[1]
Arico, A.S.; Srinivasan, S.; Antonucci, V. DMFCs: From fundamental aspects to technology development. Fuel Cells, 2001, 1(2), 133-161.
[2]
Beden, B.; Lamy, C.; Leger, J.M. Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes. In: Bockris, J.O’M; Conway, B.E.; White, R. (Eds.), Modern Aspects of Electrochemistry, Vol. 22, Plenum Press: New York, 1992, pp. 97-264.
[3]
Watanabe, M.; Uchida, H. Catalysis for the electrooxidation of small molecules In: Vielstich, W.; Gasteiger, H.A.; Yokokawa, H.;
(Eds.). Handbook of fuel cells-Fundemantals, Technology and Applications,
Vol 5; Advances in Electrocatalysis, Materials, Diagnostics
and Durability, Wiley: New York, 2009, pp. 96-135.
[4]
Bockris, J. O’M; Reddy, A.K.N. Modern Electrochemistry; Vol. 2,
Plenum Press: New York, 1972.
[5]
Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B, 2005, 109, 22212-22216.
[6]
Mcnicol, B.D.; Rand, D.A.J.; Williams, K.R. Direct methanol-air fuel cells for road transportation. J. Power Sources, 1999, 83, 15-21.
[7]
Becerik, I.; Kadırgan, F.; Suzer, S. Electrooxidation of methanol on doped polypyrrole films in acidic media. J. Electroanal. Chem., 2001, 502, 118-125.
[8]
Lobato, J.; Canizares, P.; Rodrigo, M.A.; Lineras, J.J.; Lopez-Vizcaino, R. Performance of a vapor-fed polybenzimidazole(PBI) –based direct methenol fuel cell. Energy Fuels, 2008, 5, 3335-3345.
[9]
Ejigu, A.; Johnson, L.; Licence, P.; Walsh, D.A. Electrocatalytic oxidation of methanol and carbon monoxide ad platinum in protic ıonic liquids. Electrochem. Commun., 2012, 23, 122-124.
[10]
Kulesza, P.J.; Pieta, I.S.; Rutkowska, I.A.; Wadas, A.; Marks, D.; Klak, K.; Stobinski, L.; Cox, J.A. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifyingthem with metal oxides. Electrochim. Acta, 2013, 110, 474-483.
[11]
Li, F.; Guo, Y.; Wu, T.; Liu, Y.; Wang, W.; Gao, J. Platinum nano-catalysts deposited on reduced graphene oxides for alcohol oxidation. Electrochim. Acta, 2013, 111, 614-620.
[12]
Liu, Z.; Tian, Z.Q.; Jiang, S.P. Synthesis and characterization of nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells. Electrochim. Acta, 2006, 52, 1213-1220.
[13]
Selvaraj, V.; Vinoba, M.; Alagar, M. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. J. Colloid Interface Sci., 2008, 322, 537-544.
[14]
Grace, A.N.; Pandian, K. Pt, Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes,-A potent electrocatalyst towards the oxidation of glycerol. Electrochem. Commun., 2006, 8, 1340-1348.
[15]
Selvaraj, V.; Alagar, M. Pt and Pt-Ru nanoparticles decorated polyaniline/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun., 2007, 9, 1145-1153.
[16]
Castro-Luna, A.M. A novel electrocatalytic polyaniline electrode for methanol oxidation. J. Appl. Electrochem., 2000, 30, 1137-1142.
[17]
Prasad, A.M.; Santhosh, C.; Grace, A.N. Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications. Appl. Nanosci., 2012, 2, 457-466.
[18]
Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; Zhong, J.; Jin, C.; Li, Y.; Lee, S.; Dai, H. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun., 2015, 6, 10035-10039.
[19]
Yang, C.; Wang, D.; Hu, X.; Dai, C.; Zhang, L. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for metanol electrooxidation. J. Alloys Compd., 2008, 448, 109-115.
[20]
Liu, L.; Pu, C.; Viswanathan, R.; Fan, Q.; Liu, R.; Smotkin, E.S. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells. Electrochim. Acta, 1998, 24, 3657-3663.
[21]
Spinace, E.V.; Neto, A.O.; Linardi, M. Electrooxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. J. Power Sources, 2004, 129, 121-126.
[22]
Choi, J-H.; Park, K-W.; Lee, H-K.; Kim, Y-M.; Lee, J-S.; Sung, Y-E. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell. Electrochim. Acta, 2003, 48, 2781-2789.
[23]
Chu, Y-H.; Shul, Y.G.; Choi, W.C.; Woo, S.I.; Han, H-S. Evaluation of the Nafion effect on the activity of Pt-Ru electrocatalysts for the electro-oxidation of methanol. J. Power Sources, 2003, 118, 334-341.
[24]
Ciric-Marjanovic, G. Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth. Met., 2013, 170, 31-56.
[25]
Narasimulu, A.A.; Singh, D.K.; Soin, N.; Gupta, G.; Geng, J.; Zhu, Z.; Luo, J.K. A comparative investigation on various platinum nanoparticles decorated carbon supports for oxygen reduction reaction. Curr. Nanosci., 2017, 13(2), 136-148.
[26]
An, G.; Yu, P.; Mao, L.; Sun, Z.; Liu, Z.; Miao, S.; Miao, Z.; Ding, K. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells. Carbon, 2007, 45, 536-542.
[27]
Zhu, H.; Liao, S.; Ye, L.; Hu, X.; Khomami, B.; Hu, M.Z. A modified solid state reduction method to prepare supported platinum nanoparticle catalysts for low temperature fuel cell application. Curr. Nanosci., 2009, 5(2), 252-256.
[28]
Quinn, B.M.; Dekker, C.; Lemay, S.G. Electrodeposition of noble metal nanoparticles on carbon nanotubes. JACS Commun, 2005, 127(17), 6146-6147.
[29]
Wu, B.; Kuang, Y.; Zhang, X.; Chen, J. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today, 2011, 6, 75-90.
[30]
Maiyalagan, T.; Khan, F.N. Electrochemical oxidation of methanol on Pt/V2O5-C composite catalysts. Catal. Commun., 2009, 10, 433-436.
[31]
Jayaraman, S.; Jaramillo, T.F.; Baeck, S-H.; Mcfarland, E.W. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. J. Phys. Chem., 2005, 109, 22958-22966.
[32]
Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D.W.; Echegoyen, L.; Carroll, D.L.; Foulger, S.H.; Balloto, J. Carbon nanotube doped polyaniline. J. Adv. Mater, 2002, 14(20), 1480-1483.
[33]
Fıcıcıoglu, F.; Kadirgan, F. Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode. J. Electroanal. Chem., 1998, 451, 95-98.
[34]
Wu, G.; Li, L.; Li, J-H.; Xu, B-Q. Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol oxidation. Carbon, 2005, 43, 2579-2587.
[35]
Wo, T-M.; Lin, Y-W.; Liao, C-S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon, 2005, 43, 734-740.
[36]
Lu, X.; Zhang, W.; Wang, C.; Wen, T-C.; Wei, Y. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog. Polym. Sci., 2011, 36, 671-712.
[37]
Oueiny, C.; Berlioz, S.; Perrin, F-X. Carbon nanotube-polyaniline composites. Prog. Polym. Sci., 2014, 39, 707-748.
[38]
Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci., 2010, 35, 837-867.
[39]
Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small, 2005, 1(2), 180-192.
[40]
Vork, F.T.A.; Barendrecht, E. The reduction of dioxygen at polypyrrole–modified electrodes with incorporated Pt particles. Electrochim. Acta, 1990, 35, 135-140.
[41]
Jingyu, S.; Jianshu, H.; Yanxia, C.; Xiaogang, Z. Hydrotermal sysnthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol. Int. J. Electrochem. Sci., 2007, 2, 67-71.
[42]
Kiyani, R.; Rowshanzamir, S.; Parnian, M.J. Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electrooxidation in alkaline medium. Iranian J. Hydrogen Fuel Cell, 2005, 2(2), 67-74.
[43]
Wu, T.; Lin, Y. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer, 2006, 47, 3576-3582.
[44]
He, D.; Zeng, C.; Xu, C.; Cheng, N.; Li, H.; Mu, S.; Pan, M. Polyaniline-functionalized carbon nanotubes supported platinum catalysts. Langmuir, 2011, 27, 5582-5588.
[45]
Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sense. Nano Today, 2011, 6, 240-264.
[46]
Xu, J.; Yao, P.; Li, X.; He, F. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalixed multi-walled carbon nanotubes nano-composite. Mater. Sci. Eng. B, 2008, 151, 210-219.
[47]
Madhan Kumar, A.; Gasem, Z.M. Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings. Surf. Coat. Tech., 2015, 276, 416-423.
[48]
Rajesh, B.; Ravindranathan-Thampi, K.; Bonard, J.M.; Mathieu, H.J.; Xanthopoulos, N.; Viswanathan, B. Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application. J. Power Sources, 2005, 141, 35-38.
[49]
Cochet, M.; Maser, W.K.; Benito, A.M.; Callejas, M.A.; Martinez, M.T.; Benoit, J-M.; Schreiber, J.; Chauvet, O. Synthesis of a new polyaniline/nanotube composite: “İn-situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun., 2001, 0, 1450-1451.
[50]
Hughes, M.; Chen, G.Z.; Shaffer, M.S.P.; Fray, D.J.; Windle, A.H. Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Compos. Sci. Technol., 2004, 64, 2325-2331.
[51]
Kasamechonchung, P.; Rahong, S.; Pratontep, S.; Fukaya, K.; Wanna, Y. Preparation and characterization of PANI/CNT/Pt hybrid materials. J. Micros. Soc. Thailand, 2009, 23(1), 127-129.
[52]
Hung, J-E.; Li, X-H.; Xu, J-C.; Li, H-L. Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon, 2003, 41, 2731-2736.
[53]
Lee, H-Y.; Vogel, W.; Chu, P.P-J. Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes. Langmuir, 2011, 27, 14654-14661.
[54]
Komura, T.; Sakabayashi, H.; Takahahsi, K. Electrochemistry of conductive polymers. IV. Electrochemical studies on polyaniline degradation-product identification and columetric studies. Bull. Chem. Soc. Jpn., 1988, 135(10), 2497-2502.
[55]
Ficicioglu, F.; Kadirgan, F. Electrooxidation of methanol on platinum doped polyaniline electrodes: Temperature effect. J. Electroanal. Chem., 1997, 430, 179-182.
[56]
Downs, C.; Nugent, J.; Ajayan, P.M.; Duquette, D.J.; Santhanam, K.S.V. Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. Commun, 1999, 11(12), 1028-1031.
[57]
Shi, J.; Wang, Z.; Li, H-I. Electrochemical fabrication of polyaniline/multi-walled carbon nanotube composite films for electrooxidation of methanol. J. Mater. Sci., 2007, 42, 539-544.
[58]
Ni, X.; Xiong, Q.; Pan, J.; Li, X.; Zhang, W.; Qiu, F.; Yan, Y. Highly active and durable methanol electro-oxidation catalyzed by small paladium nanoparticles inside sulfur-doped carbon microsphere. Fuel, 2017, 190, 174-181.
[59]
Tsai, M-C.; Yeh, T-K.; Tsai, C-H. An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem. Commun., 2006, 8, 1445-1452.
[60]
Basri, S.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z. Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrogen Energy, 2010, 35, 7957-7970.
[61]
Becerik, I.; Suzer, S.; Kadırgan, F. Platinum-palladium particles ıncorporated ınto the polypyrrole film for the electrooxidation of D-glucose at neutral media. J. Electroanal. Chem., 1999, 476, 171-176.
[62]
Becerik, I.; Kadırgan, F. Glucose sensitivity of Pt based alloys ıncorporated in polypyrrole films at neutral media. Synth. Met., 2001, 124(2-3), 379-385.
[63]
Becerik, I. The role of platinum-palladium modified electrodes on the electrooxidation of D-glucose in alkaline medium: A synergistic effect. Tr. J. Chem, 1999, 23, 57-66.
[64]
Liang, R.; Hu, A.; Persic, J.; Zhou, Y.N. Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett., 2013, 5, 201-212.
[65]
Datta, A.; Kapri, S.; Bhattacharyya, S. Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol-oxidation. Green Chem., 2015, 3, 315-321.
[66]
Wang, J.; Pan, H-J.; Ding, Y-Y.; Li, Y-C.; Liu, C.; Liu, F.; Zhang, Q-F.; Wang, G-H.; Han, M. Ultrahigh methanol electro-oxidation activity from gas phase synthesized palladium nanoparticles optimized with three-dimensional carbon nanostructured supports. Electrochim. Acta, 2017, 251, 631-637.
[67]
Anderson, B.A.; Grantscharova, E.; Seong, S. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J. Electrochem. Soc., 1996, 143, 2075-2082.
[68]
Shropshire, J.A. The catalysis of the electrochemical oxidation of formaldehyde and methanol bymolybdates. J. Electrochem. Soc., 1965, 112, 465-469.
[69]
Kita, H.; Nakajima, H.; Shimazu, K. Catalysis of the electrochemical oxidation of methanol by molybdeum-modified platinum. J. Electroanal. Chem., 1988, 248(1), 181-191.
[70]
Nakajima, H.; Kita, H. The role of surface molybdenum species in methanol oxidation on the platinum electrode. Electrochim. Acta, 1990, 35(5), 849-853.
[71]
Lima, A.; Coutanceau, C.; Leger, J-M.; Lamy, C. Investigation of ternary catalysts for methanol electrooxidation. J. Appl. Electrochem., 2001, 31, 379-386.
[72]
Götz, M.; Wendt, H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim. Acta, 1998, 43(24), 3637-3642.
[73]
Pourbaix, M. Atlas d’Equilibres Electrochimiques; Gaultier Villars: Paris, 1963, pp. 272-273.
[74]
Hamnett, A. Mechanism of Methanol Electro-oxidation. İn:
Wieckowski, A. (Ed.), ‘Interfacial Electrochemistry, Theory, Experiments
and Applications’. Marcel Dekker Inc.: New York, 1999.
[75]
Bergamaski, K.; Pinheiro, A.L.N.; Teixeira-Neto, E.; Nart, F.C. Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts. J. Phys. Chem. B, 2006, 110, 19271-19279.