Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Assessment of Process Variables on Vitamin B12 Production in Fermented Dairy Product Including Propionic Acid

Author(s): Ramona Massoud, Kianoush Khosravi-Darani*, Milad Golshahi, Sara Sohrabvandi and Amir Mohammad Mortazavian

Volume 16, Issue 2, 2020

Page: [155 - 161] Pages: 7

DOI: 10.2174/1573401315666181204105601

Price: $65

Abstract

The fermented dairy products produced by various microorganism’s activity provide valuable nutrients for human. Fermentation affects the physicochemical and organoleptic characteristics of foods as well as human health. In the present review, we describe the production of vitamin B12 in a fermented dairy product by Propionibacterium species. The effect of the process variables on vitamin B12 production in fermented dairy products e.g. pH, temperature, different carbon and nitrogen sources as well as the type and size of inoculum, the fermentation time and fermentation strategy, etc. are discussed. Finally, fermentation strategy, inoculum preparation of Propionibacterium freudenreichii subsp. Shermanii, methods of determining biomass and Vitamin B12 concentration are reviewed and their effects on vitamin B12 production are mentioned. Propionibacteria are so popular due to their unique characteristics such as being safe, convenient and economical. Among all the highest efficiency was observed by P. freudenreichii. To achieve this purpose, some appropriate situations need to be considered. The best carbon source for this bacterium to produce biomass is lactate, the suitable pH for growth of the Propionibacterium species is in the range of 6 to 7 and the fed-batch is most preferable for vitamin B12 production.

Keywords: Carbon, dairy, fermentation, nitrogen, propionic acid, vitamin B12.

Graphical Abstract

[1]
Selvakumar P, Balamurugan G, Viveka S. Microbial production of vitamin B12 and antimicrobial activity of glucose utilizing marine derived Streptomyces species. Int J Chemtech Res 2012; 4(3): 236-42.
[2]
Zhang A. Metabolic engineering and process development for enhanced propionic acid production by Propionibacterium acidipropionici PhD dissertation 2009.
[3]
Li KT, Liu DH, Chu J, Wang YH, Zhuang YP, Zhang SL. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans Bioproc biosys engin 2008; 31(6): 605-10.
[4]
Martínez-Campos R, De la Torre M. Production of propionate by fed-batch fermentation of Propionibacterium acidipropionici using mixed feed of lactate and glucose. Biotechnol Lett 2002; 24(6): 427-31.
[http://dx.doi.org/10.1023/A:1014562504882]
[5]
Fernández M, Hudson JA, Korpela R, de los Reyes-Gavilán CG. Impact on human health of microorganisms present in fermented dairy products: an overview. BioMed Res Int 2015; 2015: 1-13.
[http://dx.doi.org/10.1155/2015/412714] [PMID: 25839033]
[6]
Doyle MP, Buchanan R. Food microbiology: fundamentals and frontiers. ASM Press: Washington, DC 2013.
[7]
Shortt C, Brien JO. Handbook of functional dairy products. Taylor and Francis New York 2016.
[8]
Zhang A, Yang ST. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Proc biochem 2009; 44(12): 1346-51.
[http://dx.doi.org/10.1016/j.procbio.2009.07.013]
[9]
Massoud R, Belgheisi S, Massoud A. Effect of high pressure homogenization on improving the quality of milk and sensory properties of yogurt: a review. Int J Chem Eng Appl 2016; 7(1): 66-70.
[http://dx.doi.org/10.7763/IJCEA.2016.V7.544]
[10]
Massoud R, Fadaei V, Khosravi-Darani K, Nikbakht HR. Improving the viability of probiotic bacteria in yoghurt by homogenization. J Food Proc Pres 2015; 39(6): 2984-90.
[http://dx.doi.org/10.1111/jfpp.12551]
[11]
Ahmadi N, Khosravi-Darani K, Mortazavian AM. An overview of biotechnological production of propionic acid: from upstream to downstream processes. Electron J Biotechnol 2017; 28(2): 67-75.
[http://dx.doi.org/10.1016/j.ejbt.2017.04.004]
[12]
Ahmadi N, Khosravi-Darani K, Zarean-Shahraki S, Mortazavian M, Mashayekh SM. Fed-batch fermentation for propionic acetic and lactic acid production. Orient J Chem 2015; 31(1): 581-90.
[http://dx.doi.org/10.13005/ojc/310174]
[13]
Ruijschop RM, Boelrijk AE, Giffel MC. Satiety effects of a dairy beverage fermented with propionic acid bacteria. Int Dairy J 2008; 18(9): 945-50.
[http://dx.doi.org/10.1016/j.idairyj.2008.01.004]
[14]
Wouters TM, Eman H, Hugenholtz J, Smit G. Microbes from raw milk for fermented dairy products. Int Dairy J 2002; 12(2): 91-109.
[http://dx.doi.org/10.1016/S0958-6946(01)00151-0]
[15]
Kamana O, Jacxsens L, Kimonyo A, Uyttendaele A. A survey on hygienic practices and their impact on themicrobiological quality and safety in the Rwandan milk and dairy chain. Int J Dairy Technol 2017; 70(1): 52-65.
[http://dx.doi.org/10.1111/1471-0307.12322]
[16]
Caplice E, Fitzgerald GF. Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 1999; 50(1-2): 131-49.
[http://dx.doi.org/10.1016/S0168-1605(99)00082-3] [PMID: 10488849]
[17]
Andreassi JL II, Bilder PW, Vetting MW, Roderick SL, Leyh TS. Crystal structure of the Streptococcus pneumoniae mevalonate kinase in complex with diphosphomevalonate. Protein Sci 2007; 16(5): 983-9.
[http://dx.doi.org/10.1110/ps.072755707] [PMID: 17400916]
[18]
Hunt A, Harrington D, Robinson S. Vitamin B12 deficiency. British Med J 2014; 34: 52-6.
[http://dx.doi.org/10.1136/bmj.g5226]
[19]
Biedendieck R, Malten M, Barg H, et al. Metabolic engineering of cobalamin (vitamin B12) production in Bacillus megaterium. Microb Biotechnol 2010; 3(1): 24-37.
[http://dx.doi.org/10.1111/j.1751-7915.2009.00125.x] [PMID: 21255303]
[20]
Massoud R, Khosravi-Darani K, Bagheri R, Mortazavian A, Sohrabvandi S. Vitamin B12: from deficiency to biotechnological solution. Curr Nutr Food Sci 2019; 15(4): 318-26.
[http://dx.doi.org/10.2174/1573401314666171207145429]
[21]
Bomba A, Nemcová R, Mudroňová D, Guba P. The possibilities of potentiating the efficacy of probiotics. Trends Food Sci Technol 2002; 13(4): 121-6.
[http://dx.doi.org/10.1016/S0924-2244(02)00129-2]
[22]
Wang K, Chang Z, Ma Y, Lei C, Wang J, Zhu T. Study on solvent extraction of propionic acid from simulated discharged water in vitamin B12 production by anaerobic fermentation. Biortech 2008; 12: 50-6.
[23]
Liu Z, Ma C, Gao C, Xu P. Efficient utilization of hemicellulose hydrolysate for propionic acid production using Propionibacteriu acidipropionici. Bioresour Technol 2012; 2: 100-18.
[24]
Allen LH. Vitamin B12. Adv Nutr 2012; 3: 54-5.
[http://dx.doi.org/10.3945/an.111.001370]
[25]
Tharmaraj N, Shah NP. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and propionibacteria. J Dairy Sci 2003; 86(7): 2288-96.
[http://dx.doi.org/10.3168/jds.S0022-0302(03)73821-1] [PMID: 12906045]
[26]
Dockray G. Gut endocrine secretions and their relevance to satiety. Curr Opin Pharmacol 2004; 4(6): 557-60.
[http://dx.doi.org/10.1016/j.coph.2004.05.005] [PMID: 15525543]
[27]
Seshadri N, Mukhopadhyay S. Influence of environmental parameters on propionic acid upstream bioprocessing by Propionibacterium acidipropionici. J Biotechnol 1993; 29(3): 321-8.
[http://dx.doi.org/10.1016/0168-1656(93)90063-S]
[28]
Ye K, Shijo M, Jin S, Shimizu K. Efficient production of vitamin B12 from propionic acid bacteria under periodic variation of dissolved oxygen concentration. J Ferment Bioeng 1996; 82(5): 484-91.
[http://dx.doi.org/10.1016/S0922-338X(97)86988-7]
[29]
Sheehan JJ, Wilkinson MG, McSweeney PL. Influence of processing and ripening parameters on starter. Non-starter and propionic acid bacteria and on the ripening characteristics of semi-hard cheeses. Int Dairy J 2008; 18(9): 905-17.
[http://dx.doi.org/10.1016/j.idairyj.2007.11.024]
[30]
Huang Y, Adams MC. In vitro assessment of the upper gastrointestinal tolerance of potential probiotic dairy Propionibacteria. Int J Food Microbiol 2004; 91(3): 253-60.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2003.07.001] [PMID: 14984773]
[31]
Coral J. Propionic acid production by Propionibacterium sp using low-cost carbon sources in submerged fermentation. Division Federal University of Parana 2008; pp. 135-78.
[32]
Schneider Z. Stroinski A Comprehensive B12: chemistry biochemistry nutrition ecology medicine. New York: Walter de Gruyter 2011; pp. 165-78.
[33]
Kozyraki R, Cases O. Vitamin B12 absorption: mammalian physiology and acquired and inherited disorders. Biochimie 2013; 95(5): 1002-7.
[http://dx.doi.org/10.1016/j.biochi.2012.11.004] [PMID: 23178706]
[34]
Quesada-Chanto A, Schmid-Meyer A, Schroeder A, Carvalho-Jonas M, Blanco I, Jonas R. Effect of oxygen supply on biomass. Organic acids and vitamin B12 production by Propionibacterium shermanii. World J Microbiol Biotechnol 1998; 14(6): 843-6.
[http://dx.doi.org/10.1023/A:1008868907251]
[35]
Gardner N, Champagne CP. Production of Propionibacterium shermanii biomass and vitamin B12 on spent media. J Appl Microbiol 2005; 99(5): 1236-45.
[http://dx.doi.org/10.1111/j.1365-2672.2005.02696.x] [PMID: 16238755]
[36]
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 2003; 278(42): 41148-59.
[http://dx.doi.org/10.1074/jbc.M305837200] [PMID: 12869542]
[37]
Martens JH, Barg H, Warren MJ, Jahn D. Microbial production of vitamin B12. Appl Microbiol Biotechnol 2002; 58(3): 275-85.
[http://dx.doi.org/10.1007/s00253-001-0902-7] [PMID: 11935176 ]
[38]
Vandamme EJ. Production of vitamins, coenzymes and related biochemicals by biotechnological processes. J Chem Technol Biotechnol 1992; 53(4): 313-27.
[http://dx.doi.org/10.1002/jctb.280530402] [PMID: 1368195 ]
[39]
Fu TM, Almqvist J, Liang YH, Li L, Huang Y, Su XD. Crystal structures of cobalamin-independent methionine synthase (MetE) from Streptococcus mutans: a dynamic zinc-inversion model. J Mol Biol 2011; 412(4): 688-97.
[http://dx.doi.org/10.1016/j.jmb.2011.08.005] [PMID: 21840320 ]
[40]
Roessner CA, Huang KX, Warren MJ, Raux E, Scott AI. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B12) in Propionibacterium freudenreichii (P. shermanii). Microbiology 2002; 148(Pt 6): 1845-53.
[http://dx.doi.org/10.1099/00221287-148-6-1845] [PMID: 12055304 ]
[41]
Dishisha T, Alvarez MT, Hatti-Kaul R. Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol 2012; 118: 553-62.
[http://dx.doi.org/10.1016/j.biortech.2012.05.079] [PMID: 22728152 ]
[42]
Revillas JJ, Rodelas B, Pozo C, Martínez-Toledo MV, González-López J. Production of B-group vitamins by two Azotobacter strains with phenolic compounds as sole carbon source under diazotrophic and adiazotrophic conditions. J Appl Microbiol 2000; 89(3): 486-93.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01139.x] [PMID: 11021581]
[43]
Hunik J. Improved process for the production of vitamin B12 Patent WO0037669, 2000; 52-78.
[44]
Wang ZJ, Wang P, Chu J, Zhang SL. Optimization of nutritional requirements and ammonium feeding strategies for improving vitamin B12 production by Pseudomonas denitrificans. Afr J Biotechnol 2011; 10(51): 10551-5061.
[http://dx.doi.org/10.5897/AJB10.1869]
[45]
Escalante-Semerena JC. Conversion of cobinamide into adenosylcobamide in bacteria and archaea. J Bacteriol 2007; 189(13): 4555-60.
[http://dx.doi.org/10.1128/JB.00503-07] [PMID: 17483216 ]
[46]
Pawlak R, Lester SE, Babatunde T. The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr 2014; 68(5): 541-8.
[http://dx.doi.org/10.1038/ejcn.2014.46] [PMID: 24667752 ]
[47]
Demain AL, White RF. Porphyrin overproduction by Pseudomonas denitrificans: essentiality of betaine and stimulation by ethionine. J Bacteriol 1971; 107(2): 456-60.
[http://dx.doi.org/10.1128/JB.107.2.456-460.1971] [PMID: 5113597 ]
[48]
Wang P, Wang Y, Su Z. Microbial production of propionic acid with Propionibacterium freudenreichii using an anion exchanger-based in situ product recovery (ISPR) process with direct and indirect contact of cells. Appl Biochem Biotechnol 2012; 166(4): 974-86.
[http://dx.doi.org/10.1007/s12010-011-9485-7] [PMID: 22194053 ]
[49]
Wang P, Wang Y, Liu Y, Shi H, Su Z. Novel in situ product removal technique for simultaneous production of propionic acid and vitamin B12 by expanded bed adsorption bioreactor. Bioresour Technol 2012; 104: 652-9.
[http://dx.doi.org/10.1016/j.biortech.2011.10.047] [PMID: 22082511 ]
[50]
Goswami V, Srivastava AK. Propionic acid production in an in situ cell retention bioreactor. Appl Microbiol Biotechnol 2001; 56(5-6): 676-80.
[http://dx.doi.org/10.1007/s002530000582] [PMID: 11601613 ]
[51]
Bae S, West AA, Yan J, et al. Vitamin B-12 Status differs among pregnant, lactating, and control women with equivalent nutrient intakes. J Nutr 2015; 145(7): 1507-14.
[http://dx.doi.org/10.3945/jn.115.210757] [PMID: 25995278 ]
[52]
Ahmadi N, Khosravi-Darani K, Zarean-Shahraki S, Mortazavian M, Mashayekh SM. Effect of process variables on fed-batch production of propionic acid. J Food Process Preserv 2016; 41(2): 1285-3.
[53]
Obeid R, Geisel J, Herrmann W. Comparison of two methods for measuring methylmalonic acid as a marker for vitamin B12 deficiency. Diagnosis 2015; 2(1): 67-72.
[54]
Xia W, Chen W, Peng W, Li K. Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioproc Biosys Engine 2015; 38: 1065-73.
[http://dx.doi.org/10.1007/s00449-014-1348-5]
[55]
Wang Z, Yang ST. Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol 2013; 137: 116-23.
[http://dx.doi.org/10.1016/j.biortech.2013.03.012] [PMID: 23584412 ]
[56]
Ali S, Haq I, Qadeer M, Iqbal J. Production of citric acid by Aspergillus niger using cane molasses in a stirred fermentor. Electron J Biotechnol 2002; 5: 19-20.
[http://dx.doi.org/10.2225/vol5-issue3-fulltext-3]
[57]
Lewis VP, Yang ST. Propionic acid fermentation by Propionibacterium acidipropionici: effect of growth substrate. Appl Microbiol Biotechnol 1992; 37(4): 437-42.
[http://dx.doi.org/10.1007/BF00180964]
[58]
Peggy A, Domstad MD, Young C, Choy MD. Reliability of the dual-isotope schilling test for the diagnosis of pernicious anemia or malabsorption syndrome. Am J Clin Pathol 1981; 75(5): 723-6.
[59]
Hettinga D, Reinbold G. propionic-acid bacteria--a review. J Milk Food Technol 1972; 2(14): 1-20.
[60]
Laurent M, Boulenguer P. Stabilization mechanism of acid dairy drinks (ADD) induced by pectin. Food Hydrocoll 2003; 17(4): 445-54.
[http://dx.doi.org/10.1016/S0268-005X(03)00028-6]
[61]
Boyaval P, Corre C. Production of propionic acid. Lait 1995; 75: 53-61.
[http://dx.doi.org/10.1051/lait:19954-535]
[62]
Ekinci FY, Gurel M. Effect of using propionic acid bacteria as an adjunct culture in yogurt production. J Dairy Sci 2008; 91(3): 892-9.
[http://dx.doi.org/10.3168/jds.2007-0244] [PMID: 18292244 ]
[63]
Sgraja T, Smith TK, Hunter WN. Structure, substrate recognition and reactivity of Leishmania major mevalonate kinase. BMC Struct Biol 2007; 7(1): 20-4.
[http://dx.doi.org/10.1186/1472-6807-7-20] [PMID: 17397541 ]
[64]
Fan C, Bobik TA. The PduX enzyme of Salmonella enterica is an L-threonine kinase used for coenzyme B12 synthesis. J Biol Chem 2008; 283(17): 11322-9.
[http://dx.doi.org/10.1074/jbc.M800287200] [PMID: 18308727 ]
[65]
Hugenholtz J, Hunik J, Santos H, Smid E. Nutraceutical production by Propionibacteria. Lait 2002; 82(1): 103-12.
[http://dx.doi.org/10.1051/lait:2001009]
[66]
Kośmider A, Białas W, Kubiak P, Drożdżyńska A, Czaczyk K. Vitamin B12 production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresour Technol 2012; 105: 128-33.
[http://dx.doi.org/10.1016/j.biortech.2011.11.074] [PMID: 22178491 ]
[67]
Farhadi S, Khosravi-Darani K, Mashayekh M, Mortazavian A, Mohammadi A, Shahraz F. Effect of incubation temperature and inoculation ratio of starter culture on propionic acid production in dairy beverage fermented with propionibacterium. Iran J Nutr Sci Food Technol 2012; 7(1): 41-50.
[68]
Sánchez Tainta A, Zazpe I, Bes-Rastrollo M, Salas-Salvadó J, Bullo M, Vicente Sorlí J. Nutritional adequacy according to carbohydrates and fat quality. Eur J Nutr 2016; 55: 93-106.
[http://dx.doi.org/10.1007/s00394-014-0828-3]
[69]
Madhu AN, Giribhattanavar P, Narayan MS, Prapulla SG. Probiotic lactic acid bacterium from kanjika as a potential source of vitamin B12: evidence from LC-MS, immunological and microbiological techniques. Biotechnol Lett 2010; 32(4): 503-6.
[http://dx.doi.org/10.1007/s10529-009-0176-1] [PMID: 19953302]
[70]
Piao Y, Yamashita M, Kawaraichi N, Asegawa R, Ono H, Murooka Y. Production of vitamin B12 in genetically engineered Propionibacterium freudenreichii. J Biosci Bioeng 2004; 98(3): 167-73.
[http://dx.doi.org/10.1016/S1389-1723(04)00261-0] [PMID: 16233685]
[71]
Marwaha S, Sethi R, Kennedy J. Role of amino acids betaine and choline in vitamin B12 biosynthesis by strains of Propionibacterium. Enzyme Microb Technol 1993; 5(6): 454-6.
[http://dx.doi.org/10.1016/0141-0229(83)90030-3]
[72]
Ozadali F, Glatz BA, Glatz CE. Fed-batch fermentation with and without on-line extraction for propionic and acetic acid production by Propionibacterium acidipropionici. Appl Microbiol Biotechnol 1996; 44(6): 710-6.
[http://dx.doi.org/10.1007/s002530050621] [PMID: 8867628]
[73]
Chamlagain B, Deptula P, Edelmann M, Kariluoto S. Effect of the lower ligand precursors on vitamin B12 production by food-grade Propionibacteria. Food Sci Technol 2016; 72: 117-24.
[http://dx.doi.org/10.1016/j.lwt.2016.04.023]
[74]
Yongsmith B, Sonomoto K, Tanaka A, Fukui S. Production of vitamin B12 by immobilized cells of a propionic acid bacterium. Eur J Appl Microbiol Biotechnol 1982; 16(2): 70-4.
[http://dx.doi.org/10.1007/BF00500729]
[75]
Khosravi-Darani K, Zarean S, Ahmadi N, Hadian Z, Mortazavian AM. Fed batch production of a fermented beverage containing vitamin b12. Iran J Chem Chemical Engin 2019; 38(2): 183-92.
[76]
Bullerman LB, Berry EC. Use of cheese whey for vitamin B12 production. I. Whey solids and yeast extract levels. Appl Microbiol 1966; 14(3): 353-5.
[http://dx.doi.org/10.1128/AEM.14.3.353-355.1966] [PMID: 5970817 ]
[77]
Wei P, Lin M, Wang Z, et al. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation. Bioresour Technol 2016; 219: 91-7.
[http://dx.doi.org/10.1016/j.biortech.2016.07.056] [PMID: 27479799 ]
[78]
Bories A, El Himmi B, Jauregui J, Pelayo-Ortiz C, Gonzales V. Glycerol fermentation with Propionibacteria and optimisation of the production of propionic acid. Sci Aliments 2004; 24(2): 121-36.
[http://dx.doi.org/10.3166/sda.24.121-136]
[79]
Santos F, Teusink B, Molenaar D, et al. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl Environ Microbiol 2009; 75(12): 3930-6.
[http://dx.doi.org/10.1128/AEM.02487-08] [PMID: 19376900 ]
[80]
Bainotti AE, Estebanez B, Nagadomi H, Nishio N. Production of vitamin B12 in an upflow anaerobic filter continuous reactor using Acetobacterium sp. Biotechnol Lett 2000; 22(6): 503-8.
[http://dx.doi.org/10.1023/A:1005612819257]
[81]
Rickert DA, Glatz CE, Glatz BA. Improved organic acid production by calcium alginate-immobilized Propionibacteria. Enzyme Microb Technol 1998; 22(5): 409-14.
[http://dx.doi.org/10.1016/S0141-0229(97)00225-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy