Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Nanosized Composite Electrodes Based on Polyaniline/Carbon Nanotubes Towards Methanol Oxidation

Author(s): Muge Civelekoglu-Odabas and Ipek Becerik*

Volume 15, Issue 6, 2019

Page: [654 - 668] Pages: 15

DOI: 10.2174/1573413715666181126112201

Price: $65

Abstract

Background: Direct methanol fuel cells as a clean and efficient energy conversion method for portable electronic devices and electric vehicles are a very popular subject in science and engineering. Up to now, the most effective anode electrode materials for direct methanol fuel cells are Pt- Ru, used mainly as bimetallic catalysts dispersed on a highly active conductive support, such as conducting polymer, carbon-based catalysts, or a composite matrix composed of both.

Objective: The main objective is to decrease the amount of precious metal-Pt required for financial considerations and to overcome the insufficient oxidation reactions’ rate of the fuel, which lead to the inevitable, naturally high, overpotential in fuel cell applications. Thereby, current research addresses the preparation of Pt, Pt-Ru, Pt-Ru-Pd and Pt-Ru-Mo metal nanoparticles modified by both polyaniline-multi-wall carbon nanotubes and polianiline-functionalized multi-wall carbon nanotubes composites and their activity in the methanol electro-oxidation.

Methods: All of the composite surfaces were successfully prepared using electrochemical methodologies. A Citrate method was used for the preparation of metal nanoparticles. A comparative study was conducted on each stage of the investigation. The modified surfaces were characterized and analyzed by SEM, EDX, XRD, Raman, and TEM.

Results: According to the spectroscopic measurements, all particles synthesized were detected as nanoscale. Binary and ternary catalysts supported on composite surfaces had higher activity and efficiency when compared to monometallic systems.

Conclusion: The fabricated electrodes showed comparable catalytic activity, long-term stability, and productivity towards direct methanol fuel cell applications in acidic media.

Keywords: Methanol electrooxidation, carbon nanotubes, polyaniline, platinum-based nanoparticles, direct methanol fuel cells, portable electronic devices.

Graphical Abstract

[1]
Arico, A.S.; Srinivasan, S.; Antonucci, V. DMFCs: From fundamental aspects to technology development. Fuel Cells, 2001, 1(2), 133-161.
[2]
Beden, B.; Lamy, C.; Leger, J.M. Electrocatalytic Oxidation of Oxygenated Aliphatic Organic Compounds at Noble Metal Electrodes. In: Bockris, J.O’M; Conway, B.E.; White, R. (Eds.), Modern Aspects of Electrochemistry, Vol. 22, Plenum Press: New York, 1992, pp. 97-264.
[3]
Watanabe, M.; Uchida, H. Catalysis for the electrooxidation of small molecules In: Vielstich, W.; Gasteiger, H.A.; Yokokawa, H.; (Eds.). Handbook of fuel cells-Fundemantals, Technology and Applications, Vol 5; Advances in Electrocatalysis, Materials, Diagnostics and Durability, Wiley: New York, 2009, pp. 96-135.
[4]
Bockris, J. O’M; Reddy, A.K.N. Modern Electrochemistry; Vol. 2, Plenum Press: New York, 1972.
[5]
Mu, Y.; Liang, H.; Hu, J.; Jiang, L.; Wan, L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B, 2005, 109, 22212-22216.
[6]
Mcnicol, B.D.; Rand, D.A.J.; Williams, K.R. Direct methanol-air fuel cells for road transportation. J. Power Sources, 1999, 83, 15-21.
[7]
Becerik, I.; Kadırgan, F.; Suzer, S. Electrooxidation of methanol on doped polypyrrole films in acidic media. J. Electroanal. Chem., 2001, 502, 118-125.
[8]
Lobato, J.; Canizares, P.; Rodrigo, M.A.; Lineras, J.J.; Lopez-Vizcaino, R. Performance of a vapor-fed polybenzimidazole(PBI) –based direct methenol fuel cell. Energy Fuels, 2008, 5, 3335-3345.
[9]
Ejigu, A.; Johnson, L.; Licence, P.; Walsh, D.A. Electrocatalytic oxidation of methanol and carbon monoxide ad platinum in protic ıonic liquids. Electrochem. Commun., 2012, 23, 122-124.
[10]
Kulesza, P.J.; Pieta, I.S.; Rutkowska, I.A.; Wadas, A.; Marks, D.; Klak, K.; Stobinski, L.; Cox, J.A. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifyingthem with metal oxides. Electrochim. Acta, 2013, 110, 474-483.
[11]
Li, F.; Guo, Y.; Wu, T.; Liu, Y.; Wang, W.; Gao, J. Platinum nano-catalysts deposited on reduced graphene oxides for alcohol oxidation. Electrochim. Acta, 2013, 111, 614-620.
[12]
Liu, Z.; Tian, Z.Q.; Jiang, S.P. Synthesis and characterization of nafion-stabilized Pt nanoparticles for polymer electrolyte fuel cells. Electrochim. Acta, 2006, 52, 1213-1220.
[13]
Selvaraj, V.; Vinoba, M.; Alagar, M. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. J. Colloid Interface Sci., 2008, 322, 537-544.
[14]
Grace, A.N.; Pandian, K. Pt, Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes,-A potent electrocatalyst towards the oxidation of glycerol. Electrochem. Commun., 2006, 8, 1340-1348.
[15]
Selvaraj, V.; Alagar, M. Pt and Pt-Ru nanoparticles decorated polyaniline/multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation. Electrochem. Commun., 2007, 9, 1145-1153.
[16]
Castro-Luna, A.M. A novel electrocatalytic polyaniline electrode for methanol oxidation. J. Appl. Electrochem., 2000, 30, 1137-1142.
[17]
Prasad, A.M.; Santhosh, C.; Grace, A.N. Carbon nanotubes and polyaniline supported Pt nanoparticles for methanol oxidation towards DMFC applications. Appl. Nanosci., 2012, 2, 457-466.
[18]
Huang, W.; Wang, H.; Zhou, J.; Wang, J.; Duchesne, N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F.; Zeng, M.; Zhong, J.; Jin, C.; Li, Y.; Lee, S.; Dai, H. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun., 2015, 6, 10035-10039.
[19]
Yang, C.; Wang, D.; Hu, X.; Dai, C.; Zhang, L. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for metanol electrooxidation. J. Alloys Compd., 2008, 448, 109-115.
[20]
Liu, L.; Pu, C.; Viswanathan, R.; Fan, Q.; Liu, R.; Smotkin, E.S. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells. Electrochim. Acta, 1998, 24, 3657-3663.
[21]
Spinace, E.V.; Neto, A.O.; Linardi, M. Electrooxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. J. Power Sources, 2004, 129, 121-126.
[22]
Choi, J-H.; Park, K-W.; Lee, H-K.; Kim, Y-M.; Lee, J-S.; Sung, Y-E. Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell. Electrochim. Acta, 2003, 48, 2781-2789.
[23]
Chu, Y-H.; Shul, Y.G.; Choi, W.C.; Woo, S.I.; Han, H-S. Evaluation of the Nafion effect on the activity of Pt-Ru electrocatalysts for the electro-oxidation of methanol. J. Power Sources, 2003, 118, 334-341.
[24]
Ciric-Marjanovic, G. Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synth. Met., 2013, 170, 31-56.
[25]
Narasimulu, A.A.; Singh, D.K.; Soin, N.; Gupta, G.; Geng, J.; Zhu, Z.; Luo, J.K. A comparative investigation on various platinum nanoparticles decorated carbon supports for oxygen reduction reaction. Curr. Nanosci., 2017, 13(2), 136-148.
[26]
An, G.; Yu, P.; Mao, L.; Sun, Z.; Liu, Z.; Miao, S.; Miao, Z.; Ding, K. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells. Carbon, 2007, 45, 536-542.
[27]
Zhu, H.; Liao, S.; Ye, L.; Hu, X.; Khomami, B.; Hu, M.Z. A modified solid state reduction method to prepare supported platinum nanoparticle catalysts for low temperature fuel cell application. Curr. Nanosci., 2009, 5(2), 252-256.
[28]
Quinn, B.M.; Dekker, C.; Lemay, S.G. Electrodeposition of noble metal nanoparticles on carbon nanotubes. JACS Commun, 2005, 127(17), 6146-6147.
[29]
Wu, B.; Kuang, Y.; Zhang, X.; Chen, J. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications. Nano Today, 2011, 6, 75-90.
[30]
Maiyalagan, T.; Khan, F.N. Electrochemical oxidation of methanol on Pt/V2O5-C composite catalysts. Catal. Commun., 2009, 10, 433-436.
[31]
Jayaraman, S.; Jaramillo, T.F.; Baeck, S-H.; Mcfarland, E.W. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells. J. Phys. Chem., 2005, 109, 22958-22966.
[32]
Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D.W.; Echegoyen, L.; Carroll, D.L.; Foulger, S.H.; Balloto, J. Carbon nanotube doped polyaniline. J. Adv. Mater, 2002, 14(20), 1480-1483.
[33]
Fıcıcıoglu, F.; Kadirgan, F. Electrooxidation of ethylene glycol on a platinum doped polyaniline electrode. J. Electroanal. Chem., 1998, 451, 95-98.
[34]
Wu, G.; Li, L.; Li, J-H.; Xu, B-Q. Polyaniline-carbon composite films as supports of Pt and PtRu particles for methanol oxidation. Carbon, 2005, 43, 2579-2587.
[35]
Wo, T-M.; Lin, Y-W.; Liao, C-S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon, 2005, 43, 734-740.
[36]
Lu, X.; Zhang, W.; Wang, C.; Wen, T-C.; Wei, Y. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog. Polym. Sci., 2011, 36, 671-712.
[37]
Oueiny, C.; Berlioz, S.; Perrin, F-X. Carbon nanotube-polyaniline composites. Prog. Polym. Sci., 2014, 39, 707-748.
[38]
Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci., 2010, 35, 837-867.
[39]
Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes. Small, 2005, 1(2), 180-192.
[40]
Vork, F.T.A.; Barendrecht, E. The reduction of dioxygen at polypyrrole–modified electrodes with incorporated Pt particles. Electrochim. Acta, 1990, 35, 135-140.
[41]
Jingyu, S.; Jianshu, H.; Yanxia, C.; Xiaogang, Z. Hydrotermal sysnthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol. Int. J. Electrochem. Sci., 2007, 2, 67-71.
[42]
Kiyani, R.; Rowshanzamir, S.; Parnian, M.J. Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electrooxidation in alkaline medium. Iranian J. Hydrogen Fuel Cell, 2005, 2(2), 67-74.
[43]
Wu, T.; Lin, Y. Doped polyaniline/multi-walled carbon nanotube composites: Preparation, characterization and properties. Polymer, 2006, 47, 3576-3582.
[44]
He, D.; Zeng, C.; Xu, C.; Cheng, N.; Li, H.; Mu, S.; Pan, M. Polyaniline-functionalized carbon nanotubes supported platinum catalysts. Langmuir, 2011, 27, 5582-5588.
[45]
Guo, S.; Wang, E. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sense. Nano Today, 2011, 6, 240-264.
[46]
Xu, J.; Yao, P.; Li, X.; He, F. Synthesis and characterization of water-soluble and conducting sulfonated polyaniline/para-phenylenediamine-functionalixed multi-walled carbon nanotubes nano-composite. Mater. Sci. Eng. B, 2008, 151, 210-219.
[47]
Madhan Kumar, A.; Gasem, Z.M. Effect of functionalization of carbon nanotubes on mechanical and electrochemical behavior of polyaniline nanocomposite coatings. Surf. Coat. Tech., 2015, 276, 416-423.
[48]
Rajesh, B.; Ravindranathan-Thampi, K.; Bonard, J.M.; Mathieu, H.J.; Xanthopoulos, N.; Viswanathan, B. Electronically conducting hybrid material as high performance catalyst support for electrocatalytic application. J. Power Sources, 2005, 141, 35-38.
[49]
Cochet, M.; Maser, W.K.; Benito, A.M.; Callejas, M.A.; Martinez, M.T.; Benoit, J-M.; Schreiber, J.; Chauvet, O. Synthesis of a new polyaniline/nanotube composite: “İn-situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun., 2001, 0, 1450-1451.
[50]
Hughes, M.; Chen, G.Z.; Shaffer, M.S.P.; Fray, D.J.; Windle, A.H. Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Compos. Sci. Technol., 2004, 64, 2325-2331.
[51]
Kasamechonchung, P.; Rahong, S.; Pratontep, S.; Fukaya, K.; Wanna, Y. Preparation and characterization of PANI/CNT/Pt hybrid materials. J. Micros. Soc. Thailand, 2009, 23(1), 127-129.
[52]
Hung, J-E.; Li, X-H.; Xu, J-C.; Li, H-L. Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon, 2003, 41, 2731-2736.
[53]
Lee, H-Y.; Vogel, W.; Chu, P.P-J. Nanostructure and surface composition of Pt and Ru binary catalysts on polyaniline-functionalized carbon nanotubes. Langmuir, 2011, 27, 14654-14661.
[54]
Komura, T.; Sakabayashi, H.; Takahahsi, K. Electrochemistry of conductive polymers. IV. Electrochemical studies on polyaniline degradation-product identification and columetric studies. Bull. Chem. Soc. Jpn., 1988, 135(10), 2497-2502.
[55]
Ficicioglu, F.; Kadirgan, F. Electrooxidation of methanol on platinum doped polyaniline electrodes: Temperature effect. J. Electroanal. Chem., 1997, 430, 179-182.
[56]
Downs, C.; Nugent, J.; Ajayan, P.M.; Duquette, D.J.; Santhanam, K.S.V. Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. Commun, 1999, 11(12), 1028-1031.
[57]
Shi, J.; Wang, Z.; Li, H-I. Electrochemical fabrication of polyaniline/multi-walled carbon nanotube composite films for electrooxidation of methanol. J. Mater. Sci., 2007, 42, 539-544.
[58]
Ni, X.; Xiong, Q.; Pan, J.; Li, X.; Zhang, W.; Qiu, F.; Yan, Y. Highly active and durable methanol electro-oxidation catalyzed by small paladium nanoparticles inside sulfur-doped carbon microsphere. Fuel, 2017, 190, 174-181.
[59]
Tsai, M-C.; Yeh, T-K.; Tsai, C-H. An improved electrodeposition technique for preparing platinum and platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem. Commun., 2006, 8, 1445-1452.
[60]
Basri, S.; Kamarudin, S.K.; Daud, W.R.W.; Yaakub, Z. Nanocatalyst for direct methanol fuel cell (DMFC). Int. J. Hydrogen Energy, 2010, 35, 7957-7970.
[61]
Becerik, I.; Suzer, S.; Kadırgan, F. Platinum-palladium particles ıncorporated ınto the polypyrrole film for the electrooxidation of D-glucose at neutral media. J. Electroanal. Chem., 1999, 476, 171-176.
[62]
Becerik, I.; Kadırgan, F. Glucose sensitivity of Pt based alloys ıncorporated in polypyrrole films at neutral media. Synth. Met., 2001, 124(2-3), 379-385.
[63]
Becerik, I. The role of platinum-palladium modified electrodes on the electrooxidation of D-glucose in alkaline medium: A synergistic effect. Tr. J. Chem, 1999, 23, 57-66.
[64]
Liang, R.; Hu, A.; Persic, J.; Zhou, Y.N. Palladium nanoparticles loaded on carbon modified TiO2 nanobelts for enhanced methanol electrooxidation. Nano-Micro Lett., 2013, 5, 201-212.
[65]
Datta, A.; Kapri, S.; Bhattacharyya, S. Enhanced catalytic activity of palladium nanoparticles confined inside porous carbon in methanol-oxidation. Green Chem., 2015, 3, 315-321.
[66]
Wang, J.; Pan, H-J.; Ding, Y-Y.; Li, Y-C.; Liu, C.; Liu, F.; Zhang, Q-F.; Wang, G-H.; Han, M. Ultrahigh methanol electro-oxidation activity from gas phase synthesized palladium nanoparticles optimized with three-dimensional carbon nanostructured supports. Electrochim. Acta, 2017, 251, 631-637.
[67]
Anderson, B.A.; Grantscharova, E.; Seong, S. Systematic theoretical study of alloys of platinum for enhanced methanol fuel cell performance. J. Electrochem. Soc., 1996, 143, 2075-2082.
[68]
Shropshire, J.A. The catalysis of the electrochemical oxidation of formaldehyde and methanol bymolybdates. J. Electrochem. Soc., 1965, 112, 465-469.
[69]
Kita, H.; Nakajima, H.; Shimazu, K. Catalysis of the electrochemical oxidation of methanol by molybdeum-modified platinum. J. Electroanal. Chem., 1988, 248(1), 181-191.
[70]
Nakajima, H.; Kita, H. The role of surface molybdenum species in methanol oxidation on the platinum electrode. Electrochim. Acta, 1990, 35(5), 849-853.
[71]
Lima, A.; Coutanceau, C.; Leger, J-M.; Lamy, C. Investigation of ternary catalysts for methanol electrooxidation. J. Appl. Electrochem., 2001, 31, 379-386.
[72]
Götz, M.; Wendt, H. Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim. Acta, 1998, 43(24), 3637-3642.
[73]
Pourbaix, M. Atlas d’Equilibres Electrochimiques; Gaultier Villars: Paris, 1963, pp. 272-273.
[74]
Hamnett, A. Mechanism of Methanol Electro-oxidation. İn: Wieckowski, A. (Ed.), ‘Interfacial Electrochemistry, Theory, Experiments and Applications’. Marcel Dekker Inc.: New York, 1999.
[75]
Bergamaski, K.; Pinheiro, A.L.N.; Teixeira-Neto, E.; Nart, F.C. Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts. J. Phys. Chem. B, 2006, 110, 19271-19279.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy