[1]
Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly and optical applications. J. Phys. Chem. B, 2005, 109, 13857-13870.
[2]
Zhou, K.; Wang, X.; Sun, X.; Peng, Q.; Li, Y. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal., 2005, 229, 206-212.
[3]
Qin, G.W.; Liu, J.; Balaji, T.; Xu, X.; Matsunaga, H.; Hakuta, Y. A facile and template-free method to prepare mesoporous gold sponge and its pore size control. J. Phys. Chem. C, 2008, 112, 10352-10358.
[4]
Sun, L.; Hao, Y.; Chien, C. Tuning the properties of magnetic nanowires. IBM J. Res. Develop., 2005, 49, 79-102.
[5]
Das, D.; Plazas-Tuttle, J.; Venu Sabaraya, I.; Jain, S.S.; Sabo-Attwood, T.; Saleh, N.B. An elegant method for large scale synthesis of metal oxide–carbon nanotube nanohybrids for nano-environmental application and implication studies. Environ. Sci. Nano, 2017, 4, 60-68.
[6]
Zachara, J.M.; Girvin, D.C.; Schmidt, R.C.; Resch, C.T. Chromate adsorption on amorphous iron hydroxide in the presence of major groundwater ions. Environ. Sci. Technol., 1987, 21, 589-594.
[7]
Krehula, S.; Popovic, S.; Music, S. Synthesis of acicular α-FeOOH particles at a very high pH. Mater. Lett., 2002, 54, 108-113.
[8]
Kishimoto, M.; Sueyoshi, T.; Hirata, J.; Amemiya, M.; Hayama, F. Coercivity of γ‐Fe2O3 particles growing iron‐cobalt ferrite. J. Appl. Phys., 1979, 50, 450.
[9]
Kanno, R.; Shirane, T.; Kawamoto, Y.; Takeda, Y.; Takano, M.; Ohashi, M.; Yamaguchi, Y. Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure. J. Electrochem. Soc., 1996, 143, 2435-2442.
[10]
Amine, K.; Yasuda, H.; Yamachi, M. β-FeOOH, a new positive electrode material for lithium secondary batteries. J. Power Sources, 1999, 81, 221-223.
[11]
Flynn, Jr, G.M. Hydrolysis of inorganic iron(III) salts. Chem. Rev., 1984, 84, 31-41.
[12]
Owusu, K.A.; Qu, L.; Li, J.; Wang, Z.; Zhao, K.; Yang, C.; Hercule, K.M.; Lin, C.; Shi, C.; Wei, Q.; Zhou, L.; Mai, L. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun., 2017, 8, 14264.
[13]
Naono, H.; Nakai, K. Thermal decomposition of γ-FeOOH fine particles. J. Colloid Interface Sci., 1989, 128, 146-156.
[14]
Gehring, A.U.; Hofmeister, A.M. The transformation of lepidocrocite during heating: A magnetic and spectroscopic study. Clays Clay Miner., 1994, 42, 409-415.
[15]
Crowley, A.T.; Ziegler, K.J.; Lyons, D.M.; Erts, D.; Olin, H.; Morris, M.A.; Holmes, J.D. Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template. Chem. Mater., 2003, 15, 3518-3522.
[16]
Jia, Q.; Shimizu, T. Chemical synthesis of transition metal oxide nanotubes in water using an iced lipid nanotube as a template. Chem. Commun., 2005, 0, 4411-4413.
[17]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes. Electrochem. Commun., 2007, 9, 683-688.
[18]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Electrosynthesis of Ce–Co mixed oxide nanotubes with high aspect ratio and tunable composition. Electrochem. Solid-State Lett., 2008, 3, K27-K30.
[19]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Cerium oxyhydroxide nanowire growth via electrogeneration of base in nonaqueous electrolytes. Electrochem. Solid-State Lett., 2008, 9, K93-K97.
[20]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. Room temperature electrodeposition of photoactive Cd(OH)2 nanowires. Electrochem. Commun., 2009, 11, 580-584.
[21]
Bocchetta, P.; Santamaria, M.; Di Quarto, F. From ceria nanotubes to nanowires through electrogeneration of base. J. Appl. Electrochem., 2009, 39, 2073-2081.
[22]
Kuang, Z-W.L.; Lian, W.; Jiang, Z-Y.; Xie, Z-X.; Huang, R-B.; Zheng, L-S. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates. J. Solid State Chem., 2007, 180, 1236-1242.
[23]
Hao, Q.; Huang, H.; Fan, X.; Hou, X.; Yin, Y.; Li, W.; Si, L.; Nan, H.; Wang, H.; Mei, Y.; Qiu, T.; Chu, P.K. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology, 2017, 28, 105301-105309.
[24]
Singh, A.; Algarni, Z.; Philipose, U. Template-assisted electrochemical synthesis of p-type InSb nanowires. ECS J. Solid State Sci. Technol., 2017, 6(39-N), 43.
[25]
Barriga-Castro, E.D.; García, J.; Mendoza-Reséndez, R.; Pridab, V.M.; Luna, C. Pseudo-monocrystalline properties of cylindrical nanowires confinedly grown by electrodeposition in nanoporous alumina templates. RSC Advances, 2017, 7, 13817-13826.
[26]
Nagarajan, N.; Zhitomirsky, I. Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J. Appl. Electrochem., 2006, 36, 1399-1405.
[27]
Indira, L.; Kamath, P.V. Electrogeneration of base by cathodic reduction of anions: novel one-step route to unary and layered double hydroxides (LDHs). J. Mater. Chem., 1994, 4, 1487-1490.
[28]
Liu, L.; Layani, M.; Yellinek, S.; Kamyshny, A.; Ling, H.; Lee, P.S.; Magdassi, S.; Mandler, S. Nano to nano” electrodeposition of WO3 crystalline nanoparticles for electrochromic coatings. J. Mater. Chem. A, 2014, 2, 16224-16229.
[29]
Mousty, C.; Walcarius, A. Electrochemically assisted deposition by local pH tuning: A versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials. J. Solid State Electrochem., 2015, 19, 1905-1931.
[30]
Zhitomirsky, I. Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv. Colloid Interface Sci., 2002, 97, 279-317.
[31]
Lepiller, C.; Poissonnet, S.; Legendre, F.; Giunchi, G. Electrochemical study of cathodic electroprecipitation of strontium hydroxide films from dimethyl sulfoxide-based solvents. J. Electrochem. Soc., 2003, 150, D30-D40.
[32]
Aghazadeh, M.; Ghaemi, M.; Golikand, A.N.; Ahmadi, A. Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater. Lett., 2011, 65, 2545-2548.
[33]
Aghazadeh, M.; Yousefi, T. Preparation of Gd2O3 nanorods by electrodeposition–heat-treatment method. Mater. Lett., 2012, 73, 176-178.
[34]
Zhou, Y.; Switzer, J.A. Growth of cerium(IV) oxide films by the electrochemical generation of base method. J. Alloys Compd., 1996, 237, 1-5.
[35]
Mahalingam, T.; Sanjeeviraja, C.; Esther Dali, S.; Jayachandran, M.; Chockalingam, M.J. Galvanostatic deposition of Cu2O layers through the electrogeneration of base route. J. Mater. Sci. Lett., 1998, 17, 603-605.
[36]
Ghassemi, N.; Davarani, S.S.H.; Moazami, H.R. Cathodic electrosynthesis of CuFe2O4/CuO composite nanostructures for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron., 2018, 29, 12573-12583.
[37]
Schrebler, R.; Bello, K.; Vera, F.; Cury, P.; Munoz, E.; Del Rio, R.; Meier, H.G.; Cordova, R.; Dalchiele, E.A. An electrochemical deposition route for obtaining α-Fe2O3 thin films. Electrochem. Solid-State Lett., 2006, 9, C110-C113.
[38]
Therese, G.H.A.; Kamath, P.V. Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater., 2000, 12, 1195-1204.
[39]
Nobial, M.; Devos, O.; Mattos, O.R.; Tribollet, N. The nitrate reduction process: A way for increasing interfacial pH. J. Electroanal. Chem., 2007, 600, 87-94.
[40]
Bocchetta, P.; Gianoncelli, A.; Abyaneh, M.K.; Kiskinova, M.; Amati, M.; Gregoratti, L.; Jezeršek, D.; Mele, C.; Bozzini, B. Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: A study based on quasi-in situ X-ray absorption, fluorescence and in situ Raman spectroscopy. Electrochim. Acta, 2014, 137, 535-545.
[41]
Bocchetta, P.; Amati, M.; Bozzini, B.; Catalano, M.; Gianoncelli, A.; Gregoratti, L.; Taurino, A.; Kiskinova, M. Quasi-in situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2014, 6, 19621-19629.
[42]
Bocchetta, P.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Sezen, H.; Taurino, A.; Bozzini, B. Morphochemical evolution during ageing of pyrolized Mn/Polypyrrole nanocomposite oxygen reduction electrocatalysts: A study based on quasi-in situ photoelectron spectromicroscopy. J. Electroanal. Chem., 2015, 758, 191-200.
[43]
Bocchetta, P.; Alemán, B.; Amati, M.; Fanetti, M.; Goldoni, A.; Gregoratti, L.; Kiskinova, M.; Mele, C.; Sezen, H.; Bozzini, B. ORR stability of Mn–Co/polypyrrole nanocomposite electrocatalysts studied by quasi in-situ identical-location photoelectron microspectroscopy. Electrochem. Commun., 2016, 69, 50-54.
[44]
Bocchetta, P.; Ramírez, S.C.; Taurino, C.; Bozzini, B. Accurate assessment of the oxygen reduction electrocatalytic activity of Mn/polypyrrole nanocomposites based on rotating disk electrode (RDE) measurements, complemented with multi-technique structural characterizations. J. Anal. Methods Chem., 2016, 2016 Article ID 2030675
[45]
Trage, C.; Diefenbach, M.; Schröder, D.; Schwarz, H. Innocent and less‐innocent solvent ligands: A systematic investigation of cationic iron chloride/alcohol complexes by electrospray ionization mass spectrometry complemented by DFT calculations. Chem. Eur. J., 2006, 12, 2454-2464.
[46]
Schmidt, V.M.; Ianniello, R.; Pastor, E.; Gonzáles, S. Electrochemical reactivity of ethanol on porous pt and ptru: Oxidation/reduction reactions in 1 M HClO4. J. Phys. Chem., 1996, 100, 17901-17908.
[47]
Drits, V.A.; Sakharov, B.A.; Salyn, A.L.; Manceau, A. Structural model for ferrihydrite. Clay Miner., 1993, 28, 185-207.
[48]
Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int., 2009, 177, 941-948.
[49]
Yu, B.Y.; Kwak, S-Y. Assembly of magnetite nanoparticles into spherical mesoporous aggregates with a 3-D wormhole-like porous structure. J. Mater. Chem., 2010, 20, 8320-8328.
[50]
Carlier, D.; Terrier, C.; Arm, C.; Ansermet, J-P. Preparation and magnetic properties of Fe3O4 nanostructures grown by electrodeposition. Electrochem. Solid-State Lett., 2005, 8, C43-C46.
[51]
Cornell, R.M.; Giovanoli, R. Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite. Clays Clay Miner., 1985, 33, 424-432.
[52]
Lee, W.; Scholz, R.; Nielsch, K.; Gösele, U. A Template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. Engl., 2005, 117, 6204-6208.
[53]
Wang, H.; Song, Y.; Liu, W.; Yao, S.; Zhang, W. Template synthesis and characterization of TiO2 nanotube arrays by the electrodeposition method. Mater. Lett., 2013, 93, 319-321.
[54]
Schwertmann, U.; Murad, E. Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner., 1983, 4, 277-284.
[55]
Krehula, S.; Popović, S.; Music, S. Synthesis of acicular α-FeOOH particles at a very high pH. Mater. Lett., 2002, 54, 108-113.
[56]
Li, G.; Li, X.; Peng, W.; Fan, X.; Zhang, G.; Zhang, F. Synthesis of nearly monodisperse nanoparticles in alcohol: A pressure and solvent-induced low-temperature strategy. Appl. Surf. Sci., 2009, 255, 7021-7027.
[57]
Powell, R.L.; Childs, G.E. Thermal conductivity. In: American Institute of Physics Handbook; Billings, B.H.; Gray, D.E., Eds.; McGraw-Hill: New York, 1972; Vol. 4, p. 142.