Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Morphological Evolution of Fe-Oxy-Hydroxide Nanotubes During Electrodeposition

Author(s): Patrizia Bocchetta*, Francesca Conciauro and Filippo Selleri

Volume 15, Issue 6, 2019

Page: [669 - 678] Pages: 10

DOI: 10.2174/1573413715666181129124943

Price: $65

Abstract

Background: Ordered arrays of 1D iron(oxyhydr)oxide nanostructures have potential applications in magnetic recording mediums, lithium batteries, supercapacitors, and thermal production of α-, β-, γ-type Fe2O3. Large surface areas with three-dimensional architectures, such as nanotubes, are encouraged because the easy access of ion, gas, liquid and radiation assures high ion exchange capacity, sensing and catalytic activities.

Objective: In this work, the morphological evolution of Fe-oxyhydroxide electrodeposition inside AAM pores has been followed for the first time by selecting two relevant electrochemical conditions of synthesis producing high quality morphologies of nanotubes.

Methods: Iron(oxyhydr)oxide nanotubes have been synthesized by cathodic electrodeposition at a constant current in classic three-electrode cell. Two different electrolytic baths have been studied: (i) an aqueous bath consisting of 5 mM FeCl3+5 mM KF+0.1 M KCl+1 M H2O2 (H-Fe) and (ii) an ethanolic bath consisting of 0.3 M FeCl3 + 0.1 M KCl (Et-Fe).

Results: XRD, Raman and SEM results on the iron(oxyhydr)oxide nanotubes suggest different mechanisms of chemical precipitation mechanisms in Et-Fe alcoholic solution (dehydration and rearrangement within the ferrihydrite aggregates) and H-Fe aqueous solution (dissolution/ reprecipitation). The morphological evolution of the growing nanostructure to nanotubes inside AAM in the two baths agrees very well with the overpotential vs. time curves, the kinetic growth of the nanotubes arrays and a growth mechanism governed by the relative mass transfer processes involving both OH- and Fe ions.

Conclusion: The morphological evolution of Fe-oxyhydroxide cathodic electroprecipitation inside AAM pores in two relevant electrochemical baths containing Fe(III) (aqueous/H-Fe and alcoholic/Et- Fe) has been followed for the first time by a comprehensive SEM analysis accompanied by electrochemical, structural and kinetic growth of the nano-electrodeposits.

The detailed SEM results collected in this work allowed to recommend template electrogeneration of base in ethanol solution containing Fe(III) chloride as a relevant procedure to obtain high-quality, compact and well-ordered Fe oxy-hydroxide nanotubes.

Keywords: Nanotubes, template, electrodeposition, iron(oxyhydr)oxide, metal oxide, anodic alumina.

Graphical Abstract

[1]
Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly and optical applications. J. Phys. Chem. B, 2005, 109, 13857-13870.
[2]
Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal., 2005, 229, 206-212.
[3]
Qin, G.W.; Liu, J.; Balaji, T.; Xu, X.; Matsunaga, H.; Hakuta, Y. A facile and template-free method to prepare mesoporous gold sponge and its pore size control. J. Phys. Chem. C, 2008, 112, 10352-10358.
[4]
Sun, L.; Hao, Y.; Chien, C. Tuning the properties of magnetic nanowires. IBM J. Res. Develop., 2005, 49, 79-102.
[5]
Das, D.; Plazas-Tuttle, J.; Venu Sabaraya, I.; Jain, S.S.; Sabo-Attwood, T.; Saleh, N.B. An elegant method for large scale synthesis of metal oxide–carbon nanotube nanohybrids for nano-environmental application and implication studies. Environ. Sci. Nano, 2017, 4, 60-68.
[6]
Zachara, J.M.; Girvin, D.C.; Schmidt, R.C.; Resch, C.T. Chromate adsorption on amorphous iron hydroxide in the presence of major groundwater ions. Environ. Sci. Technol., 1987, 21, 589-594.
[7]
Krehula, S.; Popovic, S.; Music, S. Synthesis of acicular α-FeOOH particles at a very high pH. Mater. Lett., 2002, 54, 108-113.
[8]
Kishimoto, M.; Sueyoshi, T.; Hirata, J.; Amemiya, M.; Hayama, F. Coercivity of γ‐Fe2O3 particles growing iron‐cobalt ferrite. J. Appl. Phys., 1979, 50, 450.
[9]
Kanno, R.; Shirane, T.; Kawamoto, Y.; Takeda, Y.; Takano, M.; Ohashi, M.; Yamaguchi, Y. Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J. Electrochem. Soc., 1996, 143, 2435-2442.
[10]
Amine, K.; Yasuda, H.; Yamachi, M. β-FeOOH, a new positive electrode material for lithium secondary batteries. J. Power Sources, 1999, 81, 221-223.
[11]
Flynn, Jr, G.M. Hydrolysis of inorganic iron(III) salts. Chem. Rev., 1984, 84, 31-41.
[12]
Owusu, K.A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K.M.; Lin, C.; Shi, C.; Wei, Q.; Zhou, L.; Mai, L. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun., 2017, 8, 14264.
[13]
Naono, H.; Nakai, K. Thermal decomposition of γ-FeOOH fine particles. J. Colloid Interface Sci., 1989, 128, 146-156.
[14]
Gehring, A.U.; Hofmeister, A.M. The transformation of lepidocrocite during heating: A magnetic and spectroscopic study. Clays Clay Miner., 1994, 42, 409-415.
[15]
Crowley, A.T.; Ziegler, K.J.; Lyons, D.M.; Erts, D.; Olin, H.; Morris, M.A.; Holmes, J.D. Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template. Chem. Mater., 2003, 15, 3518-3522.
[16]
Jia, Q.; Shimizu, T. Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem. Commun., 2005, 0, 4411-4413.
[17]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes. Electrochem. Commun., 2007, 9, 683-688.
[18]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Electrosynthesis of Ce–Co mixed oxide nanotubes with high aspect ratio and tunable composition. Electrochem. Solid-State Lett., 2008, 3, K27-K30.
[19]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Cerium oxyhydroxide nanowire growth via electrogeneration of base in nonaqueous electrolytes. Electrochem. Solid-State Lett., 2008, 9, K93-K97.
[20]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Room temperature electrodeposition of photoactive Cd(OH)2 nanowires. Electrochem. Commun., 2009, 11, 580-584.
[21]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. From ceria nanotubes to nanowires through electrogeneration of base. J. Appl. Electrochem., 2009, 39, 2073-2081.
[22]
Kuang, Z-W.L.; Lian, W.; Jiang, Z-Y.; Xie, Z-X.; Huang, R-B.; Zheng, L-S. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates. J. Solid State Chem., 2007, 180, 1236-1242.
[23]
Hao, Q.; Huang, H.; Fan, X.; Hou, X.; Yin, Y.; Li, W.; Si, L.; Nan, H.; Wang, H.; Mei, Y.; Qiu, T.; Chu, P.K. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology, 2017, 28, 105301-105309.
[24]
Singh, A.; Algarni, Z.; Philipose, U. Template-assisted electrochemical synthesis of p-type InSb nanowires. ECS J. Solid State Sci. Technol., 2017, 6(39-N), 43.
[25]
Barriga-Castro, E.D.; García, J.; Mendoza-Reséndez, R.; Pridab, V.M.; Luna, C. Pseudo-monocrystalline properties of cylindrical nanowires confinedly grown by electrodeposition in nanoporous alumina templates. RSC Advances, 2017, 7, 13817-13826.
[26]
Nagarajan, N.; Zhitomirsky, I. Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J. Appl. Electrochem., 2006, 36, 1399-1405.
[27]
Indira, L.; Kamath, P.V. Electrogeneration of base by cathodic reduction of anions: novel one-step route to unary and layered double hydroxides (LDHs). J. Mater. Chem., 1994, 4, 1487-1490.
[28]
Liu, L.; Layani, M.; Yellinek, S.; Kamyshny, A.; Ling, H.; Lee, P.S.; Magdassi, S.; Mandler, S. Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings. J. Mater. Chem. A, 2014, 2, 16224-16229.
[29]
Mousty, C.; Walcarius, A. Electrochemically assisted deposition by local pH tuning: A versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. J. Solid State Electrochem., 2015, 19, 1905-1931.
[30]
Zhitomirsky, I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci., 2002, 97, 279-317.
[31]
Lepiller, C.; Poissonnet, S.; Legendre, F.; Giunchi, G. Electrochemical study of cathodic electroprecipitation of strontium hydroxide films from dimethyl sulfoxide-based solvents. J. Electrochem. Soc., 2003, 150, D30-D40.
[32]
Aghazadeh, M.; Ghaemi, M.; Golikand, A.N.; Ahmadi, A. Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater. Lett., 2011, 65, 2545-2548.
[33]
Aghazadeh, M.; Yousefi, T. Preparation of Gd2O3 nanorods by electrodeposition–heat-treatment method. Mater. Lett., 2012, 73, 176-178.
[34]
Zhou, Y.; Switzer, J.A. Growth of cerium(IV) oxide films by the electrochemical generation of base method. J. Alloys Compd., 1996, 237, 1-5.
[35]
Mahalingam, T.; Sanjeeviraja, C.; Esther Dali, S.; Jayachandran, M.; Chockalingam, M.J. Galvanostatic deposition of Cu2O layers through the electrogeneration of base route. J. Mater. Sci. Lett., 1998, 17, 603-605.
[36]
Ghassemi, N.; Davarani, S.S.H.; Moazami, H.R. Cathodic electrosynthesis of CuFe2O4/CuO composite nanostructures for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron., 2018, 29, 12573-12583.
[37]
Schrebler, R.; Bello, K.; Vera, F.; Cury, P.; Munoz, E.; Del Rio, R.; Meier, H.G.; Cordova, R.; Dalchiele, E.A. An electrochemical deposition route for obtaining α-Fe2O3 thin films. Electrochem. Solid-State Lett., 2006, 9, C110-C113.
[38]
Therese, G.H.A.; Kamath, P.V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater., 2000, 12, 1195-1204.
[39]
Nobial, M.; Devos, O.; Mattos, O.R.; Tribollet, N. The nitrate reduction process: A way for increasing interfacial pH. J. Electroanal. Chem., 2007, 600, 87-94.
[40]
Bocchetta, P.; Gianoncelli, A.; Abyaneh, M.K.; Kiskinova, M.; Amati, M.; Gregoratti, L.; Jezeršek, D.; Mele, C.; Bozzini, B. Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: A study based on quasi-in situ X-ray absorption, fluorescence and in situ Raman spectroscopy. Electrochim. Acta, 2014, 137, 535-545.
[41]
Bocchetta, P.; Amati, M.; Bozzini, B.; Catalano, M.; Gianoncelli, A.; Gregoratti, L.; Taurino, A.; Kiskinova, M. Quasi-in situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2014, 6, 19621-19629.
[42]
Bocchetta, P.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Sezen, H.; Taurino, A.; Bozzini, B. Morphochemical evolution during ageing of pyrolized Mn/Polypyrrole nanocomposite oxygen reduction electrocatalysts: A study based on quasi-in situ photoelectron spectromicroscopy. J. Electroanal. Chem., 2015, 758, 191-200.
[43]
Bocchetta, P.; Alemán, B.; Amati, M.; Fanetti, M.; Goldoni, A.; Gregoratti, L.; Kiskinova, M.; Mele, C.; Sezen, H.; Bozzini, B. ORR stability of Mn–Co/polypyrrole nanocomposite electrocatalysts studied by quasi in-situ identical-location photoelectron microspectroscopy. Electrochem. Commun., 2016, 69, 50-54.
[44]
Bocchetta, P.; Ramírez, S.C.; Taurino, C.; Bozzini, B. Accurate assessment of the oxygen reduction electrocatalytic activity of Mn/polypyrrole nanocomposites based on rotating disk electrode (RDE) measurements, complemented with multi-technique structural characterizations. J. Anal. Methods Chem., 2016, 2016 Article ID 2030675
[45]
Trage, C.; Diefenbach, M.; Schröder, D.; Schwarz, H. Innocent and less‐innocent solvent ligands: A systematic investigation of cationic iron chloride/alcohol complexes by electrospray ionization mass spectrometry complemented by DFT calculations. Chem. Eur. J., 2006, 12, 2454-2464.
[46]
Schmidt, V.M.; Ianniello, R.; Pastor, E.; Gonzáles, S. Electrochemical reactivity of ethanol on porous pt and ptru: Oxidation/reduction reactions in 1 M HClO4. J. Phys. Chem., 1996, 100, 17901-17908.
[47]
Drits, V.A.; Sakharov, B.A.; Salyn, A.L.; Manceau, A. Structural model for ferrihydrite. Clay Miner., 1993, 28, 185-207.
[48]
Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int., 2009, 177, 941-948.
[49]
Yu, B.Y.; Kwak, S-Y. Assembly of magnetite nanoparticles into spherical mesoporous aggregates with a 3-D wormhole-like porous structure. J. Mater. Chem., 2010, 20, 8320-8328.
[50]
Carlier, D.; Terrier, C.; Arm, C.; Ansermet, J-P. Preparation and magnetic properties of Fe3O4 nanostructures grown by electrodeposition. Electrochem. Solid-State Lett., 2005, 8, C43-C46.
[51]
Cornell, R.M.; Giovanoli, R. Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite. Clays Clay Miner., 1985, 33, 424-432.
[52]
Lee, W.; Scholz, R.; Nielsch, K.; Gösele, U. A Template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. Engl., 2005, 117, 6204-6208.
[53]
Wang, H.; Song, Y.; Liu, W.; Yao, S.; Zhang, W. Template synthesis and characterization of TiO2 nanotube arrays by the electrodeposition method. Mater. Lett., 2013, 93, 319-321.
[54]
Schwertmann, U.; Murad, E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., 1983, 4, 277-284.
[55]
Krehula, S.; Popović, S.; Music, S. Synthesis of acicular α-FeOOH particles at a very high pH. Mater. Lett., 2002, 54, 108-113.
[56]
Li, G.; Li, X.; Peng, W.; Fan, X.; Zhang, G.; Zhang, F. Synthesis of nearly monodisperse nanoparticles in alcohol: A pressure and solvent-induced low-temperature strategy. Appl. Surf. Sci., 2009, 255, 7021-7027.
[57]
Powell, R.L.; Childs, G.E. Thermal conductivity. In: American Institute of Physics Handbook; Billings, B.H.; Gray, D.E., Eds.; McGraw-Hill: New York, 1972; Vol. 4, p. 142.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy