk fermented with Lactococcus lactis subsp. Cremoris FC protects mice against influenza virus infection. Lett. Appl. Microbiol., 2012, 55(2), 135-140.
[214]
Braat, H.; Rottiers, P.; Hommes, D.W.; Huyghebaert, N.; Remaut, E.; Remon, J.P.; van Deventer, S.J.; Neirynck, S.; Peppelenbosch, M.P.; Steidler, L. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol., 2006, 4(6), 754-759.
[215]
Vermeire, S.; Van Assche, G.; Rutgeerts, P. Postinfectious irritable bowel syndrome: A genetic link identified? Gastroenterology, 2010, 138(4), 1246-1249.
[216]
Martín, R.; Chain, F.; Miquel, S.; Natividad, J.M.; Sokol, H.; Verdu, E.F.; Langella, P.; Bermúdez-Humarán, L.G. Effects in the use of a genetically engineered strain of Lactococcus lactis delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Hum. Vaccin. Immunother., 2014, 10(6), 1611-1621.
[217]
Cook, D.P.; Gysemans, C.; Mathieu, C. Lactococcus lactis as a versatile vehicle for tolerogenic Immunotherapy. Front. Immunol., 2018, 8, 1961.
[218]
Polyphenols in human health and disease.In; Watson RR, Preedy
V, Zibaldi S. Eds. Elsevier, 2014, Vol. 1, pp. 1-912. ISBN: 978-0-12- 398472-2.
[219]
Polyphenols in human health and disease.In; Watson RR, Preedy
V, Zibaldi S. Eds. Elsevier , 2014, Vol. 2, pp. 1-592. ISBN: 978-0-12- 398472-2.
[220]
Marzulli, G.; Magrone, T.; Kawaguchi, K.; Kumazawa, Y.; Jirillo, E. Fermented grape marc (FGM): Immunomodulating properties and its potential exploitation in the treatment of neurodegenerative diseases. Curr. Pharm. Des., 2012, 18(1), 43-50.
[221]
Kawaguchi, K.; Matsumoto, T.; Kumazawa, Y. Effects of antioxidant polyphenols on TNF-alpha-related diseases. Curr. Top. Med. Chem., 2011, 11(14), 1767-1779.
[222]
Magrone, T.; Jirillo, E.; Spagnoletta, A.; Magrone, M.; Russo, M.A.; Fontana, S.; Laforgia, F.; Donvito, I.; Campanella, A.; Silvestris, F.; De Pergola, G. Immune profile of obese people and in vitro effects of red grape polyphenols on peripheral blood mononuclear cells. Oxid. Med. Cell. Longev., 2017, 20179210862
[223]
Vitale, E.; Jirillo, E.; Magrone, T. Determination of body mass index and physical activity in normal weight children and evaluation of salivary levels of IL-10 and IL-17. Clin. Immunol. Endocr. Metab. Drugs, 2014, 1(2), 81-88.
[224]
Casas, R.; Sacanella, E.; Estruch, R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr. Metab. Immune Disord. Drug Targets, 2014, 14(4), 245-254.
[225]
Miglio, C.; Peluso, I.; Raguzzini, A.; Villaño, D.V.; Cesqui, E.; Catasta, G.; Toti, E.; Serafini, M. Fruit juice drinks prevent endogenous antioxidant response to high-fat meal ingestion. Br. J. Nutr., 2014, 111(2), 294-300.
[226]
LaMothe, R.A.; Kolte, P.N.; Vo, T.; Ferrari, J.D.; Gelsinger, T.C.; Wong, J.; Chan, V.T.; Ahmed, S.; Srinivasan, A.; Deitemeyer, P.; Maldonado, R.A.; Kishimoto, T.K. Tolerogenic nanoparticles induce antigen-specific regulatory T cells and provide therapeutic efficacy and transferrable tolerance against experimental autoimmune encephalomyelitis. Front. Immunol., 2018, 9, 281.
[227]
Kishimoto, T.K.; Ferrari, J.D.; LaMothe, R.A.; Kolte, P.N.; Griset, A.P.; O’Neil, C.; Chan, V.; Browning, E.; Chalishazar, A.; Kuhlman, W.; Fu, F.N.; Viseux, N.; Altreuter, D.H.; Johnston, L.; Maldonado, R.A. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotechnol., 2016, 11(10), 890-899.
[228]
Lim, H.H.; Yi, H.; Kishimoto, T.K.; Gao, F.; Sun, B.; Kishnani, P.S. A pilot study on using rapamycin-carrying synthetic vaccine particles (SVP) in conjunction with enzyme replacement therapy to induce immune tolerance in Pompe disease. Mol. Genet. Metab. Rep., 2017, 13, 18-22.
[229]
Zhang, A.H.; Rossi, R.J.; Yoon, J.; Wang, H.; Scott, D.W. Tolerogenic nanoparticles to induce immunologic tolerance: Prevention and reversal of FVIII inhibitor formation. Cell. Immunol., 2016, 301, 74-81.
[230]
Sands, E.; Kivitz, A.; Johnston, L.; Kishimoto, T.K. THUO4 22 sel. 212. Enhanced serum uric acid control in hyperucemic patients through selective mitigation of anti-drug antibodies against Pegsitilase. Ann. Rhem. Dis., 2017, 76, 367.
[231]
Picelli, S.; Björklund, Å.K.; Faridani, O.R.; Sagasser, S.; Winberg, G.; Sandberg, R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods, 2013, 10(11), 1096-1098.
[232]
Shalek, A.K.; Satija, R.; Shuga, J.; Trombetta, J.J.; Gennert, D.; Lu, D.; Chen, P.; Gertner, R.S.; Gaublomme, J.T.; Yosef, N.; Schwartz, S.; Fowler, B.; Weaver, S.; Wang, J.; Wang, X.; Ding, R.; Raychowdhury, R.; Friedman, N.; Hacohen, N.; Park, H.; May, A.P.; Regev, A. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 2014, 510(7505), 363-369.
[233]
Jaitin, D.A.; Weiner, A.; Yofe, I.; Lara-Astiaso, D.; Keren-Shaul, H.; David, E.; Salame, T.M.; Tanay, A.; van Oudenaarden, A.; Amit, I. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell, 2016, 167(7), 1883-1896.e15.
[234]
Vendelova, E.; Ashour, D.; Blank, P.; Erhard, F.; Saliba, A.E.; Kalinke, U.; Lutz, M.B. Tolerogenic transcriptional signatures of steady-state and pathogen-induced dendritic cells. Front. Immunol., 2018, 9, 333.